1
|
Wang L, Meng Q, Su CH. From Food Supplements to Functional Foods: Emerging Perspectives on Post-Exercise Recovery Nutrition. Nutrients 2024; 16:4081. [PMID: 39683475 DOI: 10.3390/nu16234081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Effective post-exercise recovery is vital for optimizing athletic performance, focusing on muscle repair, glycogen replenishment, rehydration, and inflammation management. This review explores the evolving trend from traditional supplements, such as protein, carbohydrates, creatine, and branched-chain amino acids (BCAAs), toward functional foods rich in bioactive compounds. Evidence highlights the benefits of functional foods like tart cherry juice (anthocyanins), turmeric-seasoned foods, and sources of omega-3 fatty acids, including fish, flaxseeds, chia seeds, and walnuts, for mitigating oxidative stress and inflammation. Additionally, probiotics and prebiotics support gut health and immune function, which are integral to effective recovery. Personalized nutrition, informed by genetic and metabolic profiling, is examined as a promising approach to tailor recovery strategies. A systematic search across PubMed, Web of Science, and Google Scholar (2000-2024) identified studies with high empirical rigor and relevance to recovery outcomes. Findings underscore the need for further research into nutrient interactions, dosage optimization, and long-term effects on athletic performance. Integrating functional foods with personalized nutrition presents a comprehensive framework for enhanced recovery, greater resilience to physical stress, and sustained performance in athletes.
Collapse
Affiliation(s)
- Lifeng Wang
- Public Sports Department, Xuhai College, China University of Mining and Technology, Xuzhou 221008, China
| | - Qing Meng
- School of Physical Education, Huaqiao University, Xiamen 361021, China
- Sport and Health Research Center, Huaqiao University, Xiamen 361021, China
| | - Chun-Hsien Su
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 111396, Taiwan
| |
Collapse
|
2
|
Qiu Y, Wang N, Yu Z, Guo X, Yang M. Changes in the chemical composition and medicinal effects of black ginseng during processing. Front Pharmacol 2024; 15:1425794. [PMID: 39588153 PMCID: PMC11586192 DOI: 10.3389/fphar.2024.1425794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/02/2024] [Indexed: 11/27/2024] Open
Abstract
Aim of the Study To study the changes in the chemical composition and medicinal effects of black ginseng during processing. Materials and Methods The contents of ginsenosides Rg1, Re, Rh1, Rb1, 20-(S)-Rg3, 20-(R)-Rg3, and Rg5 were determined using high-performance liquid chromatography (HPLC), and the percentage of rare saponins was calculated. Furthermore, changes in the contents of reducing sugars and amino acids (i.e., Maillard reaction (MR) substrates) were measured to assess the relationship between processing and the MR. Compounds were identified using HPLC-MS and their cleavage patterns were analyzed. Gene co-expression network bioinformatics techniques were applied to identify the pharmacological mechanism of black ginseng. Results The changes in the physicochemical characteristics of black ginseng during processing were determined based on the MR. Rare saponins accumulated during black ginseng processing. In addition, reducing sugars were produced through polysaccharide pyrolysis and the MR; thus, their content initially increased and then decreased. The amino acid content gradually decreased as the number of evaporation steps increased, indicating that both amino acids and reducing sugars acted as substrates for the MR during black ginseng processing. Thirty-one saponins, 18 sugars, and 58 amino acids were identified based on the MS analysis. Transcriptomics results demonstrated that black ginseng can regulate signaling pathways such as the TNF, IL-17, MAPK, and PI3K-Akt pathways. This finding helps us understand the observed proliferation and differentiation of immune-related cells and positively regulated cell adhesion.
Collapse
Affiliation(s)
- Ye Qiu
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- National Pharmaceutical Engineering Centre for Solid Preparation in Chinese Herbal Medicine, Nanchang, Jiangxi, China
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Nengyuan Wang
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Yu
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiao Guo
- Jilin Cancer Hospital, Changchun, China
| | - Ming Yang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- National Pharmaceutical Engineering Centre for Solid Preparation in Chinese Herbal Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
4
|
Lemus-Conejo A, Villanueva-Lazo A, Martin ME, Millan F, Millan-Linares MC. Sacha Inchi ( Plukenetia volubilis L.) Protein Hydrolysate as a New Ingredient of Functional Foods. Foods 2024; 13:2045. [PMID: 38998552 PMCID: PMC11241537 DOI: 10.3390/foods13132045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) is an under-exploited crop with great potential due to its nutritional and medicinal characteristics. A Sacha inchi protein isolate (SII), obtained from defatted Sacha inchi flour (SIF), was hydrolyzed by Bioprotease LA 660 under specific conditions. The hydrolysates were characterized chemically, and their digestibility and antioxidant capacity were evaluated by in vitro cell-free experiments to select the hydrolysate with major antioxidant activity. Sacha inchi protein hydrolysate at 20 min (SIH20B) was selected, and the anti-inflammatory capacity was evaluated by RT-qPCR and ELISA techniques, using two different doses in monocytes THP-1 stimulated with lipopolysaccharide (LPS). The results obtained showed that the in vitro administration of SIH20B down-regulated the TNF-α gene and reduced the release of this cytokine, whereas the anti-inflammatory cytokines IL-10 and IL-4 were up-regulated in LPS-stimulated monocytes and co-administrated with SIH20B. The peptides contained in SIH20B were identified, and the 20 more relatively abundant peptides with a mass by 1 kDa were subjected to in silico analysis to hypothesize those that could be responsible for the bioactivity reported in the hydrolysate. From the identified peptides, the peptides AAGALKKFL and LGVKFKGGL, among others, are proposed as the most biologically actives. In conclusion, SIH20B is a novel, natural source of high-value-added biopeptides that could be used as an ingredient in formulations of food or nutraceutical compounds.
Collapse
Affiliation(s)
- Ana Lemus-Conejo
- Foundation Centre for Research and Development of Functional Food-CIDAF, Avda del Conocimiento 37, 18100 Granade, Spain
| | - Alvaro Villanueva-Lazo
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Francisco Millan
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria C Millan-Linares
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| |
Collapse
|
5
|
Chiavaroli A, Brunetti L. Food Components in Health Promotion and Disease Prevention. Foods 2023; 12:4401. [PMID: 38137205 PMCID: PMC10743150 DOI: 10.3390/foods12244401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, more plant-based sources of functional foods have been shown to be effective in preventing, reducing, and treating chronic inflammatory and metabolic diseases, and promoting health [...].
Collapse
Affiliation(s)
- Annalisa Chiavaroli
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy;
| | | |
Collapse
|