1
|
Fabian MCP, Astorga RMN, Atis AAG, Pilapil LAE, Hernandez CC. Anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark through bioassay-guided fractionation and liquid chromatography-tandem mass spectrometry. Front Pharmacol 2024; 15:1349725. [PMID: 38523640 PMCID: PMC10957545 DOI: 10.3389/fphar.2024.1349725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Women have been found to be at a higher risk of morbidity and mortality from type 2 diabetes mellitus (T2DM) and asthma. α-Glucosidase inhibitors have been used to treat T2DM, and arachidonic acid 15-lipoxygenase (ALOX15) inhibitors have been suggested to be used as treatments for asthma and T2DM. Compounds that inhibit both enzymes may be studied as potential treatments for people with both T2DM and asthma. This study aimed to determine potential anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark. A bioassay-guided fractionation framework was used to generate bioactive fractions from C. intermedia stem and D. dao bark. Subsequently, dereplication through ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and database searching was performed to putatively identify the components of one bioactive fraction from each plant. Seven compounds were putatively identified from the C. intermedia stem active fraction, and six of these compounds were putatively identified from this plant for the first time. Nine compounds were putatively identified from the D. dao bark active fraction, and seven of these compounds were putatively identified from this plant for the first time. One putative compound from the C. intermedia stem active fraction (corilagin) has been previously reported to have inhibitory activity against both α-glucosidase and 15-lipoxygenase-1. It is suggested that further studies on the potential of corilagin as an anti-diabetic and anti-inflammatory treatment should be pursued based on its several beneficial pharmacological activities and its low reported toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Christine Chichioco Hernandez
- Bioorganic and Natural Products Laboratory, Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
2
|
Jiang Y, Zhao L, Ma J, Yang Y, Zhang B, Xu J, Dhondrup R, Wong TW, Zhang D. Preventive mechanisms of Chinese Tibetan medicine Triphala against nonalcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155229. [PMID: 38006804 DOI: 10.1016/j.phymed.2023.155229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Triphala (TLP), as a Chinese Tibetan medicine composing of Emblica officinalis, Terminalia chebula and Terminalia bellirica (1.2:1.5:1), exhibited hepatoprotective, hypolipidemic and gut microbiota modulatory effects. Nonetheless, its roles in prevention of high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) and the related mechanistic insights involving the interplay of gut microbiota and hepatic inflammation are not known. PURPOSE The present study seeks to determine if TLP would prevent HFD-induced NAFLD in vivo and its underlying mechanisms from the perspectives of gut microbiota, metabolites, and hepatic inflammation. METHODS TLP was subjected to extraction and chemo-profiling, and in vivo evaluation in HFD-fed rats on hepatic lipid and inflammation, intestinal microbiota, short-chain fatty acids (SCFAs) and permeability, and body weight and fat content profiles. RESULTS The TLP was primarily constituted of gallic acid, corilagin and chebulagic acid. Orally administered HFD-fed rats with TLP were characterized by the growth of Ligilactobacillus and Akkermansia, and SCFAs (acetic/propionic/butyric acid) secretion which led to increased claudin-1 and zonula occludens-1 expression that reduced the mucosal permeability to migration of lipopolysaccharides (LPS) into blood and liver. Coupling with hepatic cholesterol and triglyceride lowering actions, the TLP mitigated both inflammatory (ALT, AST, IL-1β, IL-6 and TNF-α) and pro-inflammatory (TLR4, MYD88 and NF-κB P65) activities of liver, and sequel to histopathological development of NAFLD in a dose-dependent fashion. CONCLUSION TLP is promisingly an effective therapy to prevent NAFLD through modulating gut microbiota, mucosal permeability and SCFAs secretion with liver fat and inflammatory responses.
Collapse
Affiliation(s)
- Yan Jiang
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Linlin Zhao
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Jing Ma
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Yongjing Yang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Benyin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Jiyu Xu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | | | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia.
| | - Dejun Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China; College of Eco-Environmental Engineering, Qinghai University, Xining, China.
| |
Collapse
|
3
|
Jin Y, Yi C. Corilagin attenuates airway inflammation and collagen deposition in ovalbumin-induced asthmatic mice. Allergol Immunopathol (Madr) 2023; 51:97-103. [PMID: 37937502 DOI: 10.15586/aei.v51i6.988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE To investigate the effects of corilagin on inflammation and collagen deposition in ovalbumin (OVA)-induced asthma mouse model and uncover the mechanism. METHODS We constructed a mouse model of OVA-induced asthma. Enzyme-linked-immunosorbent serologic assays were conducted to detect the effects of corilagin on cytokines and Immunoglobulin E (IgE) production. Hematoxylin and eosin staining was used to show pathological features in lung tissues. Masson trichrome assay was used to examine collagen deposition. In addition, the lung function was detected by mouse lung function apparatus. Immunoblot was used to confirm the mechanism. RESULTS Corilagin alleviates OVA-induced cytokine and IgE production. In addition, corilagin alleviates OVA-induced pathological changes and collagen deposition in lung tissues. Corilagin also suppressed airway resistance and lung function in mice. Mechanically, corilagin activated the adenosine monophosphate-activated protein kinase (AMPK) pathway in lung tissues. CONCLUSION Corilagin attenuates airway inflammation and collagen deposition in OVA-induced asthmatic mice via AMPK pathway.
Collapse
Affiliation(s)
- Yan Jin
- Department of Emergency Internal Medicine, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chunhua Yi
- Department of Emergency Internal Medicine, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China;
| |
Collapse
|
4
|
Bao L, Hao P, Jiang M, Chu W. Liquiritigenin regulates insulin sensitivity and ameliorates inflammatory responses in the nonalcoholic fatty liver by activation PI3K/AKT pathway. Chem Biol Drug Des 2023; 102:793-804. [PMID: 37455324 DOI: 10.1111/cbdd.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent long-term disease in the world. Liquiritigenin (LQ) is protective against a variety of hepatotoxins. Herein, we report the potential mechanism of LQ on a high-fat diet (HFD) induced NAFLD. NAFLD mice model was established by HFD for 12 weeks, and LQ treatment for 1 week. Commercially available assay kits measure liver triglycerides (TG) and total cholesterol (TC) levels. Plasm TC, TG, high-density-lipoprotein (HDL-C), and low-density-lipoprotein cholesterol (LDL-C) levels were also monitored by biochemistry. Enzyme linked immunosorbent assay (ELISA) kits were performed to analyze the pro-inflammatory factors, and intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (IPITT), and serum insulin were also determined. GO and KEGG pathway enrichment analysis was employed to analyze the overlapping genes of LQ targets and NAFLD development-related targets. Western blot was performed on key proteins of the enriched signaling pathway. HFD mice showed significant increases in hepatic TG and TC, and plasm TC, TG, and LDL-C in blood lipids, while HDL-C significantly decreased, and LQ treatment reversed their levels (p < 0.05). LQ also alleviated HFD-induced elevated levels of IPGTT, IPITT, and homeostasis model assessment of insulin resistance (HOMA-IR). And serum levels of the pro-inflammatory factor were also suppressed by LQ. PI3K/AKT pathway was enriched by KEGG pathway enrichment, and its key proteins p-PI3K and p-AKT were elevated after LQ treatment (p < 0.05). We found for the first time that LQ improves lipid accumulation, alleviates insulin resistance, and suppresses inflammatory responses in NAFLD mice, which might be associated with the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lei Bao
- Department of Endocrinology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Pei Hao
- Department of Traditional Chinese Medicine, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Meiju Jiang
- Department of Endocrinology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Weijiang Chu
- Department of Endocrinology, Laizhou City People's Hospital, Laizhou, China
| |
Collapse
|
5
|
Morales-Ferra DL, Zavala-Sánchez MÁ, Jiménez-Ferrer E, Trejo-Moreno C, González-Cortazar M, Gamboa-Gómez CI, Guerrero-Romero F, Zamilpa A. Chemical Characterization, Antilipidemic Effect and Anti-Obesity Activity of Ludwigia octovalvis in a Murine Model of Metabolic Syndrome. PLANTS (BASEL, SWITZERLAND) 2023; 12:2578. [PMID: 37447139 DOI: 10.3390/plants12132578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Ludwigia octovalvis (Jacq.) P.H. Raven is widely used in traditional medicine for different illnesses, including diabetes and hypertension. However, its impact on lipotoxicity and metabolic syndrome in vivo has not been addressed. Therefore, the aim of this study was to evaluate the effects of this plant on the metabolic syndrome parameters in a C57BL6J mouse hypercaloric diet model. L. octovalvis hydroalcoholic extract and its ethyl acetate fraction (25 mg/kg/day) were used for sub-chronic assessment (10 weeks). Additionally, four subfractions (25 mg/kg) were evaluated in the postprandial triglyceridemia test in healthy C57BL6J mice. The hydroalcoholic extract and ethyl acetate fraction significantly decreased body weight gain (-6.9 g and -1.5 g), fasting glycemia (-46.1 and -31.2 mg/dL), systolic (-26.0 and -22.5 mmHg) and diastolic (-8.1 and 16.2 mmHg) blood pressure, free fatty acid concentration (-13.8 and -8.0 μg/mL) and insulin-resistance (measured by TyG index, -0.207 and -0.18), compared to the negative control. A postprandial triglyceridemia test showed that the effects in the sub-chronic model are due, at least in part, to improvement in this parameter. L. octovalvis treatments, particularly the hydroalcoholic extract, improve MS alterations and decrease free fatty acid concentration. These effects are possibly due to high contents of corilagin and ellagic acid.
Collapse
Affiliation(s)
- Dulce Lourdes Morales-Ferra
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Mexico
- Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Miguel Ángel Zavala-Sánchez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Mexico
| | - Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Mexico
| | - Claudia I Gamboa-Gómez
- Unidad de Investigación Biomédica, Instituto Mexicano del Seguro Social, Canoas 100, Durango 34067, Mexico
| | - Fernando Guerrero-Romero
- Unidad de Investigación Biomédica, Instituto Mexicano del Seguro Social, Canoas 100, Durango 34067, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Mexico
| |
Collapse
|
6
|
Mao FF, Gao SS, Huang YJ, Zhou N, Feng JK, Liu ZH, Zhang YQ, Yuan LY, Wei G, Cheng SQ. Network pharmacology-based analysis of Resinacein S against non-alcoholic fatty liver disease by modulating lipid metabolism. Front Nutr 2023; 10:1076569. [PMID: 36866057 PMCID: PMC9971728 DOI: 10.3389/fnut.2023.1076569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023] Open
Abstract
Background Ganoderma lucidum is reportedly the best source of traditional natural bioactive constituents. Ganoderma triterpenoids (GTs) have been verified as an alternative adjuvant for treating leukemia, cancer, hepatitis and diabetes. One of the major triterpenoids, Resinacein S, has been found to regulate lipid metabolism and mitochondrial biogenesis. Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that has become a major public health problem. Given the regulatory effects on lipid metabolism of Resinacein S, we sought to explore potential protective effects against NAFLD. Methods Resinacein S was extracted and isolated from G. lucidum. And mice were fed with high fat diet with or without Resinacein S to detect hepatic steatosis. According to Network Pharmacology and RNA-seq, we analyzed the hub genes of Resinacein S against NAFLD disease. Results Our results can be summarized as follows: (1) The structure of Resinacein S was elucidated using NMR and MS methods. (2) Resinacein S treatment could significantly attenuate high-fat diet (HFD)-induced hepatic steatosis and hepatic lipid accumulation in mouse. (3) GO terms, KEGG pathways and the PPI network of Resinacein S induced Differentially Expressed Genes (DEGs) demonstrated the key target genes of Resinacein S against NAFLD. (4) The hub proteins in PPI network analysis could be used for NAFLD diagnosis and treatment as drug targets. Conclusion Resinacein S can significantly change the lipid metabolism in liver cells and yield a protective effect against steatosis and liver injury. Intersected proteins between NAFLD related genes and Resinacein S-induced DEGs, especially the hub protein in PPI network analysis, can be used to characterize targets of Resinacein S against NAFLD.
Collapse
Affiliation(s)
- Fei-Fei Mao
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan-Shan Gao
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan-Jie Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Nian Zhou
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zong-Han Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yu-Qing Zhang
- Cancer Center, Yue Yang Hospital of Integrative Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu-Yun Yuan
- Cancer Center, Yue Yang Hospital of Integrative Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China,*Correspondence: Gang Wei, ✉
| | - Shu-Qun Cheng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China,Shuqun Cheng, ✉
| |
Collapse
|
7
|
Yuan Z, Wang J, Zhang H, Miao Y, Tang Q, Yuan Z, Nong C, Duan Z, Zhang L, Jiang Z, Yu Q. Triptolide increases resistance to bile duct ligation-induced liver injury and fibrosis in mice by inhibiting RELB. Front Nutr 2022; 9:1032722. [PMID: 36313114 PMCID: PMC9608656 DOI: 10.3389/fnut.2022.1032722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Cholestasis is a common, chronic liver disease that may cause fibrosis and cirrhosis. Tripterygium wilfordii Hook.f (TWHF) is a species in the Euonymus family that is commonly used as a source of medicine and food in Eastern and Southern China. Triptolide (TP) is an epoxy diterpene lactone of TWHF, as well as the main active ingredient in TWHF. Here, we used a mouse model of common bile duct ligation (BDL) cholestasis, along with cultured human intrahepatic biliary epithelial cells, to explore whether TP can relieve cholestasis. Compared with the control treatment, TP at a dose of 70 or 140 μg/kg reduced the serum levels of the liver enzymes alanine transaminase, aspartate aminotransferase, and alkaline phosphatase in mice; hematoxylin and eosin staining also showed that TP reduced necrosis in tissues. Both in vitro and in vivo analyses revealed that TP inhibited cholangiocyte proliferation by reducing the expression of RelB. Immunohistochemical staining of CK19 and Ki67, as well as measurement of Ck19 mRNA levels in hepatic tissue, revealed that TP inhibited the BDL-induced ductular reaction. Masson 3 and Sirius Red staining for hepatic hydroxyproline showed that TP alleviated BDL-induced hepatic fibrosis. Additionally, TP substantially inhibited BDL-induced hepatic inflammation. In summary, TP inhibited the BDL-induced ductular reaction by reducing the expression of RelB in cholangiocytes, thereby alleviating liver injury, fibrosis, and inflammation.
Collapse
Affiliation(s)
- Zihang Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jie Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haoran Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yingying Miao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qianhui Tang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ziqiao Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Cheng Nong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhicheng Duan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China,*Correspondence: Zhenzhou Jiang,
| | - Qinwei Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Qinwei Yu,
| |
Collapse
|