1
|
Pan Y, Wang S, Ming K, Liu X, Yu H, Du Q, Deng C, Chi Q, Liu X, Wang C, Xu K. Leveraging AI technology for distinguishing Eucommiae Cortex processing levels and evaluating anti-fatigue potential. Comput Biol Med 2025; 184:109408. [PMID: 39550909 DOI: 10.1016/j.compbiomed.2024.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Eucommiae Cortex (ECO) is a traditional medicinal and edible plant endemic to China, highly prized for its numerous health benefits. It typically undergoes special processing before application. The efficacy of ECO is influenced by processing techniques, necessitating the assurance of stability and consistency in its effects. However, existing methods for identifying ECO are cumbersome, thus, there is an urgent need to develop an accurate, rapid, and non-invasive assessment method. Deep learning techniques employing ResNet and Vision Transformer (ViT) models were employed to classify ECO images at various processing levels. Concurrently, the anti-fatigue properties of ECO were assessed through swimming time, pole climbing experiments, and biochemical analyses including SDH, LDH, ATP content, Na+-K+-ATPase, and Ca2+-Mg2+-ATPase indices. We demonstrated the efficacy of using image analysis to automatically classify ECO with a high degree of accuracy. The results indicated that the Vision Transformer model performed exceptionally well, achieving an accuracy rate exceeding 95 % in grading ECO images. Additionally, our study revealed that mice treated with moderately processed ECO displayed enhanced fatigue mitigation compared to other processing levels, as evidenced by multiple assessments.
Collapse
Affiliation(s)
- Yijing Pan
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Shunshun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Kehong Ming
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Xinyue Liu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Huiming Yu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Qianqian Du
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Chenxi Deng
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Xianqiong Liu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Chunli Wang
- Hubei Shizhen Laboratory, Wuhan, 430065, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
2
|
Jiang X, Zhu Y, Dong S, Lin R, Zhu P, Mao J, Cao Y, Yin X, Dong F, He K, Wang N. Combination of biotransformation and metabolomics reveals tolfenpyrad-induced hepatocytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175320. [PMID: 39111429 DOI: 10.1016/j.scitotenv.2024.175320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Tolfenpyrad (TFP) is an extensively used pesticide that inevitably leads to human exposure to both TFP and its transformation product residues. However, the biotransformation of TFP in humans has not been elucidated, and the toxicity of TFP along with its biotransformation products remains largely unknown. In this study, the biotransformation process of TFP was investigated using human liver microsomes and human hepatic cells. Endogenous metabolic changes in the cells were studied to investigate the hepatocytotoxicity of TFP at environmentally relevant concentrations. Fourteen phase I biotransformation products and four phase II TFP products were characterized, among which twelve products were identified for the first time. The oxidative product tolfenpyrad-benzoic acid (PT-CA) was particularly abundant and stable. Further hepatotoxicity assessments and metabolic studies demonstrated comparable metabolic profiles for TFP and PT-CA in HepG2 cells, with both significantly disrupting purine and glutathione metabolism. These processes are closely associated with oxidative stress, mitochondrial damage, and cell death. Our results provide novel perspectives on the biotransformation, metabolism, and hepatotoxicity of TFP, thereby highlighting the non-negligible toxicity of its crucial biotransformation product PT-CA in environmental risk assessments.
Collapse
Affiliation(s)
- Xin Jiang
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Yingjie Zhu
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Suhe Dong
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Runfeng Lin
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Peihong Zhu
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Jie Mao
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Yanqing Cao
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Xiaoyao Yin
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Fangting Dong
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Kun He
- National Center of Biomedical Analysis, Beijing 100039, China.
| | - Na Wang
- National Center of Biomedical Analysis, Beijing 100039, China.
| |
Collapse
|
3
|
Geng S, Zhang H, Zhang Y, Liu L, Yu S, Lan X, Gao Y, Ling Z, Zhang Y, Li X, Huang G. Puerarin hydrogel: Design and applications in biomedical engineering. J Drug Deliv Sci Technol 2024; 97:105802. [DOI: 10.1016/j.jddst.2024.105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Zeng X, Zhou X, Zhang A, Zhu Y, Lu B, Zhu F, Wu M, Lin R. Pityriasis Rosea-Like Eruption following anti-fatigue traditional herbs: Aconitum carmichaelii Debx and Panax Ginseng suspected. BMC Complement Med Ther 2024; 24:248. [PMID: 38951791 PMCID: PMC11218121 DOI: 10.1186/s12906-024-04556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Traditional herbs have a history of clinical use in anti-fatigue. However, several adverse effects of herbs have been identified. Pityriasis rosea-like eruption (PR-LE) is a rare cutaneous complication of herbs. To the best of our knowledge, there have been few reports of PR-LE following herbs. Here, we described a case of PR-LE that developed 6 days after taking anti-fatigue herbs. After the 17 days of stopping Aconitum carmichaelii Debx and Panax Ginseng, it notably faded. So, when anti-fatigue herbs being authorized for fatigue use, monitoring for potential adverse effects is necessary.
Collapse
Affiliation(s)
- Xueyan Zeng
- Department of Traditional Chinese Medicine, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310007, China
| | - Xin Zhou
- Department of Traditional Chinese Medicine, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310007, China
| | - Aiping Zhang
- Department of Traditional Chinese Medicine, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310007, China
| | - Yanqin Zhu
- Department of Traditional Chinese Medicine, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310007, China
| | - Bin Lu
- Department of Traditional Chinese Medicine, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310007, China
| | - Feiqin Zhu
- Zhuji Fourth People's Hospital, Zhuji city, Zhejiang Province, China
| | - Mengqi Wu
- Department of Traditional Chinese Medicine, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310007, China
| | - Riyang Lin
- Department of Traditional Chinese Medicine, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310007, China.
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou City, Zhejiang Province, 310007, China.
| |
Collapse
|
5
|
Zheng Y, Ren X, Qi X, Song R, Zhao C, Ma J, Li X, Deng Q, He Y, Kong L, Qian L, Zhang F, Li M, Sun M, Liu W, Liu H, She G. Bao Yuan decoction alleviates fatigue by restraining inflammation and oxidative stress via the AMPK/CRY2/PER1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118058. [PMID: 38513778 DOI: 10.1016/j.jep.2024.118058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baoyuan Decoction (BYD) was initially recorded in the classic of "Bo Ai Xin Jian" in the Ming dynasty. It is traditionally used for treating weakness and cowardice, and deficiency of vital energy. In researches related to anti-fatigue effects, the reciprocal regulation of AMPK and circadian clocks likely plays an important role in anti-fatigue mechanism, while it has not yet been revealed. Therefore, we elucidated the anti-fatigue mechanism of BYD through AMPK/CRY2/PER1 pathway. AIM OF THE STUDY To investigate the effect and mechanism of BYD in reducing fatigue, using pharmacodynamics, network pharmacology and transcriptomics through the AMPK/CRY2/PER1 signaling pathway. MATERIALS AND METHODS Firstly, the chemical constituents of BYD were qualitatively identified by UHPLC-Q-Exactive Orbitrap/MS, establishing a comprehensive strategy with an in-house library, Xcalibur software and Pubchem combined. Secondly, a Na2SO3-induced fatigue model and 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress model were developed to evaluate the anti-fatigue and anti-oxidant activities of BYD using AB zebrafish. The anti-inflammatory activity of BYD was evaluated using CuSO4-induced and tail cutting-induced Tg (lyz: dsRed) transgenic zebrafish inflammation models. Then, target screening was performed by Swiss ADME, GeneCards, OMIM and DrugBank databases, the network was constructed using Cytoscape 3.9.0. Transcriptome and network pharmacology technology were used to investigate the related signaling pathways and potential mechanisms after treatment with BYD, which were verified by real-time quantitative PCR (RT-qPCR). RESULTS In total, 114 compounds from the water extract of BYD were identified as major compounds. Na₂SO₃-induced fatigue model and AAPH-induced oxidative stress model indicated that BYD has significant anti-fatigue and antioxidant effects. Meanwhile, BYD showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. The KEGG result of network pharmacology showed that the anti-fatigue function of BYD was mainly effected through AMPK signaling pathway. Besides, transcriptome analysis indicated that the circadian rhythm, AMPK and IL-17 signaling pathways were recommended as the main pathways related to the anti-fatigue effect of BYD. The RT-qPCR results showed that compared with a model control group, the treatment of BYD significantly elevated the expression mRNA of AMPK, CRY2 and PER1. CONCLUSION Herein, we identified 114 chemical constituents of BYD, performed zebrafish activity validation, while demonstrated that BYD can relieve fatigue by AMPK/CRY2/PER1 signaling pathway through network pharmacology and transcriptome.
Collapse
Affiliation(s)
- Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaodan Qi
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chongjun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lingmei Kong
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China
| | - Liyan Qian
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haibin Liu
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
6
|
Ullah A, Sun Q, Li J, Li J, Khatun P, Kou G, Lyu Q. Bioactive Compounds in Citrus reticulata Peel Are Potential Candidates for Alleviating Physical Fatigue through a Triad Approach of Network Pharmacology, Molecular Docking, and Molecular Dynamics Modeling. Nutrients 2024; 16:1934. [PMID: 38931288 PMCID: PMC11206486 DOI: 10.3390/nu16121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Physical fatigue (peripheral fatigue), which affects a considerable portion of the world population, is a decline in the ability of muscle fibers to contract effectively due to alterations in the regulatory processes of muscle action potentials. However, it lacks an efficacious therapeutic intervention. The present study explored bioactive compounds and the mechanism of action of Citrus reticulata peel (CR-P) in treating physical fatigue by utilizing network pharmacology (NP), molecular docking, and simulation-based molecular dynamics (MD). The bioactive ingredients of CR-P and prospective targets of CR-P and physical fatigue were obtained from various databases. A PPI network was generated by the STRING database, while the key overlapping targets were analyzed for enrichment by adopting KEGG and GO. The binding affinities of bioactive ingredients to the hub targets were determined by molecular docking. The results were further validated by MD simulation. Five bioactive compounds were screened, and 56 key overlapping targets were identified for CR-P and physical fatigue, whereas the hub targets with a greater degree in the PPI network were AKT1, TP53, STAT3, MTOR, KRAS, HRAS, JAK2, IL6, EGFR, and ESR1. The findings of the enrichment analysis indicated significant enrichment of the targets in three key signaling pathways, namely PI3K-AKT, MAPK, and JAK-STAT. The molecular docking and MD simulation results revealed that the bioactive compounds of CR-P exhibit a stronger affinity for interacting with the hub targets. The present work suggests that bioactive compounds of CR-P, specifically Hesperetin and Sitosterol, may ameliorate physical fatigue via the PI3K-AKT signaling pathway by targeting AKT1, KRAS, and MTOR proteins.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Qiuxi Sun
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangtao Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjie Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Pipasha Khatun
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanjun Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Public Health, Zhengzhou Shuqing Medical College, Zhengzhou 450001, China
| |
Collapse
|