1
|
Xu D, Yuan L, Meng F, Lu D, Che M, Yang Y, Liu W, Nan Y. Research progress on antitumor effects of sea buckthorn, a traditional Chinese medicine homologous to food and medicine. Front Nutr 2024; 11:1430768. [PMID: 39045282 PMCID: PMC11263281 DOI: 10.3389/fnut.2024.1430768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Sea buckthorn (Hippophae Fructus), as a homologous species of medicine and food, is widely used by Mongolians and Tibetans for its anti-tumor, antioxidant and liver-protecting properties. In this review, the excellent anti-tumor effect of sea buckthorn was first found through network pharmacology, and its active components such as isorhamnetin, quercetin, gallic acid and protocatechuic acid were found to have significant anti-tumor effects. The research progress and application prospect of sea buckthorn and its active components in anti-tumor types, mechanism of action, liver protection, anti-radiation and toxicology were reviewed, providing theoretical basis for the development of sea buckthorn products in the field of anti-tumor research and clinical application.
Collapse
Affiliation(s)
- Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Mengying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Cifuentes F, Palacios J, Asunción-Alvarez D, de Albuquerque RDG, Simirgiotis MJ, Paredes A, Nwokocha CR, Orfali R, Perveen S. Chemical Characterization of Phoenix dactylifera L. Seeds and their Beneficial Effects on the Vascular Response in Hypertensive Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:337-343. [PMID: 38358640 DOI: 10.1007/s11130-024-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Although Phoenix dactylifera dates are traditionally consumed for their health benefits, no research has been done on the vascular response in hypertensive animals. This study evaluated the vascular relaxation of hydroalcoholic extracts from seeds of three varieties of P. dactylifera; Sukkari seed (SS), Ajwa seed (AS), and Mabroom seed (MS) on L-NAME-induced hypertension and spontaneously hypertensive rats (SHR). Results showed that all extracts (10 µg/mL) caused relaxations higher than 60% in the aortic rings precontracted with 10- 6 M phenylephrine in normotensive rats, the SS extract was the most potent. Endothelial nitric oxide (NO) pathway is involved as significantly reduced vascular relaxation in denuded-endothelium rat aorta and with an inhibitor (10- 4 M L-Nω-Nitro arginine methyl ester; L-NAME) of endothelial nitric oxide synthase (eNOS). Confocal microscopy confirmed that 10 µg/mL SS extract increases NO generation as detected by DAF-FM fluorescence in intact aortic rings. Consistent with these findings, vascular relaxation in intact aortic rings at 10 µg/mL SS extract was significantly decreased in L-NAME-induced hypertensive rats (endothelial dysfunction model), but not in SHR. In both hypertensive models, the denuded endothelium blunted the vascular relaxation. In conclusion, the hydroalcoholic extract of the seed of P. dactylifera (Sukkari, Ajwa and Mabroom varieties) presents a potent endothelium-dependent vascular relaxation, via NO, in normotensive rats as well as in two different models of hypertension. This effect could be mediated by the presence of phenolic compounds identified by UHPLC-ESI-MS/MS, such as protocatechuic acid, and caftaric acid.
Collapse
Affiliation(s)
- Fredi Cifuentes
- Departamento Biomédico, Facultad Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, 1271155, Chile
- Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, 1271155, Chile
| | - Javier Palacios
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, 1110939, Chile.
| | - Daniel Asunción-Alvarez
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, 1110939, Chile
| | | | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valaffiliationia, 5090000, Chile
| | - Adrián Paredes
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, 1270300, Chile
- Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, 1271155, Chile
| | - Chukwuemeka R Nwokocha
- Department of Basic Medical Sciences Physiology Section, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Mona, Jamaica
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA.
| |
Collapse
|
3
|
Zhu N, Liu R, Xu M, Li Y. The Potential of Bioactive Fish Collagen Oligopeptides against Hydrogen Peroxide-Induced NIH/3T3 and HUVEC Damage: The Involvement of the Mitochondria. Nutrients 2024; 16:1004. [PMID: 38613037 PMCID: PMC11013636 DOI: 10.3390/nu16071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extensive in vivo investigations have demonstrated the antioxidant properties of fish collagen oligopeptides (FCOPs). One of the main causes of aging and chronic non-communicable diseases is oxidative stress. Therefore, FCOPs have a broad range of applications in illness prevention and delaying aging from the standpoint of the "food is medicine" theory. However, the mechanisms that underpin the antioxidant activity of FCOPs are not completely understood. The specific objective of this essay was to investigate the antioxidant effect of FCOPs and its possible mechanism at the cellular level. Mouse embryonic fibroblasts NIH/3T3 and human vein endothelial cells (HUVECs) were exposed to 200 µM hydrogen peroxide containing different concentrations of FCOPs for 4 h and were supplemented with different concentrations of FCOPs for 24 h. Normal growth medium without FCOPs was applied for control cells. An array of assays was used to evaluate the implications of FCOPs on cellular oxidative stress status, cellular homeostasis, inflammatory levels, and mitochondrial function. We found that FCOPs exerted a protective effect by inhibiting reactive oxygen species (ROS) production, enhancing superoxide dismutase (SOD) and endothelial nitric oxide synthase (eNOS) activities and cell viability, inhibiting cell cycle arrest in the G1 phase, suppressing interleukin-1β (IL-1β), IL-6, matrix metalloproteinase-3 (MMP-3) and intercellular adhesion molecule-1(ICAM-1) secretion, downregulating nuclear factor-kappa B (NF-κB) activity, protecting mitochondrial membrane potential, and increasing ATP synthesis and NAD+ activities in both cells. FCOPs had a stronger antioxidant impact on NIH/3T3 than on HUVECs, simultaneously increasing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) content in NIH/3T3. These findings indicate that FCOPs have antioxidant effects on different tissue cells damaged by oxidative stress. FCOPs were therefore found to promote cellular homeostasis, inhibit inflammation, and protect mitochondria. Meanwhile, better health outcomes will be achieved by thoroughly investigating the effective dose and intervention time of FCOPs, as the absorption efficiency of FCOPs varies in different tissue cells.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Department of Nutrition and Food Hygiene, College of Public Health, Inner Mongolia Medical University, Hohhot 010059, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Ferreira-Sousa D, Genisheva Z, Rodríguez-Yoldi MJ, Gullón B, Costa CE, Teixeira JA, Botelho CM, Ferreira-Santos P. Exploration of Polyphenols Extracted from Cytisus Plants and Their Potential Applications: A Review. Antioxidants (Basel) 2024; 13:192. [PMID: 38397790 PMCID: PMC10886355 DOI: 10.3390/antiox13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The increasing world population means an increased demand for sustainable processes and products related to foods, particularly those with added health benefits. Plants can be an alternative source of nutritional and biofunctional ingredients. Cytisus plants are an underexploited bioresource, currently prevalent in the Mediterranean Basin and western Asia. This manuscript addresses the processing potential of Cytisus plants for the development of added-value products, including food formulations, food packaging, cosmetics, and therapeutic applications. Most research has reported that Cytisus spp. are a promising source of inexpensive bioactive polyphenol compounds. Cytisus flowers should be considered and exploited as raw materials for the development of new food ingredients (antioxidants, preservatives, additives, etc.), nutraceuticals, or even direct therapeutic agents (anticancer, antibacterial, etc.). In order to evaluate the socioeconomic effect of these underutilized plants, more research is needed to assess their valorization for therapeutic and dietary possibilities, as well as the economic impact.
Collapse
Affiliation(s)
- Diana Ferreira-Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.F.-S.); (C.E.C.); (J.A.T.)
| | | | - María Jesús Rodríguez-Yoldi
- Pharmacology and Physiology and Legal and Forensic Medicine Department, Veterinary Faculty, Zaragoza University, 50009 Zaragoza, Spain;
- CIBERobn, ISCIII, IIS Aragón, IA2, 50009 Zaragoza, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo, 32004 Ourense, Spain;
- IAA—Instituto de Agroecoloxía e Alimentación, University of Vigo (Campus Auga), 32004 Ourense, Spain
| | - Carlos E. Costa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.F.-S.); (C.E.C.); (J.A.T.)
- LABBELS—Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.F.-S.); (C.E.C.); (J.A.T.)
- LABBELS—Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Cláudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.F.-S.); (C.E.C.); (J.A.T.)
- LABBELS—Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, 32004 Ourense, Spain;
- IAA—Instituto de Agroecoloxía e Alimentación, University of Vigo (Campus Auga), 32004 Ourense, Spain
| |
Collapse
|
5
|
Saad KM, Salles ÉL, Naeini SE, Baban B, Abdelmageed ME, Abdelaziz RR, Suddek GM, Elmarakby AA. Reno-protective effect of protocatechuic acid is independent of sex-related differences in murine model of UUO-induced kidney injury. Pharmacol Rep 2024; 76:98-111. [PMID: 38214881 DOI: 10.1007/s43440-023-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Obstructive nephropathy is a condition often caused by urinary tract obstruction either anatomical (e.g., tumors), mechanical (e.g., urolithiasis), or compression (e.g., pregnancy) and can progress to chronic kidney disease (CKD). Studies have shown sexual dimorphism in CKD, where males were found to have a more rapid decline in kidney function following kidney injury compared to age-matched females. Protocatechuic acid (PCA), an anti-oxidant and anti-inflammatory polyphenolic compound, has demonstrated promising effects in mitigating drug-induced kidney injuries. The current study aims to explore sexual dimorphism in kidney injury after unilateral ureteral obstruction (UUO) and assess whether PCA treatment can mitigate kidney injury in both sexes. METHODS UUO was induced in 10-12 weeks old male and female C57BL/6J mice. Mice were categorized into four groups (n = 6-8/group); Sham, Sham plus PCA (100 mg/kg, I.P daily), UUO, and UUO plus PCA. RESULTS After 2 weeks of induction of UUO, markers of kidney oxidative stress (TBARs), inflammation (IL-1α and IL-6), tubular injury (neutrophil gelatinase-associated lipocalin, NGAL and urinary kidney injury molecule-1, KIM-1), fibrosis (Masson's trichrome staining, collagen IV expression, MMP-2 and MMP-9) and apoptosis (TUNEL+ cells, active caspase-1 and caspase-3) were significantly elevated in both males and females relative to their sham counterparts. Males exhibited significantly greater kidney oxidative stress, inflammation, fibrosis, and apoptosis after induction of UUO when compared to females. PCA treatment significantly attenuated UUO-induced kidney injury, inflammation, fibrosis, and apoptosis in both sexes. CONCLUSION Our findings suggest a differential gender response to UUO-induced kidney injury with males being more sensitive to UUO-induced kidney inflammation, fibrosis, and apoptosis than age-matched females. Importantly, PCA treatment reduced UUO-induced kidney injury in a sex-independent manner which might be attributed to its anti-oxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Karim M Saad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
6
|
Satheesh Babu AK, Srinivasan H, Anandh Babu PV. Breaking bugs: gut microbes metabolize dietary components and modulate vascular health. Crit Rev Food Sci Nutr 2023:1-9. [PMID: 37651204 PMCID: PMC10902197 DOI: 10.1080/10408398.2023.2251616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Gut microbiota modulates host physiology and pathophysiology through the production of microbial metabolites. Diet is a crucial factor in shaping the microbiome, and gut microbes interact with the host by producing beneficial or detrimental diet-derived microbial metabolites. Evidence from our lab and others indicates that the interaction between diet and gut microbes plays a pivotal role in modulating vascular health. Diet-derived microbial metabolites such as short-chain fatty acids and metabolites of phenolic acids improve vascular health, whereas trimethylamine oxide and certain amino acid-derived microbial metabolites impair the vasculature. These metabolites have been shown to regulate blood pressure, vascular inflammation, and atherosclerosis by acting on multiple targets. Nonetheless, there are substantial gaps in knowledge within this field. The microbial enzymes essential for the production of diet-derived metabolites, the role of the food matrix in regulating the bioavailability of metabolites, and the structure-activity relationships between metabolites and biomolecules in the vasculature are largely unknown. Potential diet-derived metabolites to improve vascular health can be identified through future studies that investigate the causal relationship between dietary components, gut microbes, diet-derived metabolites, and vascular health by using radiolabeled compounds, metabolomics, transcriptomics, and proteomics techniques.
Collapse
Affiliation(s)
| | | | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|