1
|
Chen M, Zhang S, Huang X, Zhang D, Zhu D, Ouyang C, Li Y. The protective effects and mechanism of myricetin in liver diseases (Review). Mol Med Rep 2025; 31:87. [PMID: 39917997 PMCID: PMC11811602 DOI: 10.3892/mmr.2025.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Liver diseases have become one of the significant threats to global health. However, there is a lack of effective targeted therapeutic drugs in this field and the existing drugs used for liver disease treatment usually have side‑effects. Traditional Chinese medicine (TCM) has the distinctive advantages of multi‑target and low side‑effects. As a flavonoid with various pharmacological activities such as anti‑tumour, anti‑oxidant, anti‑inflammatory and anti‑bacterial, the TCM myricetin has been widely used in liver disease research. The present work focuses on the role and molecular mechanism of myricetin in liver diseases such as acute liver injury, fatty liver, liver fibrosis and hepatocellular carcinoma. It is a promising reference for further research and application of myricetin in the treatment of liver diseases.
Collapse
Affiliation(s)
- Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shengnan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xingqiong Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dandan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yankun Li
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
2
|
Tan Y, Ouyang Y, Ma Z, Huang J, Tan C, Qiu J, Wu F. Mitochondrial Quality Control Systems in Septic AKI: Molecular Mechanisms and Therapeutic Implications. Int J Med Sci 2025; 22:1852-1864. [PMID: 40225865 PMCID: PMC11983313 DOI: 10.7150/ijms.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/05/2025] [Indexed: 04/15/2025] Open
Abstract
Objectives: Despite significant advancements in medical treatments, the creation of a successful treatment strategy for acute kidney injury (AKI) remains a pressing concern. Given the well-documented clinical benefits of canagliflozin in renal protection, our research focused on exploring the possible therapeutic benefits of canagliflozin in treating AKI, with a focus on its underlying mechanisms of action. Methods: To induce AKI, we utilized lipopolysaccharide (LPS) in the presence of canagliflozin, allowing us to assess the drug's effects on kidney function and structure. Results: Our results indicate that canagliflozin lowered blood urea nitrogen and serum creatinine concentrations while enhancing tubular architecture in rodents with LPS-triggered septic AKI. It additionally diminished inflammation, oxidative damage, and tubular cell apoptosis. In vitro, canagliflozin maintained mitochondrial functionality in LPS-exposed HK-2 cells by stabilizing membrane potential, reducing ROS generation, and normalizing respiratory chain activity. Its benefits were facilitated through the AMPKα1/PGC1α/NRF1 axis, promoting mitochondrial regeneration. Importantly, blocking this pathway or employing AMPKα1-deficient animals negated canagliflozin's protective effects, highlighting the essential role of AMPKα1 in its kidney-protective mechanisms. Conclusion: Our investigation implies that canagliflozin might represent a viable treatment strategy for septic AKI, operating through the stimulation of the AMPKα1/PGC1α/NRF1 axis to preserve kidney performance and structural integrity. These findings warrant further investigation into the clinical potential of canagliflozin in this context.
Collapse
Affiliation(s)
- Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yue Ouyang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zisheng Ma
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianming Huang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuhong Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Zhao Y, Chen Z, Xie S, Xiao F, Hu Q, Ju Z. The emerging role and therapeutical implications of ferroptosis in wound healing. BURNS & TRAUMA 2025; 13:tkae082. [PMID: 39958433 PMCID: PMC11827611 DOI: 10.1093/burnst/tkae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 02/18/2025]
Abstract
Wound healing is a complex biological process involving multiple steps, including hemostasis, inflammation, proliferation, and remodeling. A novel form of regulated cell death, ferroptosis, has garnered attention because of its involvement in these processes. Ferroptosis is characterized by the accumulation of lipid peroxides and is tightly regulated by lipid metabolism, iron metabolism, and the lipid-peroxide repair network, all of which exert a significant influence on wound healing. This review highlights the current findings and emerging concepts regarding the multifaceted roles of ferroptosis throughout the stages of normal and chronic wound healing. Additionally, the potential of targeted interventions aimed at modulating ferroptosis to improve wound-healing outcomes is discussed.
Collapse
Affiliation(s)
- Yanan Zhao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Shenghao Xie
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Feng Xiao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Qian Hu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| |
Collapse
|
4
|
Li B, Wang J, Gao Y, Wu X, Wang C, Wang J, Liu J, Wang Y. Identifying Water-Salt Homeostasis and Inflammatory Response in Pathological Cardiac Surgery-Associated Acute Kidney Injury: NT-proBNP-related lncRNAs and miRNAs as Novel Diagnostic Biomarkers and Therapeutic Targets. Int J Med Sci 2025; 22:845-855. [PMID: 39991757 PMCID: PMC11843142 DOI: 10.7150/ijms.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Acute kidney injury related to cardiac surgery (CS-AKI) is a serious medical issue that creates significant social and economic challenges globally. Inflammatory responses and disruptions in water and salt balance are important contributors to CS-AKI. Earlier studies indicated that pre-surgery levels of NT-proBNP were a dependable indicator of CS-AKI. Emerging evidence indicates that the abnormal expression of microRNA (miRNA) and long non-coding RNA (lncRNA) plays a role in the occurrence of CS-AKI. However, the important roles and mechanisms by which NT-proBNP affects lncRNA and miRNA in CS-AKI are still unclear. Here, we investigated lncRNA and miRNA expression patterns in BNP-high, BNP-stable, AKI, and non-AKI groups through whole transcriptome sequencing analysis. The BNP group exhibited differential expressions of 105 miRNAs and 138 lncRNAs. We identified 7 common miRNAs and lncRNAs in both the BNP and AKI groups. A functional and pathway enrichment analysis of the target genes associated with these miRNAs and lncRNAs was conducted, indicating that miR-135a-5p, miR-138-5p, miR-143-3p, and miR-206 are key factors in CS-AKI, particularly in regulating inflammatory responses and water-salt balance. These results provide fresh perspectives on research directions and possible treatment approaches for CS-AKI.
Collapse
Affiliation(s)
- Bianfang Li
- Department of Surgery Intensive Care Unit, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jianhui Wang
- Department of Anesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yuchen Gao
- Department of Anesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiaojing Wu
- Department of Surgery Intensive Care Unit, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chunrong Wang
- Department of Anesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jin Wang
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Jia Liu
- Department of Anesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yuefu Wang
- Department of Surgery Intensive Care Unit, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
5
|
Kong S, Deng A, Guo Z, Ma L, Su X, Cui J, Ou Y, Liu J, Qin T, Fang Z. Spinal Metastasis Pain Surveillance: A Comprehensive Imaging-Based Tool Design for Evaluating Metastatic Burden and Guiding Therapeutic Strategies. Int J Med Sci 2025; 22:708-715. [PMID: 39898244 PMCID: PMC11783065 DOI: 10.7150/ijms.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Background: The current research aims to elucidate the interplay between the anatomical distribution of spinal metastases, MRI features, and the intensity of bone pain in patients with breast cancer. Methods: A retrospective analysis was used on a cohort of 45 breast cancer patients with verified spinal metastases, examining the relationship between metastatic locations, MRI-derived metrics, and bone pain scores. The Visual Analogue Scale (VAS) was conducted to measure the severity of bone pain. Results: The results revealed a significant association between lumbar spine metastases and elevated pain scores, outpacing those observed in thoracic and cervical regions. Furthermore, a strong correlation was found between the multiplicity of metastatic sites and the ratio of high-intensity areas on MRI, both of which were predictive of increased pain severity. Conclusions: The study's outcomes indicate that distinct MRI profiles, including the number and location of spinal metastases, can serve as prognostic indicators of bone pain intensity in breast cancer patients. Our data highlighted the need for personalized pain management strategies and targeted interventions tailored to specific imaging characteristics. Ultimately, this research underscores the dual role of MRI in both detecting spinal metastases and informing symptom management, with the potential to augment the overall well-being of breast cancer patients with spinal involvement.
Collapse
Affiliation(s)
- Shuxin Kong
- Department of Breast Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Aishi Deng
- Department of Breast and Thyroid Surgery, Peking University ShenZhen Hospital, China
| | - Zeyin Guo
- Tongxinling Community Health Service Center, Futian District, The 8 th affiliated hospital of Sun yet-sen University, China
| | - Lijia Ma
- Department of Imaging, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Zhengzhou, China
| | - Xi Su
- Department of Breast and Thyroid Surgery, Peking University ShenZhen Hospital, China
| | - Junwei Cui
- Department of Breast and Thyroid Surgery, Peking University ShenZhen Hospital, China
| | - Yongkang Ou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jinghua Liu
- Tongxinling Community Health Service Center, Futian District, The 8 th affiliated hospital of Sun yet-sen University, China
| | - Tao Qin
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Zeng Fang
- Department of Breast and Thyroid Surgery, Peking University ShenZhen Hospital, China
| |
Collapse
|
6
|
Ding F, Liu J, Wang H, Tan Y, Zhang Z, Qiao G, Fan T. Unveiling the role of risk factors and predictive models in acute type-a aortic dissection surgery: OI downregulation and its association with immune disorders. Int J Med Sci 2025; 22:745-753. [PMID: 39898254 PMCID: PMC11783072 DOI: 10.7150/ijms.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Background and Objective: Acute type A aortic dissection (ATAAD) represents a critical and life-threatening condition requiring urgent surgical intervention, which is often life-saving. However, postoperative acute lung injury (ALI) has emerged as a prominent complication that significantly impacts patient outcomes and prognosis. This study aims to systematically analyze the risk factors associated with the development of severe ALI following ATAAD surgery, providing insights to improve postoperative management strategies. Methods: A retrospective analysis was conducted using a comprehensive database comprising 483 patients diagnosed with ATAAD. Patients were stratified into two groups based on the severity of postoperative ALI: severe ALI group (n = 182) and non-severe ALI group (n = 301). Clinical data were systematically collected and compared between the two cohorts. Binary logistic regression analysis was employed to identify independent predictors of severe ALI following ATAAD surgery. The diagnostic accuracy of these risk factors was assessed using receiver operating characteristic (ROC) curve analysis, with the area under the curve (AUC) serving as the metric for prognostic performance. Results: The severe ALI group exhibited a higher prevalence of preoperative oxygenation index (OI) ≤ 200 mmHg, smoking history, and coronary artery disease compared to the non-severe ALI group (P < 0.001, P = 0.032, and P = 0.039, respectively), while the prevalence of Marfan syndrome was lower (P = 0.033). Moreover, significant differences were observed in several clinical and intraoperative parameters, including body mass index (BMI), C-reactive protein (CRP), procalcitonin (PCT), D-dimer, white blood cell count (WBC), aortic cross-clamp time, moderate hypothermic circulatory arrest (MHCA) time, cardiopulmonary bypass (CPB) duration, and ICU length of stay (all P < 0.05). Multivariate logistic regression identified preoperative OI [P = 0.008, OR (95% CI): 0.002 (0.000-0.183)], BMI [P = 0.037, OR (95% CI): 1.569 (1.027-2.397)], CRP [P = 0.022, OR (95% CI): 1.292 (1.037-1.609)], D-dimer [P < 0.001, OR (95% CI): 3.841 (1.820-8.108)], MHCA time [P = 0.001, OR (95% CI): 3.306 (1.670-6.544)], and CPB duration [P = 0.017, OR (95% CI): 1.117 (1.020-1.223)] as independent predictors of severe ALI. ROC curve analysis revealed the diagnostic performance of preoperative OI, BMI, CRP, D-dimer, MHCA time, and CPB duration, with AUC values of 0.715, 0.844, 0.871, 0.955, 0.944, and 0.833, respectively (all P < 0.001). Conclusion: Preoperative oxygenation index, BMI, CRP, D-dimer levels, MHCA time, and CPB duration are independent risk factors for the development of severe ALI following ATAAD surgery. These findings underscore the importance of preoperative risk assessment and perioperative optimization to mitigate the risk of severe ALI and improve patient outcomes.
Collapse
Affiliation(s)
- Fuyan Ding
- Department of Vascular Diseases Intensive Care Unit, People's Hospital of Zhengzhou University, Zhengzhou University Central China Fuwai Hospital, Zhengzhou 450000, China
| | - Jianyang Liu
- Department of Vascular Surgery, People's Hospital of Zhengzhou University, Zhengzhou University Central China Fuwai Hospital, Zhengzhou 450000, China
| | - Hong Wang
- Department of Vascular Diseases Intensive Care Unit, People's Hospital of Zhengzhou University, Zhengzhou University Central China Fuwai Hospital, Zhengzhou 450000, China
| | - Ying Tan
- Department of Vascular Surgery, People's Hospital of Zhengzhou University, Zhengzhou University Central China Fuwai Hospital, Zhengzhou 450000, China
| | - Zhidong Zhang
- Department of Vascular Surgery, People's Hospital of Zhengzhou University, Zhengzhou University Central China Fuwai Hospital, Zhengzhou 450000, China
| | - Gang Qiao
- Department of Vascular Surgery, People's Hospital of Zhengzhou University, Zhengzhou University Central China Fuwai Hospital, Zhengzhou 450000, China
| | - Taibing Fan
- Department of Children's Heart Center, People's Hospital of Zhengzhou University, Zhengzhou University Central China Fuwai Hospital, Zhengzhou 450000, China
| |
Collapse
|
7
|
Shi L, Mao N, Zheng Z, Liu J, Zhou H, Hou J, Su Y. Glycosphingolipids-Dependent Phospholipid Metabolism Enhances Cancer Initiation and Progression through SMPD1/GLTP/B3GALT4/ST8SIA6 Signaling Axis: A Novel Therapeutic Target. Int J Med Sci 2025; 22:604-615. [PMID: 39898245 PMCID: PMC11783082 DOI: 10.7150/ijms.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/14/2024] [Indexed: 02/04/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with high morbidity and mortality rates globally. Advances in single-cell sequencing technology have enabled comprehensive analyses of tumor cells at single-cell resolution, providing valuable insights into the molecular mechanisms underlying CRC initiation and progression. In this study, we integrated single-cell sequencing data with the TCGA database to identify key molecular pathways involved in CRC pathogenesis. Our analysis revealed that dysregulation of phospholipid metabolism, particularly sphingolipid metabolism, plays a crucial role in CRC development. Specifically, we observed aberrant expression of genes involved in sphingolipid biosynthesis and degradation, as well as altered levels of various sphingolipid metabolites in CRC cells. Furthermore, we identified several potential therapeutic targets, including SMPD1, GLTP, B3GALT4, and ST8SIA6, within the sphingolipid metabolism pathway that could be exploited for the development of novel CRC treatments. Overall, our findings provide novel insights into the molecular mechanisms underlying CRC and highlight the importance of targeting phospholipid metabolism, specifically sphingolipid metabolism, as a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yibin Su
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362002, China
| |
Collapse
|
8
|
Gautam J, Aggarwal H, Kumari D, Gupta SK, Kumar Y, Dikshit M. A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut microbiome profile in the C57BL/6J mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159545. [PMID: 39089643 DOI: 10.1016/j.bbalip.2024.159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
9
|
Selc M, Macova R, Babelova A. Novel Strategies Enhancing Bioavailability and Therapeutical Potential of Silibinin for Treatment of Liver Disorders. Drug Des Devel Ther 2024; 18:4629-4659. [PMID: 39444787 PMCID: PMC11498047 DOI: 10.2147/dddt.s483140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Silibinin, a bioactive component found in milk thistle extract (Silybum marianum), is known to have significant therapeutic potential in the treatment of various liver diseases. It is considered a key element of silymarin, which is traditionally used to support liver function. The main mechanisms of action of silibinin are attributed to its antioxidant properties protecting liver cells from damage caused by free radicals. Experimental studies conducted in vitro and in vivo have confirmed its ability to inhibit inflammatory and fibrotic processes, as well as promote the regeneration of damaged liver tissue. Therefore, silibinin represents a promising tool for the treatment of liver diseases. Since the silibinin molecule is insoluble in water and has poor bioavailability in vivo, new perspectives on solving this problem are being sought. The two most promising approaches are the water-soluble derivative silibinin-C-2',3-dihydrogen succinate, disodium salt, and the silibinin-phosphatidylcholine complex. Both drugs are currently under evaluation in liver disease clinical trials. Nevertheless, the mechanism underlying silibinin biological activity is still elusive and its more detailed understanding would undoubtedly increase its potential in the development of effective therapeutic strategies against liver diseases. This review is focused on the therapeutic potential of silibinin and its derivates, approaches to increase the bioavailability and the benefits in the treatment of liver diseases that have been achieved so far. The review discusses the relevant in vitro and in vivo studies that investigated the protective effects of silibinin in various forms of liver damage.
Collapse
Affiliation(s)
- Michal Selc
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radka Macova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Andrea Babelova
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Wang X, Peng J, Cai P, Xia Y, Yi C, Shang A, Akanyibah FA, Mao F. The emerging role of the gut microbiota and its application in inflammatory bowel disease. Biomed Pharmacother 2024; 179:117302. [PMID: 39163678 DOI: 10.1016/j.biopha.2024.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex disorder with an unknown cause. However, the dysbiosis of the gut microbiome has been found to play a role in IBD etiology, including exacerbated immune responses and defective intestinal barrier integrity. The gut microbiome can also be a potential biomarker for several diseases, including IBD. Currently, conventional treatments targeting pro-inflammatory cytokines and pathways in IBD-associated dysbiosis do not yield effective results. Other therapies that directly target the dysbiotic microbiome for effective outcomes are emerging. We review the role of the gut microbiome in health and IBD and its potential as a diagnostic, prognostic, and therapeutic target for IBD. This review also explores emerging therapeutic advancements that target gut microbiome-associated alterations in IBD, such as nanoparticle or encapsulation delivery, fecal microbiota transplantation, nutritional therapies, microbiome/probiotic engineering, phage therapy, mesenchymal stem cells (MSCs), gut proteins, and herbal formulas.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Jianhua Peng
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, China
| | - Peipei Cai
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, China
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China.
| |
Collapse
|
11
|
Zhang Q, Bi Y, Zhang B, Jiang Q, Mou CK, Lei L, Deng Y, Li Y, Yu J, Liu W, Zhao J. Current landscape of fecal microbiota transplantation in treating depression. Front Immunol 2024; 15:1416961. [PMID: 38983862 PMCID: PMC11231080 DOI: 10.3389/fimmu.2024.1416961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Depression, projected to be the predominant contributor to the global disease burden, is a complex condition with diverse symptoms including mood disturbances and cognitive impairments. Traditional treatments such as medication and psychotherapy often fall short, prompting the pursuit of alternative interventions. Recent research has highlighted the significant role of gut microbiota in mental health, influencing emotional and neural regulation. Fecal microbiota transplantation (FMT), the infusion of fecal matter from a healthy donor into the gut of a patient, emerges as a promising strategy to ameliorate depressive symptoms by restoring gut microbial balance. The microbial-gut-brain (MGB) axis represents a critical pathway through which to potentially rectify dysbiosis and modulate neuropsychiatric outcomes. Preclinical studies reveal that FMT can enhance neurochemicals and reduce inflammatory markers, thereby alleviating depressive behaviors. Moreover, FMT has shown promise in clinical settings, improving gastrointestinal symptoms and overall quality of life in patients with depression. The review highlights the role of the gut-brain axis in depression and the need for further research to validate the long-term safety and efficacy of FMT, identify specific therapeutic microbial strains, and develop targeted microbial modulation strategies. Advancing our understanding of FMT could revolutionize depression treatment, shifting the paradigm toward microbiome-targeting therapies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, China
| | - Yajun Bi
- Department of Pediatrics, Dalian Municipal Women and Children’s Medical Center (Group), Dalian Medical University, Dalian, Liaoning, China
| | - Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Jiang
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, China
| | - Chao Kam Mou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lelin Lei
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yibo Deng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yutong Li
- Wuhan Britain-China School, Wuhan, Hubei, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Liu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinzhu Zhao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Balouei F, Stefanon B, Martello E, Atuahene D, Sandri M, Meineri G. Supplementation with Silybum marianum Extract, Synbiotics, Omega-3 Fatty Acids, Vitamins, and Minerals: Impact on Biochemical Markers and Fecal Microbiome in Overweight Dogs. Animals (Basel) 2024; 14:579. [PMID: 38396547 PMCID: PMC10886211 DOI: 10.3390/ani14040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Overweight and obese dogs can develop metabolic dysfunction, characterized by an inflammatory response and involvement of liver functions. If a modulation of the gut microbiome and its interaction with the gut-liver axis is implicated in the development of metabolic dysfunction, exploration becomes necessary. Over the past decade, diverse therapeutic approaches have emerged to target pathogenic factors involved in metabolic dysfunction. This study investigated the impact of a supplement with hepatoprotective activity, containing extracts of Silybum marianum, prebiotics, probiotics, n-3 polyunsaturated fatty acids, vitamins, and minerals on hematological markers of liver functions and inflammation, as well as on the intestinal microbiota of 10 overweight adult dogs over a 35-day time span. Animals underwent clinical and laboratory evaluations every 7 days, both before the administration of the supplement (T0) and after 7, 14, 21, 28, and 35 days (T1, T2, T3, T4, and T5). In comparison to T0, a significant (p < 0.05) decrease in ALP, glucose, direct bilirubin, and CRP was observed from T3 to T5. The alpha diversity of the fecal microbiota significantly decreased (p < 0.05) only at T1, with high variability observed between dogs. Total short-chain fatty acid and lactic acid were also lower at T1 (p < 0.05) compared to the other times of sampling. The beta diversity of the fecal microbiota failed to show a clear pattern in relation to the sampling times. These results of blood parameters in overweight dogs show a reduction of the inflammation and an improvement of metabolic status during the study period, but the effective contribution of the supplement in this clinical outcome deserves further investigation. Furthermore, the considerable individual variability observed in the microbiome hinders the confident detection of supplement effects.
Collapse
Affiliation(s)
- Fatemeh Balouei
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (F.B.); (M.S.)
| | - Bruno Stefanon
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (F.B.); (M.S.)
| | - Elisa Martello
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham City Hospital Campus, Nottingham NG5 1PB, UK;
| | - David Atuahene
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, 10095 Turin, Italy; (D.A.); (G.M.)
| | - Misa Sandri
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (F.B.); (M.S.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, 10095 Turin, Italy; (D.A.); (G.M.)
| |
Collapse
|