1
|
Wei J, Li Z, Kuang J, Yan Z, Wang L, Lin Y, Du J, Li K, Wang Y, Yang L. Microbial community succession and changes of volatile compounds in the fermentation process of bamboo shoots. Food Microbiol 2024; 124:104618. [PMID: 39244370 DOI: 10.1016/j.fm.2024.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Sour bamboo shoots are a traditional fermented delicacy that has garnered appreciation both domestically and internationally. This study investigates the intricate dynamics of microbial communities and volatile flavor compounds primarily derived from salted and pickled bamboo shoots during the fermentation process of Phyllostachys purpurea (PP). The dynamics of microorganisms and volatile flavor compounds were thoroughly examined initially using conventional isolation and cultivation methods in conjunction with high-throughput sequencing (HTS), headspace solid-phase microextraction (HS-SPME), and gas chromatography-mass spectrometry (GC-MS). In addition, we analyzed the core microorganisms responsible for modulating the volatile flavor profile. Our findings revealed 60 volatile compounds, 14 of which were the predominant contributors to the aroma of fermented PP. This group primarily comprised alcohols, aldehydes, and olefins. Notably, our investigation identified Lactobacillus and Candida as the dominant microbial genera during the middle and late stages of fermentation. These two genera exert a significant influence on the formation of characteristic aromas. Furthermore, we discovered that acids, sugars, and proteins pivotally influence the succession of microorganisms. Specifically, acids and soluble sugars drove the transition of Lactococcus to Lactobacillus and Pediococcus, whereas soluble proteins facilitated fungal succession from Candida to Kazachstania and Issatchenkia. These insights shed light on the community structure and succession patterns of flavor compounds throughout the PP fermentation process. Ultimately, they provide a foundation for optimizing the fermentation process and ensuring quality control in the production of sour bamboo shoots.
Collapse
Affiliation(s)
- Jinmei Wei
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Jinyan Kuang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zikang Yan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Li Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ying Lin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jin Du
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Changsha Modern Food Innovation Research Institute, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Li Yang
- Hunan Jiapin Jiawei Biological Technology Co.Ltd, Changde, Hunan, 415400, China
| |
Collapse
|
2
|
Tan L, Tao Y, Chen L, Yang C, Tang X, Ma J, Murong X, Peng X, Liu X, Yu Z. Effects of fermented tofu processing wastewater on growth performance and meat quality of Xianghuang broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:1072-1082. [PMID: 38528677 DOI: 10.1111/jpn.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
This study aimed to investigate the effects of fermented tofu processing wastewater (FTPW) on the growth performance and meat quality of Xianghuang broilers. A total of 160 six-week-old Xianghuang broilers were randomly assigned to control or FTPW groups with eight replicate pens of 10 birds each pen. Broilers received the same corn-soybean diet but different water. Broilers received ordinary water in the control group and 40% (volume: volume) FTPW (the solution has been filtered with four layers of sieve, containing Bacillus 1.52 × 10-7 CFU/mL) in FTPW group. The experiment lasted for 30 days. Results indicated that growth performance was not affected by treatment (p > 0.05). The value of pH45 min and a48 h increased and drip loss72 h and toughness decreased in breast muscle when broilers received FTPW solution compared with the control group (p < 0.05). The pH45 min, a45 min, a48 h value and crude fat concentration of thigh muscle were higher in FTPW group than that in control group (p < 0.05). Compared with control group, fibre area decreased but fibre density increased in thigh muscle when Xianghuang chickens supplemented with FTPW solution (p < 0.05). Supplementation of FTPW solution in drinking water significantly decreased malondialdehyde content in the breast muscle of Xianghuang chickens (p < 0.05). Gene expressions such as carnitine palmitoyltransferase 1A (CPT1) and glycogen synthase of breast muscle were downregulated in experimental group when compared with control group. In conclusion, FTPW supplementation in drinking water could improve meat quality of Xianghuang broilers by regulating pH value, redness and fibre morphology.
Collapse
Affiliation(s)
- LuPeng Tan
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - YiJia Tao
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - Li Chen
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - Can Yang
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - XiaoWu Tang
- College of Bioengineering, Hunan Vocational Technical College of Environment and Biology, Hengyang, China
| | - JianJun Ma
- Institute of Animal Husbandry and Veterinary in Zhuji of Zhejiang, Shaoxing, China
| | - XiangJian Murong
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - XinFei Peng
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - Xu Liu
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - ZhengJun Yu
- Hunan Zhongjing Biotechnology Co., Ltd, Changsha, China
| |
Collapse
|
3
|
Díaz-Navarrete P, Sáez-Arteaga A, Marileo L, Alors D, Correa-Galeote D, Dantagnan P. Enhancing Selenium Accumulation in Rhodotorula mucilaginosa Strain 6S Using a Proteomic Approach for Aquafeed Development. Biomolecules 2024; 14:629. [PMID: 38927033 PMCID: PMC11201420 DOI: 10.3390/biom14060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
It is known that selenium (Se) is an essential trace element, important for the growth and other biological functions of fish. One of its most important functions is to contribute to the preservation of certain biological components, such as DNA, proteins, and lipids, providing protection against free radicals resulting from normal metabolism. The objective of this study was to evaluate and optimize selenium accumulation in the native yeast Rhodotorula mucilaginosa 6S. Sodium selenite was evaluated at different concentrations (5-10-15-20-30-40 mg/L). Similarly, the effects of different concentrations of nitrogen sources and pH on cell growth and selenium accumulation in the yeast were analyzed. Subsequently, the best cultivation conditions were scaled up to a 2 L reactor with constant aeration, and the proteome of the yeast cultured with and without sodium selenite was evaluated. The optimal conditions for biomass generation and selenium accumulation were found with ammonium chloride and pH 5.5. Incorporating sodium selenite (30 mg/L) during the exponential phase in the bioreactor after 72 h of cultivation resulted in 10 g/L of biomass, with 0.25 mg total Se/g biomass, composed of 25% proteins, 15% lipids, and 0.850 mg total carotenoids/g biomass. The analysis of the proteomes associated with yeast cultivation with and without selenium revealed a total of 1871 proteins. The results obtained showed that the dynamic changes in the proteome, in response to selenium in the experimental medium, are directly related to catalytic activity and oxidoreductase activity in the yeast. R. mucilaginosa 6S could be an alternative for the generation of selenium-rich biomass with a composition of other nutritional compounds also of interest in aquaculture, such as proteins, lipids, and pigments.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - Alberto Sáez-Arteaga
- Centro de Investigación Innovación y Creación (CIIC-UCT), Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Luis Marileo
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Temuco 4780000, Chile;
| | - David Alors
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - David Correa-Galeote
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18012 Granada, Spain;
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| |
Collapse
|