1
|
Liu T, Cheng Z, Song D, Zhu E, Li H, Lin R, Wan Z, Liu S, Gong Z, Shan C. Arbutin alleviates Mycoplasma gallinarum-induced damage caused by pulmonary fibrosis via the JAK2/STAT3 pathway. Poult Sci 2024; 103:104434. [PMID: 39467406 PMCID: PMC11550161 DOI: 10.1016/j.psj.2024.104434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Mycoplasma gallinarum (MG) can cause infectious respiratory diseases in poultry that are chronic. Arbutin (AR) possesses anti-inflammatory, bacteriostatic, antitussive, and expectorant pharmacological effects, but whether it exerts regulatory effects on MG-induced pneumonia and fibrosis remains unclear. The study results unveiled that pulmonary connective tissue hyperplasia, pulmonary capillary congestion, and inflammatory cell infiltration, as well as serum levels of cytokines (i.e., TNF-α, IL-1β, IL-6, and IL-10), were elevated after MG infection. Collagen fibers were significantly deposited in the lung tissue from MG-infected chicks. Furthermore, the expression levels of key factors in the JAK2/STAT3 and TGF-β/Smad pathways markedly increased. AR intervention significantly alleviated MG-induced pneumonic injury, and reduced collagen deposition and the expression of fibrosis markers in the lung tissue. AR reduced the degree of pulmonary fibrosis by regulating key factors of the JAK2/STAT3 signaling pathway in the MG-infected HD11 cells. Thus, AR effectively reduced the expression of inflammatory factors by regulating the JAK2/STAT3 signaling pathway, thereby improving lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science, Guizhou University, Guiyang, 550000, PR China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, 550000, PR China
| | - Derong Song
- Bijie Institute of Animal Husbandry and Veterinary Sciences, Bijie, 551700, PR China
| | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang, 550000, PR China
| | - Hui Li
- College of Animal Science, Guizhou University, Guiyang, 550000, PR China
| | - Rutao Lin
- College of Animal Science, Guizhou University, Guiyang, 550000, PR China
| | - Zhiling Wan
- College of Animal Science, Guizhou University, Guiyang, 550000, PR China
| | - Shunxing Liu
- College of Animal Science, Guizhou University, Guiyang, 550000, PR China
| | - Zeguang Gong
- College of Animal Science, Guizhou University, Guiyang, 550000, PR China
| | - Chunlan Shan
- College of Animal Science, Guizhou University, Guiyang, 550000, PR China.
| |
Collapse
|
2
|
Huang C, Lan H, Bai M, Chen J, Xu S, Sun Q, Chen Q, Mao W, Jiang J, Zhu J. Rifaximin alleviates irinotecan-induced diarrhea in mice model. Ann Med 2024; 56:2429029. [PMID: 39575573 PMCID: PMC11587719 DOI: 10.1080/07853890.2024.2429029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Irinotecan is a chemotherapeutic drug widely used to treat solid tumors. However, its effectiveness is limited by the severely delayed onset of diarrhea. This study aimed to confirm the protective effects of the non-systemic oral antibiotic rifaximin on irinotecan-induced mucositis in mice model. MATERIALS AND METHODS Six to eight week-old BALB/c mice were treated with saline, irinotecan (50 mg/kg, i.p. once daily), rifaximin (50 mg/kg, p.o. twice daily), or irinotecan + rifaximin for 9 consecutive days. Signs of diarrhea, bloody diarrhea, and body weight were monitored daily. Intestinal tissues were harvested for histopathological analysis and quantitative PCR. SN38 and SN38G concentration in intestine were detected using LC-MS analysis. Intestinal bacteria β-glucuronidase (BGUS) activity was detected using mouse feces. We performed 16S rRNA sequencing to investigate the gut microbiota composition. Gut permeability was tested in vivo by measuring the fluorescein isothiocyanate-dextran intensity in the serum. RESULTS Rifaximin reduced the frequency of delayed diarrhea and attenuated the severity of diarrhea caused by irinotecan in mice. Rifaximin significantly inhibited SN38 exposure in intestine and irinotecan-induced increase in BGUS activity. Rifaximin alleviated intestinal mucosal inflammation, prevented intestinal epithelial damage caused by irinotecan, and maintained gut barrier function. Moreover, the consecutive use of rifaximin did not cause a disorder in gut microbiota and reduced irinotecan-induced Firmicutes expansion. More importantly, rifaximin inhibited the expansion of some microbiota (such as Blautia, Eggerthella, and f_Enterobacteriaceae) and promoted an increase in beneficial microbiota (such as Lactobacillus intestinalis, Lachnospiraceae NK4A136 group, and f_Oscillospiraceae). CONCLUSIONS Preventive use of rifaximin is a feasible method to protect against irinotecan-induced diarrhea.
Collapse
Affiliation(s)
- Chengyi Huang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinggang Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shengkun Xu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jin Jiang
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Neagu AN, Josan CL, Jayaweera TM, Weraduwage K, Nuru N, Darie CC. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. Int J Mol Sci 2024; 25:11078. [PMID: 39456858 PMCID: PMC11508170 DOI: 10.3390/ijms252011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental exposure to a mixture of chemical xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis and the development of breast cancer (BC). Before anything else, we are what we eat. In this review, we highlight both "the good" and "the bad" sides of the daily human diet and dietary patterns that could influence BC risk (BCR) and incidence. Thus, regularly eating new, diversified, colorful, clean, nutrient-rich, energy-boosting, and raw food, increases apoptosis and autophagy, antioxidation, cell cycle arrest, anti-inflammation, and the immune response against BC cells. Moreover, a healthy diet could lead to a reduction in or the inhibition of genomic instability, BC cell stemness, growth, proliferation, invasion, migration, and distant metastasis. We also emphasize that, in addition to beneficial compounds, our food is more and more contaminated by chemicals with harmful effects, which interact with each other and with endogenous proteins and lipids, resulting in synergistic or antagonistic effects. Thus, a healthy and diverse diet, combined with appropriate nutritional behaviors, can exert anti-carcinogenic effects and improve treatment efficacy, BC patient outcomes, and the overall quality of life of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| |
Collapse
|
4
|
Alruhaimi RS, Hussein OE, Alnasser SM, Germoush MO, Alotaibi M, Hassanein EHM, El Mohtadi M, Mahmoud AM. Oxidative Stress, Inflammation, and Altered Lymphocyte E-NTPDase Are Implicated in Acute Dyslipidemia in Rats: Protective Role of Arbutin. Pharmaceuticals (Basel) 2024; 17:1343. [PMID: 39458984 PMCID: PMC11509952 DOI: 10.3390/ph17101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Dyslipidemia is frequently linked to various disorders, and its clinical relevance is now recognized. The role of inflammation and oxidative stress (OS) in dyslipidemia has been acknowledged. This study assessed the potential of arbutin (ARB) to prevent dyslipidemia and its associated OS and inflammation in rats with acute hyperlipidemia. METHODS Rats received ARB orally for 14 days and a single intraperitoneal injection of poloxamer-407 on day 15. RESULTS Poloxamer-407 elevated circulating cholesterol (CHOL), triglycerides (TG), very low-density lipoprotein (vLDL), and LDL, and reduced high-density lipoprotein (HDL)-C and lipoprotein lipase (LPL). ARB ameliorated the circulating lipids and LPL, and suppressed 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) in rat liver and in vitro. Fatty acid synthase (FAS) in rat liver and its in vitro activity were suppressed by ARB, which also upregulated the LDL receptor (LDL-R) and ABCA1, and had no effect on ABCG5 and ABCG8 mRNA. ARB ameliorated liver malondialdehyde and nitric oxide and enhanced antioxidants in rats with dyslipidemia. Liver NF-κB p65 and blood inflammatory cytokines were increased in dyslipidemic rats, effects that were reversed by ARB. Moreover, ARB effectively suppressed lymphocyte E-NTPDase and E-ADA activities in dyslipidemic rats. The biochemical findings were supported by in silico data showing the affinity of ARB to bind LDL-R PCSK9 binding domain, HMGCR, FAS, and E-NTPDase. CONCLUSIONS ARB possessed anti-dyslipidemia, anti-inflammatory, and antioxidant effects mediated via the modulation of CHOL and TG synthesis, LPL, lymphocyte E-NTPDase and E-ADA, and cytokine release in rats. Thus, ARB could be an effective agent to attenuate dyslipidemia and its associated OS and inflammation, pending further studies as well as clinical trials.
Collapse
Affiliation(s)
- Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Omnia E. Hussein
- Higher Technological Institute for Applied Health Sciences, Beni-Suef 62764, Egypt
| | - Sulaiman M. Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakakah 72388, Saudi Arabia
| | - Meshal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafar Al Batin 39524, Saudi Arabia
| | - Emad H. M. Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt
| | | | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
5
|
Jin Q, Zhang C, Chen R, Jiang L, Li H, Wu P, Li L. Quinic acid regulated TMA/TMAO-related lipid metabolism and vascular endothelial function through gut microbiota to inhibit atherosclerotic. J Transl Med 2024; 22:352. [PMID: 38622667 PMCID: PMC11017595 DOI: 10.1186/s12967-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Quinic acid (QA) and its derivatives have good lipid-lowering and hepatoprotective functions, but their role in atherosclerosis remains unknown. This study attempted to investigate the mechanism of QA on atherogenesis in Apoe-/- mice induced by HFD. METHODS HE staining and oil red O staining were used to observe the pathology. The PCSK9, Mac-3 and SM22a expressions were detected by IHC. Cholesterol, HMGB1, TIMP-1 and CXCL13 levels were measured by biochemical and ELISA. Lipid metabolism and the HMGB1-SREBP2-SR-BI pathway were detected by PCR and WB. 16 S and metabolomics were used to detect gut microbiota and serum metabolites. RESULTS QA or low-frequency ABX inhibited weight gain and aortic tissue atherogenesis in HFD-induced Apoe-/- mice. QA inhibited the increase of cholesterol, TMA, TMAO, CXCL13, TIMP-1 and HMGB1 levels in peripheral blood of Apoe-/- mice induced by HFD. Meanwhile, QA or low-frequency ABX treatment inhibited the expression of CAV-1, ABCA1, Mac-3 and SM22α, and promoted the expression of SREBP-1 and LXR in the vascular tissues of HFD-induced Apoe-/- mice. QA reduced Streptococcus_danieliae abundance, and promoted Lactobacillus_intestinalis and Ileibacterium_valens abundance in HFD-induced Apoe-/- mice. QA altered serum galactose metabolism, promoted SREBP-2 and LDLR, inhibited IDOL, FMO3 and PCSK9 expression in liver of HFD-induced Apoe-/- mice. The combined treatment of QA and low-frequency ABX regulated microbe-related Glycoursodeoxycholic acid and GLYCOCHENODEOXYCHOLATE metabolism in HFD-induced Apoe-/- mice. QA inhibited TMAO or LDL-induced HCAECs damage and HMGB1/SREBP2 axis dysfunction, which was reversed by HMGB1 overexpression. CONCLUSIONS QA regulated the gut-liver lipid metabolism and chronic vascular inflammation of TMA/TMAO through gut microbiota to inhibit the atherogenesis in Apoe-/- mice, and the mechanism may be related to the HMGB1/SREBP2 pathway.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, 410013, China
| | - Chiyuan Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran Chen
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
| | - Luping Jiang
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
| | - Hongli Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Pengcui Wu
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China.
| | - Liang Li
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China.
| |
Collapse
|
6
|
Duan J, Sun J, Jiang T, Ma X, Li X, Wang Y, Zhang F, Liu C. Podophyllotoxin-mediated neurotoxicity via the microbiota-gut-brain axis in SD rats based on the toxicological evidence chain (TEC) concept. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168106. [PMID: 37884145 DOI: 10.1016/j.scitotenv.2023.168106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Podophyllotoxin (PPT) is a naturally occurring aryltetralin lignan. However, its clinical application has been limited due to its neurotoxicity, the mechanism of which remains unclear. This study aimed to investigate the potential involvement of the microbiota-gut-brain (MGB) axis in PPT-induced neurotoxicity using the toxicological evidence chain concept. Our approach included behavioral testing in rats, evaluation of colon and hippocampal pathological changes, examination of proinflammatory factors, brain-gut peptides, and an in-depth analysis of gut microbiome and metabolic profiles. Our results demonstrated that PPT exposure compromised cognitive functions, induced damage to the colon and hippocampus, and increased intestinal permeability in rats. Furthermore, it elevated proinflammatory factors, particularly TNF-α and IL-6, while causing disruptions in the gut microbiota, favoring Escherichia-Shigella over Lactobacillus. Significant alterations in metabolic profiles in feces, serum, and hippocampus, particularly in tryptophan metabolism with a correlation to inflammatory factors and Escherichia-Shigella, were also observed. Our findings suggest that PPT promotes the enrichment of Escherichia-Shigella leading to inflammatory factor production and alterations in kynurenine metabolism in the hippocampus, potentially contributing to neurotoxicity. The study provides novel insights into the mechanistic pathways of PPT-induced neurotoxicity, emphasizing the role of the MGB axis and offering avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Jiaxing Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Xiao Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Xuejiao Li
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Fangfang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Chuanxin Liu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003.
| |
Collapse
|
7
|
Siles-Sánchez MDLN, García-Ponsoda P, Fernandez-Jalao I, Jaime L, Santoyo S. Development of Pectin Particles as a Colon-Targeted Marjoram Phenolic Compound Delivery System. Foods 2024; 13:188. [PMID: 38254489 PMCID: PMC10814463 DOI: 10.3390/foods13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Marjoram is a culinary herb that has been widely employed in folk medicine and presents a high content in phenolics. Thus, the aim of this project was to design formulations to encapsulate phenolic compounds from marjoram to allow their release in the colon. For this purpose, pectin was used as an encapsulating agent, applying two different encapsulation techniques (ionic gelation and spray-drying), followed by a CaCl2 bath. The ionic gelation technique showed a higher yield (77%) compared to spray-drying (31%), and the particles obtained were smaller (267 nm). However, the microparticles obtained by spray-drying presented a higher encapsulation efficiency (93%). Moreover, spray-dried microparticles protected a higher percentage of the encapsulated phenolics from the action of gastrointestinal pHs and enzymes. Hence, the results showed that spray-drying was a more appropriate technique than ionic gelation for the encapsulation of marjoram phenolics in order to protect them during the gastrointestinal step, facilitating their arrival in the colon. These microparticles would also be suitable for inclusion in food matrices for the development of phenolic colon delivery systems.
Collapse
|