1
|
Métivier L, Vivien D, Goy R, Agin V, Bui E, Benbrika S. Plasminogen Activator Inhibitor-1 in the Pathophysiology of Late Life Depression. Int J Geriatr Psychiatry 2024; 39:e70015. [PMID: 39578639 DOI: 10.1002/gps.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
INTRODUCTION Late life depression (LLD) is characterized by specific clinical features including a high frequency of vascular form and frequent antidepressant treatment resistance. The expression and functions of the serine protease inhibitor, Plasminogen Activator Inhibitor-1 (PAI-1) is known to be altered by aging, vascular damage, insulin levels associated with a sedentary lifestyle, chronic stress leading to hypercortisolemia, and inflammatory changes linked to stress responses. These phenomena would be implicated in LLD like vascular depression. This article thus aims to review the existing literature regarding the association between LLD and plasmatic levels of PAI-1, a marker of hypofibrinolysis. We hypothesize that increased age would be associated with changes in PAI-1 plasma level and function which influence LLD pathogenesis and its treatment. RESULTS Although a large number of studies on PAI-1 changes in the elderly exist, studies about its implications in LLD are sparse. Despite heterogeneous findings regarding the direction of variation in plasmatic PAI-1 levels among elderly participants with LLD, all studies demonstrated an association between PAI-1 levels and current or remitted depressive symptoms. Moreover, disruptions in the concentrations of other biological markers influencing PAI-1 expression, such as cytokines or adipokines, were also observed, notably an increase in the levels of interleukins 6 and 8. DISCUSSION LLD genesis appears to be influenced by PAI-1 regulatory loops which are implicated in senescence or cell death. The resistance to antidepressant treatment appears to be linked to distinct biological profiles involving inflammatory and fibrinolytic factors. Taken together these data suggest that PAI-1 pathway may be a promising target of treatment development efforts for LLD, and depression in general.
Collapse
Affiliation(s)
- L Métivier
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
| | - D Vivien
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - R Goy
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
| | - V Agin
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - E Bui
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
- CHU de CAEN Normandie, Service de Psychiatrie, Centre Esquirol, Caen, France
| | - S Benbrika
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
- CHU de CAEN Normandie, Service de Psychiatrie, Centre Esquirol, Caen, France
| |
Collapse
|
2
|
Sarkar S, Prasanna VS, Das P, Suzuki H, Fujihara K, Kodama S, Sone H, Sreedhar R, Velayutham R, Watanabe K, Arumugam S. The onset and the development of cardiometabolic aging: an insight into the underlying mechanisms. Front Pharmacol 2024; 15:1447890. [PMID: 39391689 PMCID: PMC11464448 DOI: 10.3389/fphar.2024.1447890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic compromise is crucial in aggravating age-associated chronic inflammation, oxidative stress, mitochondrial damage, increased LDL and triglycerides, and elevated blood pressure. Excessive adiposity, hyperglycemia, and insulin resistance due to aging are associated with elevated levels of damaging free radicals, inducing a proinflammatory state and hampering immune cell activity, leading to a malfunctioning cardiometabolic condition. The age-associated oxidative load and redox imbalance are contributing factors for cardiometabolic morbidities via vascular remodelling and endothelial damage. Recent evidence has claimed the importance of gut microbiota in maintaining regular metabolic activity, which declines with chronological aging and cardiometabolic comorbidities. Genetic mutations, polymorphic changes, and environmental factors strongly correlate with increased vulnerability to aberrant cardiometabolic changes by affecting key physiological pathways. Numerous studies have reported a robust link between biological aging and cardiometabolic dysfunction. This review outlines the scientific evidence exploring potential mechanisms behind the onset and development of cardiovascular and metabolic issues, particularly exacerbated with aging.
Collapse
Affiliation(s)
- Sulogna Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Vani S. Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Pamelika Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Hiroshi Suzuki
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuya Fujihara
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoru Kodama
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Remya Sreedhar
- School of Pharmacy, Sister Nivedita University, Kolkata, West Bengal, India
| | - Ravichandiran Velayutham
- Director, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Kenichi Watanabe
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Hörber S, Prystupa K, Jacoby J, Fritsche A, Kleber ME, Moissl AP, Hellstern P, Peter A, März W, Wagner R, Heni M. Blood coagulation in Prediabetes clusters-impact on all-cause mortality in individuals undergoing coronary angiography. Cardiovasc Diabetol 2024; 23:306. [PMID: 39175055 PMCID: PMC11342575 DOI: 10.1186/s12933-024-02402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Metabolic clusters can stratify subgroups of individuals at risk for type 2 diabetes mellitus and related complications. Since obesity and insulin resistance are closely linked to alterations in hemostasis, we investigated the association between plasmatic coagulation and metabolic clusters including the impact on survival. METHODS Utilizing data from the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, we assigned 917 participants without diabetes to prediabetes clusters, using oGTT-derived glucose and insulin, high-density lipoprotein cholesterol, triglycerides, and anthropometric data. We performed a comprehensive analysis of plasmatic coagulation parameters and analyzed their associations with mortality using proportional hazards models. Mediation analysis was performed to assess the effect of coagulation factors on all-cause mortality in prediabetes clusters. RESULTS Prediabetes clusters were assigned using published tools, and grouped into low-risk (clusters 1,2,4; n = 643) and high-risk (clusters 3,5,6; n = 274) clusters. Individuals in the high-risk clusters had a significantly increased risk of death (HR = 1.30; CI: 1.01 to 1.67) and showed significantly elevated levels of procoagulant factors (fibrinogen, FVII/VIII/IX), D-dimers, von-Willebrand factor, and PAI-1, compared to individuals in the low-risk clusters. In proportional hazards models adjusted for relevant confounders, elevated levels of fibrinogen, D-dimers, FVIII, and vWF were found to be associated with an increased risk of death. Multiple mediation analysis indicated that vWF significantly mediates the cluster-specific risk of death. CONCLUSIONS High-risk prediabetes clusters are associated with prothrombotic changes in the coagulation system that likely contribute to the increased mortality in those individuals at cardiometabolic risk. The hypercoagulable state observed in the high-risk clusters indicates an increased risk for cardiovascular and thrombotic diseases that should be considered in future risk stratification and therapeutic strategies.
Collapse
Affiliation(s)
- Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich German Research Center for Environmental Health, Tübingen, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Katsiaryna Prystupa
- German Center for Diabetes Research, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Johann Jacoby
- Institute for Clinical Epidemiology and Applied Biometry, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich German Research Center for Environmental Health, Tübingen, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Department for Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- SYNLAB MVZ für Humangenetik Mannheim GmbH, Mannheim, Germany
| | - Angela P Moissl
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Hellstern
- Center of Hemostasis and Thrombosis Zurich, Zurich, Switzerland
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich German Research Center for Environmental Health, Tübingen, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Augsburg and Mannheim, Munich, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Robert Wagner
- German Center for Diabetes Research, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Heni
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
4
|
Musa M, Chukwuyem E, Ojo OM, Topah EK, Spadea L, Salati C, Gagliano C, Zeppieri M. Unveiling Ocular Manifestations in Systemic Lupus Erythematosus. J Clin Med 2024; 13:1047. [PMID: 38398361 PMCID: PMC10889738 DOI: 10.3390/jcm13041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a complex autoimmune disorder characterized by immune dysregulation and multi-organ involvement. In this concise brief review, we highlight key insights into Ocular Systemic Lupus Erythematosus (SLE), an intricate autoimmune disorder with diverse organ involvement. Emphasizing the formation of autoantibodies and immune complex deposition, we delve into the inflammation and damage affecting ocular structures. Clinical presentations, ranging from mild dry eye syndrome to severe conditions like retinal vasculitis, necessitate a comprehensive diagnostic approach, including clinical exams, serological testing, and imaging studies. Differential diagnosis involves distinguishing SLE-related ocular manifestations from other autoimmune and non-inflammatory ocular conditions. The multidisciplinary management approach, involving rheumatologists, ophthalmologists, and immunologists, tailors treatment based on ocular involvement severity, encompassing corticosteroids, immunosuppressive agents, and biologics. Follow-up is crucial for monitoring disease progression and treatment response. Future perspectives revolve around advancing molecular understanding, refining diagnostic tools, and exploring targeted therapies. Novel research areas include genetic factors, microbiome composition, and biotechnology for tailored and effective SLE ocular treatments.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria;
- Centre for Sight Africa, Onitsha 434112, Nigeria
| | | | - Oluwasola Michael Ojo
- School of Optometry and Vision Sciences, College of Health Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Efioshiomoshi Kings Topah
- Department of Optometry, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano 700006, Nigeria
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza Dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
5
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|