1
|
Jagua-Gualdrón A, García-Reyes NA, Fernández-Bernal RE. Apitherapy for diabetes mellitus: mechanisms and clinical implications. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0367. [PMID: 39743810 DOI: 10.1515/jcim-2024-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Diabetes mellitus is a complex disease in terms of its causes and pathophysiological processes, it produces a significant impact on health and leads to complications that are difficult to manage. CONTENT This review summarizes and analyzes recent advances in the understanding of the mechanisms of diabetes mellitus and how apitherapy affects them. Also present the available clinical evidence on its application. SUMMARY Apitherapy (complementary-integral use of beehive products) is a potentially useful therapeutic system with a significant level of evidence. This review shows and analyzes the preclinical and clinical evidence on the use of apitherapy in diabetes mellitus. OUTLOOK Apitherapy shows significant effects on epigenetics, chronic inflammation, oxidative stress, metabolic control, dysbiosis, premature cell death and tissue remodeling. Clinical evidence shows an impact on these mechanisms. Apitherapy is a very useful complementary medicine in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Andrés Jagua-Gualdrón
- National University of Colombia, Bogota, Colombia
- International Institute for Complementary and Alternative Medicine-IIMAN, Bogota, Colombia
- International College of Apitherapy, Bogota, Colombia
| | - Nicolai Andrés García-Reyes
- National University of Colombia, Bogota, Colombia
- International Institute for Complementary and Alternative Medicine-IIMAN, Bogota, Colombia
- International College of Apitherapy, Bogota, Colombia
| | - Roger Edwin Fernández-Bernal
- International College of Apitherapy, Bogota, Colombia
- Provada Del Valle University, Cochabamba, Bolivia
- KIMED, Cochabamba, Bolivia
| |
Collapse
|
2
|
Gavrilović L, Stojiljković V, Stanić V, Jasnić N, Pejić S, Pantelić M, Pajović SB, Tanasković S. Changes of peripheral serotonin in the psychosocially stressed rats treated with linden honey. Nat Prod Res 2024:1-7. [PMID: 39714015 DOI: 10.1080/14786419.2024.2443487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
This study aimed to investigate the effects of linden honey in maintaining the stability of peripheral serotonergic system in the psychosocially stressed rats. In this experiment we examined concentration of serotonin (5-HT) in Serbian linden honey, as well as concentrations of 5-HT and MAO A activity in the blood of chronically stressed rats treated with linden honey. The investigated parameters were quantified using HPLC method with electrochemical detector, HPLC method with a fluorescent detector, and assay of enzyme activities. An important result of this study is that using analytical chemistry methods we have detected 5-HT in linden honey from Serbia for the first time. Also, we found that treatment with linden honey in the socially isolated animals increased concentration of 5-HT and decreased MAO A activity. Our results may by important in the research of the role of linden honey in maintaining stability of peripheral serotonergic system in stress condition.
Collapse
Affiliation(s)
- Ljubica Gavrilović
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Stojiljković
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vojislav Stanić
- Department of Radiation and Environmental Protection, Institute of Nuclear Sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nebojša Jasnić
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Pantelić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snežana B Pajović
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slađana Tanasković
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Nazzaro F, Ombra MN, Coppola F, De Giulio B, d'Acierno A, Coppola R, Fratianni F. Antibacterial Activity and Prebiotic Properties of Six Types of Lamiaceae Honey. Antibiotics (Basel) 2024; 13:868. [PMID: 39335041 PMCID: PMC11428214 DOI: 10.3390/antibiotics13090868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Our work investigated the antimicrobial and prebiotic properties of basil, mint, oregano, rosemary, savory, and thyme honey. The potential antimicrobial action, assessed against the pathogens Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus, evidenced the capacity of the honey to influence the pathogenic hydrophobicity and hemolytic activities. Honey inhibited pathogen biofilms, acting especially on the mature biofilms, with inhibition rates of up to 81.62% (caused by the presence of mint honey on L. monocytogenes). S. aureus biofilms were the most susceptible to the presence of honey, with inhibition rates up of to 67.38% in the immature form (caused by basil honey) and up to 80.32% in the mature form (caused by mint honey). In some cases, the amount of nuclear and proteic material, evaluated by spectrophotometric readings, if also related to the honey's biofilm inhibitory activity, let us hypothesize a defective capacity of building the biofilm scaffold or bacterial membrane damage or an incapability of producing them for the biofilm scaffold. The prebiotic potentiality of the honey was assessed on Lacticaseibacillus casei Shirota, Lactobacillus gasseri, Lacticaseibacillus paracasei subsp. paracasei, and Lacticaseibacillus rhamnosus and indicated their capacity to affect the whole probiotic growth and in vitro adhesive capacity, as well as the antioxidant and cytotoxic abilities, and to inhibit, mainly in the test performed with the L. casei Shirota, L. gasseri, and L. paracasei supernatants, the immature biofilm of the pathogens mentioned above.
Collapse
Affiliation(s)
- Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | - Maria Neve Ombra
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | - Francesca Coppola
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | | | - Antonio d'Acierno
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | - Raffaele Coppola
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
- Department of Agriculture, Environment and Food (DiAAA), University of Molise, Via de Sanctis, 86100 Campobasso, Italy
| | | |
Collapse
|
4
|
Bose D, Famurewa AC, Akash A, Othman EM. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. J Xenobiot 2024; 14:1109-1129. [PMID: 39189178 PMCID: PMC11348124 DOI: 10.3390/jox14030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Within the domain of conventional oncochemotherapeutics, anticancer chemotherapy (AC) has emerged as a potent strategy for the treatment of cancers. AC is the mainstay strategy for solid and non-solid cancer treatment. Its mechanistic action targets the blockage of DNA transcription and the dysregulation of cell cycle machinery in cancer cells, leading to the activation of death pathways. However, the attendant side effect of toxicity inflicted by AC on healthy tissues presents a formidable challenge. The crucial culprit in the AC side effect of toxicity is unknown, although oxidative stress, mitochondrial impairment, inflammatory cascades, autophagy dysregulation, apoptosis, and certain aberrant signaling have been implicated. Honey is a natural bee product with significant health benefits and pharmacological properties. Interestingly, the literature reports that honey may proffer a protection mechanism for delicate tissue/organs against the side effect of toxicity from AC. Thus, this review delves into the prospective role of honey as an alleviator of the AC side effect of toxicity; it provides an elucidation of the mechanisms of AC toxicity and honey's molecular mechanisms of mitigation. The review endeavors to unravel the specific molecular cascades by which honey orchestrates its mitigating effects, with the overarching objective of refining its application as an adjuvant natural product. Honey supplementation prevents AC toxicity via the inhibition of oxidative stress, NF-κB-mediated inflammation, and caspase-dependent apoptosis cascades. Although there is a need for increased mechanistic studies, honey is a natural product that could mitigate the various toxicities induced by AC.
Collapse
Affiliation(s)
- Debalina Bose
- P.K. Sinha Centre for Bioenergy and Renewables, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, P.M.B. 1010, Abakaliki 482131, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Aman Akash
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman M. Othman
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Cancer Therapy Research Center (CTRC), Department of Biochemistry-I, Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany
| |
Collapse
|
5
|
Idriss I, Ali AH, Alam A, Fernandez-Cabezudo M, Ayyash M, Al-Ramadi BK. Differential in vitro cytotoxic effects and metabolomic insights into raw and powdered Manuka honey through UPLC-Q-TOF-MS. Sci Rep 2024; 14:17551. [PMID: 39079967 PMCID: PMC11289323 DOI: 10.1038/s41598-024-68387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Manuka honey (MH) has garnered much attention due to its remarkable antimicrobial, anticancer, immunomodulatory and wound-healing properties. This study compared the antiproliferative effects of raw and powdered MH (pMH) on various human and murine cancer cell lines. A detailed metabolomics analysis was also carried out using untargeted ultrahigh-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) to compare the constituents in raw MH and pMH. The results of the viability studies showed that both raw MH and pMH caused a dose-dependent inhibition of tumor cell growth at concentrations of > 1% w/v (equivalent to ~ 10 mg/ml). A differential susceptibility to MH was observed among the cell lines with the human MDA-MB-231 and A549 cells and murine B16.F10 cells being relatively resistant to MH while the murine MC38 colorectal adeno-carcinoma cells showing the most sensitivity. The effect of raw MH and pMH on cell viability was validated using 2 indepndent assays. Metabolomics analysis detected 2440 compounds, out of which 833 were successfully identified. Among these, 90 phytochemical compounds, predominantly comprising terpenoids, flavonoids, coumarins and derivatives, and phenylpropanoic acids, and 79 lipids were identifiable. Significant differences in 5 metabolite classes, including flavonoids, phenols, terpenoids, carbohydrates, and organic acids were observed between the raw and pMH. Moreover, several altered metabolic pathways were identified in pMH compared to raw MH, such as energy metabolism, amino acid metabolism, and various other pathways that collectively influence biological functions associated with cellular growth, signaling, and stress response.
Collapse
Affiliation(s)
- Ienas Idriss
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Aftab Alam
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Maria Fernandez-Cabezudo
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, UAE
- Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain, UAE.
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain, UAE.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
6
|
Onyango LA, Liang J. Manuka honey as a non-antibiotic alternative against Staphylococcus spp. and their small colony variant (SCVs) phenotypes. Front Cell Infect Microbiol 2024; 14:1380289. [PMID: 38868298 PMCID: PMC11168119 DOI: 10.3389/fcimb.2024.1380289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 06/14/2024] Open
Abstract
The antibiotic resistance (ABR) crisis is an urgent global health priority. Staphylococci are among the problematic bacteria contributing to this emergency owing to their recalcitrance to many clinically important antibiotics. Staphylococcal pathogenesis is further complicated by the presence of small colony variants (SCVs), a bacterial subpopulation displaying atypical characteristics including retarded growth, prolific biofilm formation, heightened antibiotic tolerance, and enhanced intracellular persistence. These capabilities severely impede current chemotherapeutics, resulting in chronic infections, poor patient outcomes, and significant economic burden. Tackling ABR requires alternative measures beyond the conventional options that have dominated treatment regimens over the past 8 decades. Non-antibiotic therapies are gaining interest in this arena, including the use of honey, which despite having ancient therapeutic roots has now been reimagined as an alternative treatment beyond just traditional topical use, to include the treatment of an array of difficult-to-treat staphylococcal infections. This literature review focused on Manuka honey (MH) and its efficacy as an anti-staphylococcal treatment. We summarized the studies that have used this product and the technologies employed to study the antibacterial mechanisms that render MH a suitable agent for the management of problematic staphylococcal infections, including those involving staphylococcal SCVs. We also discussed the status of staphylococcal resistance development to MH and other factors that may impact its efficacy as an alternative therapy to help combat ABR.
Collapse
Affiliation(s)
- Laura A. Onyango
- Department of Biology, Trinity Western University, Langley, BC, Canada
| | | |
Collapse
|
7
|
Wang S, Qiu Y, Zhu F. An updated review of functional ingredients of Manuka honey and their value-added innovations. Food Chem 2024; 440:138060. [PMID: 38211407 DOI: 10.1016/j.foodchem.2023.138060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.
Collapse
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College, 135 Taylor Road, Niagara-on-the-Lake, Ontario L0S 1J0, Canada; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yi Qiu
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Lardenoije CMJG, van Riel SJJM, Peters LJF, Wassen MMLH, Cremers NAJ. Medical-Grade Honey as a Potential New Therapy for Bacterial Vaginosis. Antibiotics (Basel) 2024; 13:368. [PMID: 38667044 PMCID: PMC11047503 DOI: 10.3390/antibiotics13040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
The prevalence of bacterial vaginosis (BV) among women of reproductive age is 29%. BV arises from a vaginal imbalance marked by reduced levels of lactic acid-producing lactobacilli and an overgrowth of pathogenic anaerobes. The multifactorial nature of BV's pathogenesis complicates its treatment. Current antibiotic therapy exhibits a recurrence rate of about 60% within a year. Recurrence can be caused by antibiotic treatment failure (e.g., due to antimicrobial resistance), the persistence of residual infections (e.g., due to biofilm formation), and re-infection. Because of the high recurrence rates, alternative therapies are required. Medical-grade honey (MGH), known for its antimicrobial and wound healing properties in wound care, emerges as a potential novel therapy for BV. MGH exerts broad-spectrum antimicrobial activity, employing multiple mechanisms to eliminate the risk of resistance. For example, the low pH of MGH and the production of hydrogen peroxide benefit the microbiota and helps restore the natural vaginal balance. This is supported by in vitro studies demonstrating that MGH has an antibacterial effect on several pathogenic bacteria involved in the pathophysiology of BV, while lactobacilli and the vaginal microenvironment can be positively affected. In contrast to antibiotics, MGH exerts anti-biofilm activity, affects the microbiome as pre- and probiotic, and modulates the vaginal microenvironment through its anti-inflammatory, anti-oxidative, physicochemical, and immunomodulatory properties. More clinical research is required to confirm the positive effect of MGH on BV and to investigate the long-term cure rate.
Collapse
Affiliation(s)
- Céline M. J. G. Lardenoije
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (C.M.J.G.L.); (S.J.J.M.v.R.)
| | - Senna J. J. M. van Riel
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (C.M.J.G.L.); (S.J.J.M.v.R.)
- Department of Obstetrics & Gynecology, Zuyderland Medical Centre Heerlen, Henri Dunantstraat 5, 6419 PC Heerlen, The Netherlands;
- VieCuri Medical Centre, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- GROW Research Institute for Oncology and Reproduction, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | | | - Martine M. L. H. Wassen
- Department of Obstetrics & Gynecology, Zuyderland Medical Centre Heerlen, Henri Dunantstraat 5, 6419 PC Heerlen, The Netherlands;
| | - Niels A. J. Cremers
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (C.M.J.G.L.); (S.J.J.M.v.R.)
- Triticum Exploitatie BV, Sleperweg 44, 6222 NK Maastricht, The Netherlands;
| |
Collapse
|
9
|
Yang J, Liu Y, Cui Z, Wang T, Liu T, Liu G. Analysis of Free Amino Acid Composition and Honey Plant Species in Seven Honey Species in China. Foods 2024; 13:1065. [PMID: 38611369 PMCID: PMC11011401 DOI: 10.3390/foods13071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Honey is well-known as a food product that is rich in active ingredients and is very popular among consumers. Free amino acids (FAAs) are one of the important nutritional components of honey, which can be used not only as a nutritional indicator of honey but also as an indicator of plant source identification. In this study, the contents of 20 FAAs in seven types of honey from 11 provinces in China were examined for the first time. The 20 FAAs were analyzed by ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS). By analyzing 93 honey samples from seven types of honey, the FAAs were found to range from 394.4 mg/kg (linden honey) to 1771.7 mg/kg (chaste honey). Proline ranged from 274.55 to 572.48 mg/kg, and methionine was only present in some of the linden honey, chaste honey, acacia honey, and rape honey. Evaluated by amino acid principal component analysis, multifloral grassland honey had the highest overall evaluation score, acacia and jujube honey were the most similar, while chaste honey was the least similar to the other types of honey. In addition, DNA was extracted from 174 Xinjiang grassland honey samples and different plant leaves for PCR and sequencing to identify the species of nectar plants. As a result, 12 families and 25 species of honey plants were identified. The results confirmed the diversity of FAAs in dissimilar types and sources of honey. This study provides a reference for expanding honey quality standards and verifying the authenticity of honey.
Collapse
Affiliation(s)
- Jialin Yang
- College of Life Science, Shihezi University, Shihezi 832003, China;
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi 832003, China
| | - Yihui Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Zongyan Cui
- Technology Center of Qinhuangdao Customs, Qinhuangdao 066004, China; (Z.C.); (T.W.)
| | - Taohong Wang
- Technology Center of Qinhuangdao Customs, Qinhuangdao 066004, China; (Z.C.); (T.W.)
| | - Tong Liu
- College of Life Science, Shihezi University, Shihezi 832003, China;
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi 832003, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
10
|
Lanh PT, Duong BT, Thu HT, Hoa NT, Quyen DV. Comprehensive analysis of the microbiome in Apis cerana honey highlights honey as a potential source for the isolation of beneficial bacterial strains. PeerJ 2024; 12:e17157. [PMID: 38560453 PMCID: PMC10981410 DOI: 10.7717/peerj.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background Honey is a nutritious food made by bees from nectar and sweet deposits of flowering plants and has been used for centuries as a natural remedy for wound healing and other bacterial infections due to its antibacterial properties. Honey contains a diverse community of bacteria, especially probiotic bacteria, that greatly affect the health of bees and their consumers. Therefore, understanding the microorganisms in honey can help to ensure the quality of honey and lead to the identification of potential probiotic bacteria. Methods Herein, the bacteria community in honey produced by Apis cerana was investigated by applying the next-generation sequencing (NGS) method for the V3-V4 hypervariable regions of the bacterial 16S rRNA gene. In addition, lactic acid bacteria (LAB) in the honey sample were also isolated and screened for in vitro antimicrobial activity. Results The results showed that the microbiota of A. cerana honey consisted of two major bacterial phyla, Firmicutes (50%; Clostridia, 48.2%) and Proteobacteria (49%; Gammaproteobacteria, 47.7%). Among the 67 identified bacterial genera, the three most predominant genera were beneficial obligate anaerobic bacteria, Lachnospiraceae (48.14%), followed by Gilliamella (26.80%), and Enterobacter (10.16%). Remarkably, among the identified LAB, Lactobacillus kunkeei was found to be the most abundant species. Interestingly, the isolated L. kunkeei strains exhibited antimicrobial activity against some pathogenic bacteria in honeybees, including Klebsiella spp., Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus. This underscores the potential candidacy of L. kunkeei for developing probiotics for medical use. Taken together, our results provided new insights into the microbiota community in the A. cerana honey in Hanoi, Vietnam, highlighting evidence that honey can be an unexplored source for isolating bacterial strains with potential probiotic applications in honeybees and humans.
Collapse
Affiliation(s)
- Pham T. Lanh
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui T.T. Duong
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha T. Thu
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen T. Hoa
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dong Van Quyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
11
|
Masad RJ, Idriss I, Mohamed YA, Al-Sbiei A, Bashir G, Al-Marzooq F, Altahrawi A, Fernandez-Cabezudo MJ, Al-Ramadi BK. Oral administration of Manuka honey induces IFNγ-dependent resistance to tumor growth that correlates with beneficial modulation of gut microbiota composition. Front Immunol 2024; 15:1354297. [PMID: 38444857 PMCID: PMC10912506 DOI: 10.3389/fimmu.2024.1354297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Background To investigate the potential of Manuka honey (MH) as an immunomodulatory agent in colorectal cancer (CRC) and dissect the underlying molecular and cellular mechanisms. Methods MH was administered orally over a 4 week-period. The effect of MH treatment on microbiota composition was studied using 16S rRNA sequencing of fecal pellets collected before and after treatment. Pretreated mice were implanted with CRC cells and followed for tumor growth. Tumors and lymphoid organs were analyzed by flow cytometry (FACS), immunohistochemistry and qRT-PCR. Efficacy of MH was also assessed in a therapeutic setting, with oral treatment initiated after tumor implantation. We utilized IFNγ-deficient mice to determine the importance of interferon signaling in MH-induced immunomodulation. Results Pretreatment with MH enhanced anti-tumor responses leading to suppression of tumor growth. Evidence for enhanced tumor immunogenicity included upregulated MHC class-II on intratumoral macrophages, enhanced MHC class-I expression on tumor cells and increased infiltration of effector T cells into the tumor microenvironment. Importantly, oral MH was also effective in retarding tumor growth when given therapeutically. Transcriptomic analysis of tumor tissue highlighted changes in the expression of various chemokines and inflammatory cytokines that drive the observed changes in tumor immunogenicity. The immunomodulatory capacity of MH was abrogated in IFNγ-deficient mice. Finally, bacterial 16S rRNA sequencing demonstrated that oral MH treatment induced unique changes in gut microbiota that may well underlie the IFN-dependent enhancement in tumor immunogenicity. Conclusion Our findings highlight the immunostimulatory properties of MH and demonstrate its potential utilization in cancer prevention and treatment.
Collapse
Affiliation(s)
- Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ienas Idriss
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abeer Altahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K. Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Darani NS, Vaghasloo MA, Kazemi A, Amri H, Rampp T, Hashempur MH. Oxymel: A systematic review of preclinical and clinical studies. Heliyon 2023; 9:e22649. [PMID: 38125478 PMCID: PMC10730569 DOI: 10.1016/j.heliyon.2023.e22649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Background Oxymel is a functional beverage with a rich historical background of use in multiple societies. Various simple and compound oxymels are prescribed in certain complementary and traditional medical systems, including traditional Persian Medicine. In recent years, numerous clinical and preclinical studies have been conducted in the pharmacy and food industry to investigate the efficacy of various oxymel formulations. This article aims to systematically review and summarize interventional studies on oxymel in both clinical research and animal models. Methods Relevant articles were searched in Embase, MEDLINE, Web of Science Core Collection, Scopus, and Google Scholar from inception to July 2023 using the keyword "Oxymel" and its equivalents in other languages. Animal and human interventional studies were selected from the search results for review. Results This review includes twenty studies, comprising twelve clinical trials, two case studies, and six animal studies. The most commonly reported actions of oxymel include positive effects on the cardiovascular system, as well as antioxidant and anti-inflammatory properties. Furthermore, compound oxymel formulations have demonstrated additional benefits depending on the inclusion of specific medicinal herbs. Conclusion Based on our findings, oxymel appears to be a valuable functional food for healthy individuals and a potentially effective and safe treatment option for managing certain diseases such as asthma, obesity, and type 2 diabetes. However, further clinical trials with larger sample sizes and longer durations are needed to fully elucidate the potential side effects and benefits of both simple and compound oxymels in various disease states.
Collapse
Affiliation(s)
- Narges Sharifi Darani
- Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hakima Amri
- Department of Biochemistry and Cellular & Molecular Biology, Division of Integrative Physiology, Division of Whole Person Health and Wellness, Georgetown University Medical Center, Washington, DC, USA
| | - Thomas Rampp
- Department of Integrative Medicine, University of Duisburg-Essen, Duisburg, Germany
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Fithian E, Thivalapill N, Kosner J, Necheles J, Bilaver L. Natural Topical Treatment Contributes to a Reduction of Dry Scalp Symptoms in Children. Clin Cosmet Investig Dermatol 2023; 16:2757-2762. [PMID: 37814676 PMCID: PMC10560480 DOI: 10.2147/ccid.s424077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Background Dry scalp conditions affect a significant portion of the population, including children. Emerging evidence indicates the potential for improvement of atopic symptoms through altering the skin microbiome. Therefore, a topical treatment consisting of probiotic extracts, honey, turmeric, and vitamin B12 was manufactured to improve dry scalp symptomology through sustained balance of the microbiome. Purpose This interventional clinical study aims to determine the safety and efficacy of the topical treatment in reducing dry scalp symptomology in children 1-17 years old with dry scalp symptoms. Methods Participants applied the topical dry scalp treatment 2-3 times per week for two weeks. Safety and efficacy of the topical treatment was determined through physician assessment using the validated Investigator's Global Assessment (IGA) scale and the Total Severity Scale (TSS) during pre- and post-treatment clinic visits as well as parent reports at baseline, 1-week midpoint, and 2-week exit. Results Use of the topical treatment was associated with reduced symptoms of itchiness, dryness, irritation, and flakiness in children. The average IGA score was 3.0 at baseline and 2.0 after treatment, corresponding to a score difference of 1.0 (p < 0.001, 95% CI: 0.7, 1.2). The TSS score difference was 1.9 (p < 0.001, 95% CI: 1.4, 2.4). The total parent-reported scalp severity score decreased from 16.6 (95% CI: 14.8, 18.4) to 12.4 (p < 0.001, 95% CI: 11.0, 13.7) at 2-week exit. Discussion Study results mirror those reported in a study conducted in adults and point to the safety and efficacy of this natural topical treatment in reducing dry scalp symptomology in children. Based on our data, the combination of probiotic extracts and other anti-inflammatory ingredients appears to improve overall scalp health and appearance, though further studies will need to be conducted to further elucidate the link between clinical improvement and a balanced scalp microbiome.
Collapse
Affiliation(s)
- Eirene Fithian
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Neil Thivalapill
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John Kosner
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lucy Bilaver
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
14
|
El Sayed SM. Al-Hijamah (Prophetic Wet Cupping Therapy) is a Novel Adjuvant Treatment for Viral Hepatitis That Excretes Viral Particles and Excess Ferritin Percutaneously, Synergizes Pharmacotherapy, Enhances Antiviral Immunity and Helps Better HCC Prevention and Treatment: A Novel Evidence-Based Combination with Prophetic Medicine Remedies. J Hepatocell Carcinoma 2023; 10:1527-1546. [PMID: 37727876 PMCID: PMC10505647 DOI: 10.2147/jhc.s409526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023] Open
Abstract
Viral hepatitis progresses to liver cirrhosis and HCC. Several challenges are facing Sovaldi treatment to viral C hepatitis, eg, viral resistance, difficulty to treat all genotypes, and inability to access treatments in low-income countries. Also, current treatments to Hepatitis B are still challenging. Ideal treatments to viral hepatitis should decrease the viral load, enhance antiviral immunity and repair the viruses-induced tissue damage. That is still beyond reach. High serum ferritin in viral hepatitis correlates with chronicity, increased necro-inflammation, hepatotoxicity, progression to cirrhosis, progression to HCC, unresponsiveness to treatments and viremia. Previously, Al-hijamah (wet cupping therapy of prophetic medicine) significantly cleared thalassemic children of causative pathological substances (CPS), eg, excess ferritin, free radicals and serum lipids. Moreover, Al-hijamah significantly increased the antioxidant power and potentiated the natural antiviral immunity, eg, increasing CD4 count, CD8 count and CD4/CD8 ratio. Prophet Muhammad peace be upon him said: "If there is a benenvolence (benefit) in any of your medicines, benefit will be in shrtat mihjam (Al-hijamah), honey drink, and a stinge of fire compatible with disease and I do not like to cauterize". Likewise, the author suggests Al-hijamah as a novel promising adjuvant treatment for viral hepatitis (B and C) for percutaneous excretion of CPS as hepatitis viral particles, excess ferritin, inflammatory mediators, free radicals, and antigen-antibody complexes. Published reports proved that Al-hijamah exerted tissue-protective effects, and cleared blood through the fenestrated skin capillaries in a pressure-dependent and size-dependent manner (a kidney-like manner). That collectively may decrease the viral load for better HCC prevention and supports the evidence-based Taibah theory (Taibah mechanism). Same therapeutic benefits apply to other viral illnesses as AIDS. Even after HCC development, Al-hijamah is quite mandatory for excretion and clearance of CPS that favor malignancy, eg, lactate (Warburg effect), growth factors, metalloproteinases, and others. Al-hijamah-induced immune potentiation benefits HCC patients. Combining Al-hijamah with other natural antioxidant remedies of prophetic medicine, eg, nigella sativa, costus, natural honey, Zamzam water and others will maximize the therapeutic benefits. In conclusion, Al-hijamah and other prophetic medicine remedies are recommended adjuvants to current pharmacological treatments to viral hepatitis and HCC.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Al-Hijamah Clinic, Medical University Center, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Clinical Biochemistry & Molecular Medicine, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
- Prophetic Medicine Course & Research, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
15
|
Fratianni F, De Giulio B, d’Acierno A, Amato G, De Feo V, Coppola R, Nazzaro F. In Vitro Prebiotic Effects and Antibacterial Activity of Five Leguminous Honeys. Foods 2023; 12:3338. [PMID: 37761047 PMCID: PMC10529961 DOI: 10.3390/foods12183338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Honey is a natural remedy for various health conditions. It exhibits a prebiotic effect on the gut microbiome, including lactobacilli, essential for maintaining gut health and regulating the im-mune system. In addition, monofloral honey can show peculiar therapeutic properties. We in-vestigated some legumes honey's prebiotic properties and potential antimicrobial action against different pathogens. We assessed the prebiotic potentiality of honey by evaluating the antioxidant activity, the growth, and the in vitro adhesion of Lacticaseibacillus casei, Lactobacillus gasseri, Lacticaseibacillus paracasei subsp. paracasei, Lactiplantibacillus plantarum, and Lacticaseibacillus rhamnosus intact cells. We also tested the honey's capacity to inhibit or limit the biofilm produced by five pathogenic strains. Finally, we assessed the anti-biofilm activity of the growth medium of probiotics cultured with honey as an energy source. Most probiotics increased their growth or the in vitro adhesion ability to 84.13% and 48.67%, respectively. Overall, alfalfa honey best influenced the probiotic strains' growth and in vitro adhesion properties. Their radical-scavenging activity arrived at 83.7%. All types of honey increased the antioxidant activity of the probiotic cells, except for the less sensitive L. plantarum. Except for a few cases, we observed a bio-film-inhibitory action of all legumes' honey, with percentages up to 81.71%. Carob honey was the most effective in inhibiting the biofilm of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus; it retained almost entirely the ability to act against the bio-film of E. coli, L. monocytogenes, and S. aureus also when added to the bacterial growth medium instead of glucose. On the other hand, alfalfa and astragalus honey exhibited greater efficacy in acting against the biofilm of Acinetobacter baumannii. Indigo honey, whose biofilm-inhibitory action was fragile per se, was very effective when we added it to the culture broth of L. casei, whose supernatant exhibited an anti-biofilm activity against all the pathogenic strains tested. Conclusions: the five kinds of honey in different ways can improve some prebiotic properties and have an inhibitory biofilm effect when consumed.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
| | - Beatrice De Giulio
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
| | - Antonio d’Acierno
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
| | - Giuseppe Amato
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo De Feo
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Raffaele Coppola
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via de Sanctis, 86100 Campobasso, Italy
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
| |
Collapse
|
16
|
Dimitriu L, Constantinescu-Aruxandei D, Preda D, Moraru I, Băbeanu NE, Oancea F. The Antioxidant and Prebiotic Activities of Mixtures Honey/Biomimetic NaDES and Polyphenols Show Differences between Honeysuckle and Raspberry Extracts. Antioxidants (Basel) 2023; 12:1678. [PMID: 37759982 PMCID: PMC10525646 DOI: 10.3390/antiox12091678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
In our previous research, we demonstrated that honey and its biomimetic natural deep eutectic solvent (NaDES) modulate the antioxidant activity (AOA) of the raspberry extract (RE). In this study, we evaluated the AOA behaviour of the mixture honey/NaDES-honeysuckle (Lonicera caprifolium, LFL) extract and compared it with the mixture honey/NaDES-RE. These two extracts have similar major flavonoids and hydroxycinnamic acid compounds but differ in their total content and the presence of anthocyanins in RE. Therefore, it was of interest to see if the modulation of the LFL polyphenols by honey/NaDES was similar to that of RE. We also evaluated the prebiotic activity of these mixtures and individual components on Limosilactobacillus reuteri DSM 20016. Although honey/NaDES modulated the AOA of both extracts, from synergism to antagonism, the modulation was different between the two extracts for some AOA activities. Honey/NaDES mixtures enriched with LFL and RE did not show significant differences in bacterial growth stimulation. However, at a concentration of 45 mg/mL, the honey -LFL mixture exhibited a higher effect compared to the honey-RE mixture. The antioxidant and prebiotic properties of mixtures between honey and polyphenol-rich extracts are determined by multiple interactions in complex chemical systems.
Collapse
Affiliation(s)
- Luminița Dimitriu
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independent, ei No. 202, Sector 6, 060021 Bucharest, Romania; (L.D.); (D.P.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Marasti Blv., No. 59, Sector 1, 011464 Bucharest, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independent, ei No. 202, Sector 6, 060021 Bucharest, Romania; (L.D.); (D.P.)
| | - Daniel Preda
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independent, ei No. 202, Sector 6, 060021 Bucharest, Romania; (L.D.); (D.P.)
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica Bucharest, Str. Gheorghe Polizu nr. 1-7, Sector 1, 011061 Bucharest, Romania
| | - Ionuț Moraru
- Medica Laboratories, Str. Frasinului nr. 11, 075100 Otopeni, Romania;
| | - Narcisa Elena Băbeanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Marasti Blv., No. 59, Sector 1, 011464 Bucharest, Romania;
| | - Florin Oancea
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independent, ei No. 202, Sector 6, 060021 Bucharest, Romania; (L.D.); (D.P.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Marasti Blv., No. 59, Sector 1, 011464 Bucharest, Romania;
| |
Collapse
|
17
|
Singh NK, Beckett JM, Kalpurath K, Ishaq M, Ahmad T, Eri RD. Synbiotics as Supplemental Therapy for the Alleviation of Chemotherapy-Associated Symptoms in Patients with Solid Tumours. Nutrients 2023; 15:nu15071759. [PMID: 37049599 PMCID: PMC10096799 DOI: 10.3390/nu15071759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Chemotherapy is still the first line of treatment for most cancer patients. Patients receiving chemotherapy are generally prone to infections, which result in complications, such as sepsis, mucositis, colitis, and diarrhoea. Several nutritional approaches have been trialled to counter the chemotherapy-associated side effects in cancer patients, but none have yet been approved for routine clinical use. One of the approaches to reduce or avoid chemotherapy-associated complications is to restore the gut microbiota. Gut microbiota is essential for the healthy functioning of the immune system, metabolism, and the regulation of other molecular responses in the body. Chemotherapy erodes the mucosal layer of the gastrointestinal tract and results in the loss of gut microbiota. One of the ways to restore the gut microbiota is through the use of probiotics. Probiotics are the ‘good’ bacteria that may provide health benefits if consumed in appropriate amounts. Some studies have highlighted that the consumption of probiotics in combination with prebiotics, known as synbiotics, may provide better health benefits when compared to probiotics alone. This review discusses the different nutritional approaches that have been studied in an attempt to combat chemotherapy-associated side effects in cancer patients with a particular focus on the use of pre-, pro- and synbiotics.
Collapse
Affiliation(s)
- Neeraj K. Singh
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Jeffrey M. Beckett
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Krishnakumar Kalpurath
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
- Mersey Community Hospital, Latrobe 7307, Australia
| | - Muhammad Ishaq
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Tauseef Ahmad
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Rajaraman D. Eri
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
- School of Science, STEM College, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
18
|
Honey's Antioxidant and Antimicrobial Properties: A Bibliometric Study. Antioxidants (Basel) 2023; 12:antiox12020414. [PMID: 36829972 PMCID: PMC9952334 DOI: 10.3390/antiox12020414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Research attention has been drawn to honey's nutritional status and beneficial properties for human health. This study aimed to provide a bibliometric analysis of honey's antioxidant and antimicrobial properties. The research advancements within this field from 2001 to 2022 were addressed using the Scopus database, R, and VOSviewer. Of the 383 results, articles (273) and reviews (81) were the most common document types, while the annual growth rate of published manuscripts reached 17.5%. The most relevant topics about honey's antimicrobial and antioxidant properties were related to the agricultural and biological sciences, biochemistry, and pharmacology. According to a keyword analysis, the most frequent terms in titles, abstracts, and keywords were honey, antimicrobial, antioxidant, bee, propolis, phenolic compounds, wound, antibacterial, anti-inflammatory, and polyphenols. A trend topic analysis showed that the research agenda mainly encompassed antioxidants, pathogens, and anti-infection and chemical agents. In a co-occurrence analysis, antioxidants, anti-infection agents, and chemistry were connected to honey research. The initial research focus of this domain was primarily on honey's anti-inflammatory and antineoplastic activity, wound healing, and antibacterial agents. The research agenda was enriched in the subsequent years by pathogens, propolis, oxidative stress, and flavonoids. It was possible to pinpoint past trends and ongoing developments and provide a valuable insight into the field of honey research.
Collapse
|
19
|
Synergic Effect of Honey with Other Natural Agents in Developing Efficient Wound Dressings. Antioxidants (Basel) 2022; 12:antiox12010034. [PMID: 36670896 PMCID: PMC9854511 DOI: 10.3390/antiox12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Honey has been used for therapeutic and nutritional purposes since ancient times. It was considered one of the essential medical assets in wound healing. According to research, honeybees have significant antibacterial, antioxidant, anti-inflammatory, antitumor, and wound-healing properties. Lately, scientific researchers have focused on apitherapy, using bee products to protect and strengthen the immune system. Since honey is the most important natural product rich in minerals, proteins, and vitamins, it has been intensively used in such therapies. Honey has gained significant consideration because of the beneficial role of its antioxidant compounds, such as enzymes, proteins, amino and organic acids, polyphenols, and carotenoids, but mainly due to flavonoids and phenolic acids. It has been proven that phenolic compounds are responsible for honey's biological activity and that its physicochemical properties, antioxidants, and antimicrobial potential are significant for human health. The review also presents some mechanisms of action and the medical applications of honey, such as wound healing dressings, skin grafts, honey-based nanofibers, and cochlear implants, as the most promising wound healing tools. This extensive review has been written to highlight honey's applications in medicine; its composition with the most important bioactive compounds also illustrates its synergistic effect with other natural products having remarkable therapeutic properties in wound healing.
Collapse
|
20
|
High-Pressure-Based Strategies for the Inactivation of Bacillus subtilis Endospores in Honey. Molecules 2022; 27:molecules27185918. [PMID: 36144653 PMCID: PMC9503340 DOI: 10.3390/molecules27185918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Honey is a value-added product rich in several types of phenolic compounds, enzymes, and sugars recently explored in biomedical and food applications. Nevertheless, even though it has a low water activity (aW ≈ 0.65) that hinders the development of pathogenic and spoilage microorganisms, it is still prone to contamination by pathogenic microorganisms (vegetative and spores) and may constitute harm to special groups, particularly by immunosuppressed people and pregnant women. Thus, an efficient processing methodology needs to be followed to ensure microbial safety while avoiding 5-hydroxymethylfurfural (HMF) formation and browning reactions, with a consequent loss of biological value. In this paper, both thermal (pressure-assisted thermal processing, PATP) and nonthermal high-pressure processing (HPP), and another pressure-based methodology (hyperbaric storage, HS) were used to ascertain their potential to inactivate Bacillus subtilis endospores in honey and to study the influence of aW on the inactivation on this endospore. The results showed that PATP at 600 MPa/15 min/75 °C of diluted honey (52.9 °Brix) with increased aW (0.85 compared to ≈0.55, the usual honey aW) allowed for inactivating of at least 4.0 log units of B. subtilis spores (to below detection limits), while HS and HPP caused neither the germination nor inactivated spores (i.e., there was neither a loss of endospore resistance after heat shock nor endospore inactivation as a consequence of the storage methodology). PATP of undiluted honey even at harsh processing conditions (600 MPa/15 min/85 °C) did not impact the spore load. The results for diluted honey open the possibility of its decontamination by spores’ inactivation for medical and pharmaceutical applications.
Collapse
|