1
|
Luna-Guzmán CE, Zarzoza-Mendoza IC, Cervantes-Monroy E, Villa-Morales J, Carmona-Sierra FV, Maldonado-Hernández J, Domínguez-Calderón I, Rodriguez-Cruz M. Composition of linear and branched short-chain fatty acids in human milk and newborn feces: influence of perinatal and maternal factors. Food Funct 2025; 16:499-509. [PMID: 39679783 DOI: 10.1039/d4fo03568b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This research aimed to analyze the percentage of short-chain fatty acids (SCFAs) in human milk (HM) and newborn feces and to explore potential associations with factors such as maternal nutrition, age, biological sex, delivery mode, diet, and the type of HM. Gas chromatography was used to measure the percentage of SCFAs in colostrum (n = 23), transitional HM (n = 23), and mature HM (n = 92) and feces of newborn (n = 36) at day 30 postpartum. Anthropometry was also evaluated in the mother and the infant. The results showed that acetic acid was the most abundant in HM. The percentage of butyric acid and isovaleric acid was higher (p < 0.05) in the feces of newborns whose mothers were overweight/obese or were male, respectively, compared to newborns whose mothers were of normal weight or were female. The percentage of valeric acid was higher in the feces of newborns whose mothers were over 30 years old and who were delivered by C-section, compared to newborns whose mothers were 30 years old or younger and who were delivered vaginally. Inadequate intake of proteins, carbohydrates, and fiber was associated (p < 0.05) with lower acetic acid and higher butyric acid, higher propionic acid and lower butyric acid, and higher isovaleric acid percentage, respectively, in mature HM. The percentage of acetic acid was higher (p < 0.01) and that of propionic acid, butyric acid, isobutyric acid, and isovaleric acid was lower (p < 0.01) in colostrum compared to mature HM. The intake of lipids was associated with the percentage of butyric acid (β = -0.32, p = 0.01), and the percentage of propionic acid (β = 0.43, p < 0.01) was associated with carbohydrate intake. Overall, this study concluded that factors such as maternal nutritional status, diet, age, biological sex, and delivery mode were related to the composition of specific SCFAs in mature HM and newborn feces. Additionally, the percentage of SCFAs gradually decreased from colostrum to mature HM.
Collapse
Affiliation(s)
- Cristian Emmanuel Luna-Guzmán
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico.
| | - Imelda Cecilia Zarzoza-Mendoza
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico.
- Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Emmanuel Cervantes-Monroy
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico.
| | - Judith Villa-Morales
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico.
| | | | - Jorge Maldonado-Hernández
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico.
| | - Israel Domínguez-Calderón
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico.
| | - Maricela Rodriguez-Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico.
| |
Collapse
|
2
|
Reuben RC, Torres C. Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications. World J Microbiol Biotechnol 2025; 41:41. [PMID: 39826029 PMCID: PMC11742929 DOI: 10.1007/s11274-024-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis. While single omics studies have undoubtedly contributed to our current understanding of milk microbiome and mastitis, they often provide limited information, targeting only a single biological viewpoint which is insufficient to provide system-wide information necessary for elucidating the biological footprints and molecular mechanisms driving mastitis and milk microbiome dysbiosis. Therefore, integrating a multi-omics approach in milk microbiome research could generate new knowledge, improve the current understanding of the functional and structural signatures of the milk ecosystem, and provide insights for sustainable mastitis control and microbiome management.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Biology Department, King's College, 133 North River Street, Wilkes-Barre, PA, 18711, USA.
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
3
|
Sun W, Tao L, Qian C, Xue PP, Du SS, Tao YN. Human milk oligosaccharides: bridging the gap in intestinal microbiota between mothers and infants. Front Cell Infect Microbiol 2025; 14:1386421. [PMID: 39835278 PMCID: PMC11743518 DOI: 10.3389/fcimb.2024.1386421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Breast milk is an essential source of infant nutrition. It is also a vital determinant of the structure and function of the infant intestinal microbial community, and it connects the mother and infant intestinal microbiota. Human milk oligosaccharides (HMOs) are a critical component in breast milk. HMOs can reach the baby's colon entirely from milk and become a fermentable substrate for some intestinal microorganisms. HMOs can enhance intestinal mucosal barrier function and affect the intestinal function of the host through immune function, which has a therapeutic effect on specific infant intestinal diseases, such as necrotizing enterocolitis. In addition, changes in infant intestinal microbiota can reflect the maternal intestinal microbiota. HMOs are a link between the maternal intestinal microbiota and infant intestinal microbiota. HMOs affect the intestinal microbiota of infants and are related to the maternal milk microbiota. Through breastfeeding, maternal microbiota and HMOs jointly affect infant intestinal bacteria. Therefore, HMOs positively influence the establishment and balance of the infant microbial community, which is vital to ensure infant intestinal function. Therefore, HMOs can be used as a supplement and alternative therapy for infant intestinal diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying-na Tao
- Department of Traditional Chinese Medicine, Shanghai Fourth People’s Hospital
Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
4
|
Hampel D, Shahab-Ferdows S, Kac G, Allen LH. Evaluating Metabolic Profiling of Human Milk Using Biocrates MxP ® QUANT 500 Assay. Metabolites 2025; 15:14. [PMID: 39852357 PMCID: PMC11768157 DOI: 10.3390/metabo15010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Metabolic profiling of human milk (HM) is indispensable for elucidating mother-milk-infant relationships. Methods: We evaluated the Biocrates MxP® Quant 500 assay for HM-targeted metabolomics (106 small molecules, 524 lipids) and analyzed in a feasibility test HM from apparently healthy Brazilian mothers (A: 2-8, B: 28-50, C: 88-119 days postpartum, ntotal = 25). Results: Of the 630 possible signatures detectable with this assay, 506 were above the limits of detection in an HM-pool (10 µL) used for assay evaluation, 12 of them above the upper limit of quantitation. Analyzing five different HM-pool volumes (2-20 µL) revealed acceptable linearity for 458 metabolites. Intraday accuracy of 80-120% was attained by 469 metabolites after spiking and for 342 after a 1:2 dilution. Analyzing HM from Brazilian mothers revealed significantly lower concentrations in colostrum vs. mature milk for many flow-injection analyses (FIA) and only a few LC-MS metabolites, including triglycerides, sphingomyelins, and phosphatidylcholines. Higher concentrations at the later lactation stages were found predominantly for amino acids and related compounds. Conclusions: The MxP Quant® 500 assay is a useful tool for HM metabolic profiling, minimizing analytical bias between matrices, and enhancing our ability to study milk as a biological system.
Collapse
Affiliation(s)
- Daniela Hampel
- Department of Nutrition, University of California, Davis, CA 95616, USA;
- United States Department of Agriculture, Agricultural Research Service—Western Human Nutrition Research Center, Davis, CA 95616, USA;
| | - Setareh Shahab-Ferdows
- United States Department of Agriculture, Agricultural Research Service—Western Human Nutrition Research Center, Davis, CA 95616, USA;
| | - Gilberto Kac
- Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Lindsay H. Allen
- Department of Nutrition, University of California, Davis, CA 95616, USA;
- United States Department of Agriculture, Agricultural Research Service—Western Human Nutrition Research Center, Davis, CA 95616, USA;
| |
Collapse
|
5
|
Castle L, Andreassen M, Aquilina G, Bastos ML, Boon P, Fallico B, FitzGerald R, Frutos Fernandez MJ, Grasl‐Kraupp B, Gundert‐Remy U, Gürtler R, Houdeau E, Kurek M, Louro H, Passamonti S, Wölfle D, Dusemund B, Turck D, Barmaz S, Tard A, Rincon AM. Re-evaluation of citric acid esters of mono- and diglycerides of fatty acids (E 472c) as a food additive in foods for infants below 16 weeks of age and follow-up of its re-evaluation. EFSA J 2025; 23:e9202. [PMID: 39816965 PMCID: PMC11733587 DOI: 10.2903/j.efsa.2025.9202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Citric acid esters of mono- and diglycerides of fatty acids (E 472c) was re-evaluated in 2020 by the Food Additives and Flavourings Panel (FAF Panel) along with acetic acid, lactic acid, tartaric acid, mono- and diacetyltartaric acid, mixed acetic and tartaric acid esters of mono- and diglycerides of fatty acids (E 472a,b,d,e,f). As a follow-up to this assessment, the FAF Panel was requested to assess the safety of citric acid esters of mono- and diglycerides of fatty acids (E 472c) for its use as food additive in food for infants below 16 weeks of age belonging to food categories (FCs) 13.1.1 (Infant formulae as defined by Directive 2006/141/EC) and 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants). In addition, the FAF Panel was requested to address the recommendation of the re-evaluation of E 472c as a food additive to update the EU specifications in Commission Regulation (EU) No 231/2012. For this, a call for data was published to allow interested partied to provide the requested information for a risk assessment. The Panel concluded that the technical data provided by the interested business operators support an amendment of the EU specifications for E 472c. Regarding the safety of the use of E 472c in food for infants below 16 weeks of age, the Panel concluded that there is no safety concern from its use at the reported use levels and at the maximum permitted levels in food for infants below 16 weeks of age (FCs 13.1.1 and 13.1.5.1).
Collapse
|
6
|
Fu J, Wang Y, Qiao W, Di S, Huang Y, Zhao J, Jing M, Chen L. Research progress on factors affecting the human milk metabolome. Food Res Int 2024; 197:115236. [PMID: 39593319 DOI: 10.1016/j.foodres.2024.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Human milk is the gold standard for infant nutrition and contains macronutrients, micronutrients, and various bioactive substances. The human milk composition and metabolite profiles are complex and dynamic, complicating its specific analysis. Metabolomics, a recently emerging technology, has been used to identify human milk metabolites classes. Applying metabolomics to study the factors affecting human milk metabolites can provide significant insights into the relationship between infant nutrition, health, and development and better meet the nutritional needs of infants during growth. Here, we systematically review the current status of human milk metabolomic research, and related methods, offering an in-depth analysis of the influencing factors and results of human milk metabolomics from a metabolic perspective to provide novel ideas to further advance human milk metabolomics.
Collapse
Affiliation(s)
- Jieyu Fu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Shujuan Di
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yibo Huang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Mengna Jing
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
7
|
Cruz AK, Alves MA, Andresson T, Bayless AL, Bloodsworth KJ, Bowden JA, Bullock K, Burnet MC, Neto FC, Choy A, Clish CB, Couvillion SP, Cumeras R, Dailey L, Dallmann G, Davis WC, Deik AA, Dickens AM, Djukovic D, Dorrestein PC, Eder JG, Fiehn O, Flores R, Gika H, Hagiwara KA, Pham TH, Harynuk JJ, Aristizabal-Henao JJ, Hoyt DW, Jean-François F, Kråkström M, Kumar A, Kyle JE, Lamichhane S, Li Y, Nam SL, Mandal R, de la Mata AP, Meehan MJ, Meikopoulos T, Metz TO, Mouskeftara T, Munoz N, Gowda GAN, Orešic M, Panitchpakdi M, Pierre-Hugues S, Raftery D, Rushing B, Schock T, Seifried H, Servetas S, Shen T, Sumner S, Carrillo KST, Thibaut D, Trejo JB, Van Meulebroek L, Vanhaecke L, Virgiliou C, Weldon KC, Wishart DS, Zhang L, Zheng J, Da Silva S. Multiplatform metabolomic interlaboratory study of a whole human stool candidate reference material from omnivore and vegan donors. Metabolomics 2024; 20:125. [PMID: 39495321 DOI: 10.1007/s11306-024-02185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Human metabolomics has made significant strides in understanding metabolic changes and their implications for human health, with promising applications in diagnostics and treatment, particularly regarding the gut microbiome. However, progress is hampered by issues with data comparability and reproducibility across studies, limiting the translation of these discoveries into practical applications. OBJECTIVES This study aims to evaluate the fit-for-purpose of a suite of human stool samples as potential candidate reference materials (RMs) and assess the state of the field regarding harmonizing gut metabolomics measurements. METHODS An interlaboratory study was conducted with 18 participating institutions. The study allowed for the use of preferred analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). RESULTS Different laboratories used various methods and analytical platforms to identify the metabolites present in human stool RM samples. The study found a 40% to 70% recurrence in the reported top 20 most abundant metabolites across the four materials. In the full annotation list, the percentage of metabolites reported multiple times after nomenclature standardization was 36% (LC-MS), 58% (GC-MS) and 76% (NMR). Out of 9,300 unique metabolites, only 37 were reported across all three measurement techniques. CONCLUSION This collaborative exercise emphasized the broad chemical survey possible with multi-technique approaches. Community engagement is essential for the evaluation and characterization of common materials designed to facilitate comparability and ensure data quality underscoring the value of determining current practices, challenges, and progress of a field through interlaboratory studies.
Collapse
Affiliation(s)
- Abraham Kuri Cruz
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Dr.,, Gaithersburg, MD, 20899, USA
| | - Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Walter Mors Institute of Research On Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil
| | - Thorkell Andresson
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, , Bethesda, MD, 20892, USA
| | - Amanda L Bayless
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Kent J Bloodsworth
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | | | - Kevin Bullock
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Meagan C Burnet
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Fausto Carnevale Neto
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Angelina Choy
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Sneha P Couvillion
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Raquel Cumeras
- West Coast Metabolomics Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
- Institut d'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Reus, Spain
| | - Lucas Dailey
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Guido Dallmann
- Biocrates Life Sciences AG, Eduard-Bodem-Gasse 8, 6020, Innsbruck, Austria
| | - W Clay Davis
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Amy A Deik
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Department of Chemistry, University of Turku, 20014, Turku, Finland
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Josie G Eder
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Roberto Flores
- Division of Program Coordination, Planning and Strategic Initiatives, Office of Nutrition Research, Office of the Director, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Kehau A Hagiwara
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Tuan Hai Pham
- Biocrates Life Sciences AG, Eduard-Bodem-Gasse 8, 6020, Innsbruck, Austria
| | - James J Harynuk
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Juan J Aristizabal-Henao
- University of Florida, Gainesville, FL, 32611, USA
- BPGbio Inc., 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - David W Hoyt
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Focant Jean-François
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Pl. du Vingt Août 7, 4000, Liège, Belgium
| | - Matilda Kråkström
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Amit Kumar
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, , Bethesda, MD, 20892, USA
| | - Jennifer E Kyle
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Yuan Li
- UNC Chapel Hill's Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Seo Lin Nam
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | | - Michael J Meehan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Thomas Meikopoulos
- Division of Program Coordination, Planning and Strategic Initiatives, Office of Nutrition Research, Office of the Director, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD, 20892, USA
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Thomas O Metz
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Nathalie Munoz
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Matej Orešic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70281, Örebro, Sweden
| | - Morgan Panitchpakdi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Stefanuto Pierre-Hugues
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Pl. du Vingt Août 7, 4000, Liège, Belgium
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Blake Rushing
- UNC Chapel Hill's Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Tracey Schock
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Harold Seifried
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, , Bethesda, MD, 20892, USA
| | - Stephanie Servetas
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Dr. , Gaithersburg, MD, 20899, USA
| | - Tong Shen
- West Coast Metabolomics Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Susan Sumner
- UNC Chapel Hill's Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | | | - Dejong Thibaut
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Pl. du Vingt Août 7, 4000, Liège, Belgium
| | - Jesse B Trejo
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Lieven Van Meulebroek
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Christina Virgiliou
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Lu Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Sandra Da Silva
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Dr. , Gaithersburg, MD, 20899, USA.
| |
Collapse
|
8
|
Ostojic SM. Establishing Reference Intakes for Creatine in Infants Aged 0 to 12 Months. Nutr Rev 2024:nuae124. [PMID: 39271173 DOI: 10.1093/nutrit/nuae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Creatine is recognized as a conditionally essential nutrient in certain populations; however, there is a lack of established reference values across different life stages. Infants rely exclusively on dietary creatine from human milk for their first 6 months; evaluating creatine adequacy in this population can be estimated based on preliminary data regarding the intake needed to promote optimal growth. This special article explores creatine requirements for infants aged 0 to 12 months, presents a summary of creatine content in human milk, and proposes reference intakes for creatine in this population.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, 4630 Kristiansand, Norway
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, 21000 Novi Sad, Serbia
- Faculty of Health Sciences, University of Pécs, 7622 Pécs, Hungary
| |
Collapse
|
9
|
Holmes ZC, Koivusaari K, O'Brien CE, Richeson KV, Strickland LI. Untargeted metabolomic analysis of human milk from healthy mothers reveals drivers of metabolite variability. Sci Rep 2024; 14:20827. [PMID: 39242646 PMCID: PMC11379717 DOI: 10.1038/s41598-024-71677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Understanding the human milk metabolome can help inform infant nutrition and health. Untargeted metabolomics was used to study breast milk from 31 healthy participants to assess the shared metabolites in milk from participants with various backgrounds and understand how different demographic, health, and environmental factors impact the milk metabolome. Breast milk samples were analyzed by four separate UPLC-MS/MS methods. Metabolite Set Enrichment Analysis was used to study the most and least variable metabolites. The associations between participant factors and the metabolome were assessed with redundancy analyses. Among all 31 participants and between each untargeted UPLC-MS/MS method, 731 metabolites were detected, of which 389 were shared among all participants. Of the shared metabolites, lactose was the least and lactobionate the most variable metabolite. In the biological super pathway analysis, xenobiotics were the most variable metabolites. Infant age, maternal age, number of live births, and pre-pregnancy BMI were associated with the milk metabolome. In conclusion, the most variable metabolites originate from environmental exposures while the well-conserved core metabolites are linked to cell metabolism or are crucial for infant nutrition and osmoregulation. Understanding the variability of the breast milk metabolome can help identify components that are crucial for infant nutrition, growth, and development.
Collapse
|
10
|
Konieczna M, Koryszewska-Bagińska A, Bzikowska-Jura A, Chmielewska-Jeznach M, Jarzynka S, Olędzka G. Modifiable and Non-Modifiable Factors That Affect Human Milk Oligosaccharides Composition. Nutrients 2024; 16:2887. [PMID: 39275203 PMCID: PMC11397269 DOI: 10.3390/nu16172887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Human milk, the gold standard in infant nutrition, is a unique fluid that provides essential nutrients such as lactose, lipids, proteins, and free oligosaccharides. While its primary role is nutritional, it also protects against pathogens. This protection mainly comes from immunoglobulins, with human milk oligosaccharides (HMOs) providing additional support by inhibiting pathogen binding to host cell ligands. The prebiotic and immune-modulatory activity of HMOs strongly depends on their structure. Over 200 individual structures have been identified so far, with the composition varying significantly among women. The structure and composition of HMOs are influenced by factors such as the Lewis blood group, secretor status, and the duration of nursing. HMO profiles are heavily influenced by maternal phenotypes, which are defined based on the expression of two specific fucosyltransferases. However, recent data have shown that HMO content can be modified by various factors, both changeable and unchangeable, including diet, maternal age, gestational age, mode of delivery, breastfeeding frequency, and race. The first part of this overview presents the historical background of these sugars and the efforts by scientists to extract them using the latest chromatography methods. The second part is divided into subchapters that examine modifiable and non-modifiable factors, reviewing the most recent articles on HMO composition variations due to specific reasons and summarizing potential future challenges in conducting these types of studies.
Collapse
Affiliation(s)
- Małgorzata Konieczna
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | | | - Agnieszka Bzikowska-Jura
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
- Laboratory of Human Milk and Lactation Research, Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | | | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| |
Collapse
|
11
|
Zaunseder E, Mütze U, Okun JG, Hoffmann GF, Kölker S, Heuveline V, Thiele I. Personalized metabolic whole-body models for newborns and infants predict growth and biomarkers of inherited metabolic diseases. Cell Metab 2024; 36:1882-1897.e7. [PMID: 38834070 DOI: 10.1016/j.cmet.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Comprehensive whole-body models (WBMs) accounting for organ-specific dynamics have been developed to simulate adult metabolism, but such models do not exist for infants. Here, we present a resource of 360 organ-resolved, sex-specific models of newborn and infant metabolism (infant-WBMs) spanning the first 180 days of life. These infant-WBMs were parameterized to represent the distinct metabolic characteristics of newborns and infants, including nutrition, energy requirements, and thermoregulation. We demonstrate that the predicted infant growth was consistent with the recommendation by the World Health Organization. We assessed the infant-WBMs' reliability and capabilities for personalization by simulating 10,000 newborns based on their blood metabolome and birth weight. Furthermore, the infant-WBMs accurately predicted changes in known biomarkers over time and metabolic responses to treatment strategies for inherited metabolic diseases. The infant-WBM resource holds promise for personalized medicine, as the infant-WBMs could be a first step to digital metabolic twins for newborn and infant metabolism.
Collapse
Affiliation(s)
- Elaine Zaunseder
- School of Medicine, University of Galway, Galway, Ireland; Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany; Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Jürgen G Okun
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Vincent Heuveline
- School of Medicine, University of Galway, Galway, Ireland; Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland; Discipline of Microbiology, University of Galway, Galway, Ireland; Digital Metabolic Twin Centre, University of Galway, Ireland; Ryan Institute, University of Galway, Galway, Ireland; APC Microbiome Ireland, Cork, Ireland.
| |
Collapse
|
12
|
Cohen A, Turjeman S, Levin R, Tal S, Koren O. Comparison of canine colostrum and milk using a multi-omics approach. Anim Microbiome 2024; 6:19. [PMID: 38650014 PMCID: PMC11034113 DOI: 10.1186/s42523-024-00309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND A mother's milk is considered the gold standard of nutrition in neonates and is a source of cytokines, immunoglobulins, growth factors, and other important components, yet little is known about the components of canine milk, specifically colostrum, and the knowledge related to its microbial and metabolic profiles is particularly underwhelming. In this study, we characterized canine colostrum and milk microbiota and metabolome for several breeds of dogs and examined profile shifts as milk matures in the first 8 days post-whelping. RESULTS Through untargeted metabolomics, we identified 63 named metabolites that were significantly differentially abundant between days 1 and 8 of lactation. Surprisingly, the microbial compositions of the colostrum and milk, characterized using 16S rRNA gene sequencing, were largely similar, with only two differentiating genera. The shifts observed, mainly increases in several sugars and amino sugars over time and shifts in amino acid metabolites, align with shifts observed in human milk samples and track with puppy development. CONCLUSION Like human milk, canine milk composition is dynamic, and shifts are well correlated with developing puppies' needs. Such a study of the metabolic profile of canine milk, and its relation to the microbial community, provides insights into the changing needs of the neonate, as well as the ideal nutrition profile for optimal functionality. This information will add to the existing knowledge base of canine milk composition with the prospect of creating a quality, tailored milk substitute or supplement for puppies.
Collapse
Affiliation(s)
- Alisa Cohen
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Rachel Levin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Smadar Tal
- Koret School of Veterinary Medicine, The Hebrew University Veterinary Teaching Hospital, Hebrew University of Jerusalem, Rehovot, Israel
- Tel-Hai Academic College, Upper Galilee, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Kyung Hee University, Seoul, the Republic of Korea.
| |
Collapse
|
13
|
Astono J, Poulsen KO, Larsen RA, Jessen EV, Sand CB, Rasmussen MA, Sundekilde UK. Metabolic maturation in the infant urine during the first 3 months of life. Sci Rep 2024; 14:5697. [PMID: 38459082 PMCID: PMC10924096 DOI: 10.1038/s41598-024-56227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
The infant urine metabolome provides a body metabolic snapshot, and the sample collection can be done without stressing the fragile infant. 424 infant urine samples from 157 infants were sampled longitudinally at 1-, 2-, and 3 months of age. 49 metabolites were detected using proton nuclear magnetic resonance spectroscopy. Data were analyzed with multi- and univariate statistical methods to detect differences related to infant age-stage, gestational age, mother's pre-pregnancy BMI, C-section, infant birth weight, and infant sex. Significant differences were identified between age-stage (pbonferoni < 0.05) in 30% (15/49) of the detected metabolites. Urine creatinine increased significantly from 1 to 3 months. In addition, myo-inositol, taurine, methionine, and glucose seem to have conserved levels within the individual over time. We calculated a urine metabolic maturation age and found that the metabolic age at 3 months is negatively correlated to weight at 1 year. These results demonstrate that the metabolic maturation can be observed in urine metabolome with implications on infant growth and specifically suggesting that the systematic age effect on creatinine promotes caution in using this as normalization of other urine metabolites.
Collapse
Affiliation(s)
- Julie Astono
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark.
| | - Katrine O Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark
- Sino-Danish Center, Niels Jensens Vej 2, Building 1190, Aarhus, Denmark
| | - Rikke A Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark
| | - Emma V Jessen
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark
| | - Chatrine B Sand
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark
| | - Morten A Rasmussen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg, Denmark
- COPSAC, Herlev-Gentofte Hospital, Ledreborg Alle 28, Gentofte, Denmark
| | - Ulrik K Sundekilde
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark.
| |
Collapse
|
14
|
Sun W, Tao L, Qian C, Xue P, Tong X, Yang L, Lu F, Wan H, Tao Y. Human milk oligosaccharides and the association with microbiota in colostrum: a pilot study. Arch Microbiol 2024; 206:58. [PMID: 38191870 PMCID: PMC10774193 DOI: 10.1007/s00203-023-03787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
HMOs (Human milk oligosaccharide) has an impact on maternal and infant health. Colostrum samples of 70 breastfeeding women in China were collected and recorded clinical characteristics. The major oligosaccharides and microbiota were quantitated in colostrum. The concentration of fucosylated HMOs in primipara was higher than that of multipara (p = 0.030). The concentration of N-acetylated HMOs in vaginal delivery milk was less than that of cesarean (p = 0.038). Non-fucosylated HMOs of breastfeeding women were less than that of breast pump (p = 0.038). Meanwhile, the concentration of LNT was positively correlated with Lactobacillus (r = 0.250, p = 0.037). DS-LNT was negatively correlated with Staphylococcus (r = - 0.240, p = 0.045). There was a positive correlation of Streptococcus with LNFP II (r = 0.314, p = 0.011) and 3-SL (r = 0.322, p = 0.009). In addition, there was a negative correlation between 2'-FL and 3-FL (r = - 0.465, p = 0.001). There was a positive correlation between LNT and LNnT (r = 0.778, p = 0.001). Therefore, the concentration of HMOs is related to number of deliveries, delivery mode, lactation mode and perinatal antibiotic. The concentration of HMOs is related to Lactobacillus, Streptococcus and Streptococcus in colostrum. In addition, there are connections between different oligosaccharides in content. The study protocol was also registered in the ClinicalTrails.gov (ChiCTR2200064454) (Oct. 2022).
Collapse
Affiliation(s)
- Wen Sun
- Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, 200434, China
| | - Lin Tao
- Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, 200434, China
| | - Chen Qian
- Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, 200434, China
| | - Peipei Xue
- Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, 200434, China
| | - Xiankun Tong
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Li Yang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Fang Lu
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, 200434, China
| | - Hua Wan
- Department of Breast, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yingna Tao
- Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, 200434, China.
| |
Collapse
|
15
|
Liu S, Mao Y, Wang J, Tian F, Hill DR, Xiong X, Li X, Zhao Y, Wang S. Lactational and geographical variation in the concentration of six oligosaccharides in Chinese breast milk: a multicenter study over 13 months postpartum. Front Nutr 2023; 10:1267287. [PMID: 37731395 PMCID: PMC10508235 DOI: 10.3389/fnut.2023.1267287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Understanding the variations of oligosaccharide in breast milk contribute to better study how human milk oligosaccharides (HMOs) play a role in health-promoting benefits in infants. Methods Six abundant HMOs, 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), Lacto-N-tetraose (LNT), Lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), in breast milk collected at 0-5 days, 10-15 days, 40-45 days, 200-240 days, and 300-400 days postpartum from six locations across China were analyzed using high-performance anion-exchange chromatography-pulsed amperometric detector. Results The concentration of individual HMO fluctuated dynamically during lactational stages. The median ranges of 2'-FL, 3-FL, LNT, LNnT, 3'-SL, and 6'-SL across the five lactational stages were 935-2865 mg/L, 206-1325 mg/L, 300-1473 mg/L, 32-317 mg/L, 106-228 mg/L, and 20-616 mg/L, respectively. The prominent variation was observed in the content of 6'-SL, which demonstrates a pattern of initial increase followed by a subsequent decrease. Among the five lactational stages, the transitional milk has the highest concentration, which was 31 times greater than the concentration in mature milk at 300-400 days postpartum, where the content is the lowest. Geographical location also influenced the content of HMOs. LNT and LNnT were the highest in mature milk of mothers from Lanzhou among the six sites at 40-240 days postpartum. Breast milks were categorized into two groups base on the abundance of 2'-FL (high and low). There was no significant difference in the proportions of high and low 2'-FL phenotypes among the six sites, and the percentages of high and low 2'-FL phenotypes were 79% and 21%, respectively, across all sites in China. Discussion This study provided a comprehensive dataset on 6 HMOs concentrations in Chinese breast milk during the extended postpartum period across a wide geographic range and stratified by high and low 2'-FL phenotypes.
Collapse
Affiliation(s)
- Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yingyi Mao
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Fang Tian
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - David R. Hill
- Abbott Nutrition Research & Development Center, Columbus, OH, United States
| | - Xiaoying Xiong
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Xiang Li
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Yanrong Zhao
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Lemas DJ, Du X, Dado-Senn B, Xu K, Dobrowolski A, Magalhães M, Aristizabal-Henao JJ, Young BE, Francois M, Thompson LA, Parker LA, Neu J, Laporta J, Misra BB, Wane I, Samaan S, Garrett TJ. Untargeted Metabolomic Analysis of Lactation-Stage-Matched Human and Bovine Milk Samples at 2 Weeks Postnatal. Nutrients 2023; 15:3768. [PMID: 37686800 PMCID: PMC10490210 DOI: 10.3390/nu15173768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Epidemiological data demonstrate that bovine whole milk is often substituted for human milk during the first 12 months of life and may be associated with adverse infant outcomes. The objective of this study is to interrogate the human and bovine milk metabolome at 2 weeks of life to identify unique metabolites that may impact infant health outcomes. Human milk (n = 10) was collected at 2 weeks postpartum from normal-weight mothers (pre-pregnant BMI < 25 kg/m2) that vaginally delivered term infants and were exclusively breastfeeding their infant for at least 2 months. Similarly, bovine milk (n = 10) was collected 2 weeks postpartum from normal-weight primiparous Holstein dairy cows. Untargeted data were acquired on all milk samples using high-resolution liquid chromatography-high-resolution tandem mass spectrometry (HR LC-MS/MS). MS data pre-processing from feature calling to metabolite annotation was performed using MS-DIAL and MS-FLO. Our results revealed that more than 80% of the milk metabolome is shared between human and bovine milk samples during early lactation. Unbiased analysis of identified metabolites revealed that nearly 80% of milk metabolites may contribute to microbial metabolism and microbe-host interactions. Collectively, these results highlight untargeted metabolomics as a potential strategy to identify unique and shared metabolites in bovine and human milk that may relate to and impact infant health outcomes.
Collapse
Affiliation(s)
- Dominick J. Lemas
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
- Center for Perinatal Outcomes Research, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Xinsong Du
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Bethany Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Ke Xu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Amanda Dobrowolski
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Marina Magalhães
- Department of Behavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32603, USA;
| | - Juan J. Aristizabal-Henao
- Department of Physiological Science, Center for Environmental and Human Toxicology, College of Veterinary Science, University of Florida, Gainesville, FL 32608, USA;
| | - Bridget E. Young
- Division of Breastfeeding and Lactation Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Magda Francois
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Lindsay A. Thompson
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Leslie A. Parker
- Center for Perinatal Outcomes Research, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Josef Neu
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Jimena Laporta
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Ismael Wane
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Samih Samaan
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Timothy J. Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| |
Collapse
|
17
|
Meng F, Uniacke-Lowe T, Lanfranchi E, Meehan G, O'Shea CA, Dennehy T, Ryan AC, Stanton C, Kelly AL. A longitudinal study of fatty acid profiles, macronutrient levels, and plasmin activity in human milk. Front Nutr 2023; 10:1172613. [PMID: 37229467 PMCID: PMC10203173 DOI: 10.3389/fnut.2023.1172613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Human milk provides nutrients essential for infant growth and health, levels of which are dynamic during lactation. Methods In this study, changes in macronutrients, fatty acids, and plasmin activities over the first six months of lactation in term milk were studied. Results There was a significant influence of lactation stage on levels of protein and plasmin activities, but not on levels of fat and carbohydrate in term milk. Concerning fatty acids in term milk, levels of caproic acid and α-linolenic acid increased significantly (p < 0.05), whereas those of arachidonic acid and docosahexaenoic acid decreased, in the six months after birth. Significant impacts of maternal pre-pregnancy BMI and infant gender on fatty acid profiles were also found. Multivariate statistical analysis showed that protein level, plasmin activity, and several fatty acids (α-linolenic acid, lignoceric acid, and docasadienoic acid) contributed strongly to discrimination of milk from different lactational stages. Discussion The study demonstrates that not all but some fatty acids were influenced by lactation, whereas protein and protease levels showed clear decreasing trends during lactation, which may help in understanding the nutritional requirements of infants.
Collapse
Affiliation(s)
- Fanyu Meng
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | - Elisa Lanfranchi
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Grainne Meehan
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Carol-Anne O'Shea
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Theresa Dennehy
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Anthony C. Ryan
- Brookfield School of Medicine and Health, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome, Cork, Ireland
| | - Alan L. Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Stinson LF, George AD. Human Milk Lipids and Small Metabolites: Maternal and Microbial Origins. Metabolites 2023; 13:metabo13030422. [PMID: 36984862 PMCID: PMC10054125 DOI: 10.3390/metabo13030422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Although there has been limited application in the field to date, human milk omics research continues to gain traction. Human milk lipidomics and metabolomics research is particularly important, given the significance of milk lipids and metabolites for infant health. For researchers conducting compositional milk analyses, it is important to consider the origins of these compounds. The current review aims to provide a summary of the existing evidence on the sources of human milk lipids and small metabolites. Here, we describe five major sources of milk lipids and metabolites: de novo synthesis from mammary cells, production by the milk microbiota, dietary consumption, release from non-mammary tissue, and production by the gut microbiota. We synthesize the literature to provide evidence and understanding of these pathways in the context of mammary gland biology. We recommend future research focus areas to elucidate milk lipid and small metabolite synthesis and transport pathways. Better understanding of the origins of human milk lipids and metabolites is important to improve translation of milk omics research, particularly regarding the modulation of these important milk components to improve infant health outcomes.
Collapse
Affiliation(s)
- Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - Alexandra D. George
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia
- Correspondence:
| |
Collapse
|
19
|
Ten-Doménech I, Cascant-Vilaplana MM, Navarro-Esteve V, Felderer B, Moreno-Giménez A, Rienda I, Gormaz M, Moreno-Torres M, Pérez-Guaita D, Quintás G, Kuligowski J. Metabolomic Diversity of Human Milk Cells over the Course of Lactation-A Preliminary Study. Nutrients 2023; 15:nu15051100. [PMID: 36904100 PMCID: PMC10005050 DOI: 10.3390/nu15051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Human milk (HM) is a complex biofluid containing a wide cell variety including epithelial cells and leukocytes. However, the cellular compositions and their phenotypic properties over the course of lactation are poorly understood. The aim of this preliminary study was to characterize the cellular metabolome of HM over the course of lactation. Cells were isolated via centrifugation and the cellular fraction was characterized via cytomorphology and immunocytochemical staining. Cell metabolites were extracted and analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) in the positive and negative electrospray ionization modes. Immunocytochemical analysis revealed a high variability of the number of detected cells with relative median abundances of 98% of glandular epithelial cells, 1% of leukocytes, and 1% of keratinocytes. Significant correlations between the milk postnatal age with percentage of epithelial cells and leukocytes, and with total cell count were observed. Results from the Hierarchical Cluster Analysis of immunocytochemical profiles were very similar to those observed in the analysis of the metabolomic profiles. In addition, metabolic pathway analysis showed alterations in seven metabolic pathways correlating with postnatal age. This work paves the way for future investigations on changes in the metabolomic fraction of the cellular compartment of HM.
Collapse
Affiliation(s)
- Isabel Ten-Doménech
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Mari Merce Cascant-Vilaplana
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Víctor Navarro-Esteve
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Birgit Felderer
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
- Master Program Biotechnical Processes, Austrian Biotech University of Applied Sciences, Konrad Lorenz-Strasse 10, 3430 Tulln, Austria
| | - Alba Moreno-Giménez
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Iván Rienda
- Servicio de Anatomía Patológica, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - María Gormaz
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Marta Moreno-Torres
- Unidad de Hepatología Experimental y Trasplante Hepático, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, C/Blasco Ibáñez 15, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - David Pérez-Guaita
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Carrer de la Innovació, 2, 08225 Terrassa, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-96-1246661
| |
Collapse
|
20
|
Ogrodowczyk AM, Jeż M, Wróblewska B. The Manifold Bioactivity and Immunoreactivity of Microbial Proteins of Cow and Human Mature Milk in Late Lactation. Animals (Basel) 2022; 12:ani12192605. [PMID: 36230344 PMCID: PMC9558504 DOI: 10.3390/ani12192605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary The debate over the validity and benefits of breastfeeding children after the age of 1 and the superiority of human over cow’s milk is still ongoing. The recommendation of exclusive breastfeeding for about 6 months, followed by continued breastfeeding as a complementary food source for 1 year or longer, seems justified under many circumstances. The microbiological parameters of the milk play a vital role in this respect. So far, the focus has been on the qualitative profile of the microbiota, bacterial interactions with milk compounds, and the metabolites produced by bacteria. However, the role of bacterial proteins in milk, according to the authors’ knowledge, has been analyzed. It is reported that due to the disruption of the regulatory axis of the immune system in the course of hypersensitivity, organisms may give rise to decreased IgA-mediated (physiological) and increased IgE-mediated (hypersensitive) responses even to host gut microbiota proteins. In this publication, the aim was to compare whether the bacterial proteins in the mature human milk of late lactation and cow’s milk of different breeds can determine the different immunoreactive and bioactive properties of milk. Abstract (1) Human milk (HM) is a source of many microorganisms, whose structure contains microbial protein (MP). In addition to the known health-promoting properties of HM, many activities, including immunoreactivity, may result from the presence of MP. Cow’s milk (CM)-derived MP may be 10 times more abundant than MP derived from HM. (2) Raw cow’s milk samples of Holstein and Jersey breeds, commercially available pasteurized milk, and milk from three human donors in the late lactation phase were subjected to chemical and microbiological analyzes. Microorganisms from the milk material were recovered, cultured, and their activities were tested. MPs were extracted and their immunoreactivity was tested with human high IgE pooled sera. The milk types were subjected to simulated digestion. Milk and microbial proteins were identified with LCMS and subjected to an in silico analysis of their activities. Their antioxidant potential was analysed with the DPPH method. (3) The MP of HM shows a stronger IgE and IgG immunoreactivity in the tests with human sera compared to the MP of CM (p = 0.001; p = 0.02, respectively). There were no significant differences between the microbes in the MP of different cattle breeds. The MS-identification and in silico tests of milk and microbial proteins confirmed the presence of MP with immunoreactivity and antioxidant potential. (4) MPs possess a broad bioactive effect, which was determined by an in silico tools. The balance between an MP’s individual properties probably determines the raw material’s safety, which undoubtedly requires further research.
Collapse
Affiliation(s)
- Anna Maria Ogrodowczyk
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-523-46-57
| | - Maja Jeż
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Chemical and Physical Properties of Food, Tuwima 10, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|