1
|
Obsilova V, Obsil T. The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways. Front Mol Biosci 2024; 11:1327014. [PMID: 38328397 PMCID: PMC10847541 DOI: 10.3389/fmolb.2024.1327014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cell signaling regulates several physiological processes by receiving, processing, and transmitting signals between the extracellular and intracellular environments. In signal transduction, phosphorylation is a crucial effector as the most common posttranslational modification. Selectively recognizing specific phosphorylated motifs of target proteins and modulating their functions through binding interactions, the yeast 14-3-3 proteins Bmh1 and Bmh2 are involved in catabolite repression, carbon metabolism, endocytosis, and mitochondrial retrograde signaling, among other key cellular processes. These conserved scaffolding molecules also mediate crosstalk between ubiquitination and phosphorylation, the spatiotemporal control of meiosis, and the activity of ion transporters Trk1 and Nha1. In humans, deregulation of analogous processes triggers the development of serious diseases, such as diabetes, cancer, viral infections, microbial conditions and neuronal and age-related diseases. Accordingly, the aim of this review article is to provide a brief overview of the latest findings on the functions of yeast 14-3-3 proteins, focusing on their role in modulating the aforementioned processes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division, BIOCEV, Vestec, Czechia
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
2
|
The Curcumin Analogue, MS13 (1,5-Bis(4-hydroxy-3- methoxyphenyl)-1,4-pentadiene-3-one), Inhibits Cell Proliferation and Induces Apoptosis in Primary and Metastatic Human Colon Cancer Cells. Molecules 2020; 25:molecules25173798. [PMID: 32825505 PMCID: PMC7504349 DOI: 10.3390/molecules25173798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The cytotoxic and apoptotic effects of turmeric (Curcuma longa) on colon cancer have been well documented but specific structural modifications of curcumin have been shown to possess greater growth-suppressive potential on colon cancer than curcumin. Therefore, the aim of this study is to identify the anti-cancer properties of curcumin analogue-MS13, a diarylpentanoid on the cytotoxicity, anti-proliferative and apoptotic activity of primary (SW480) and metastatic (SW620) human colon cancer cells. A cell viability assay showed that MS13 has greater cytotoxicity effect on SW480 (EC50: 7.5 ± 2.8 µM) and SW620 (EC50: 5.7 ± 2.4 µM) compared to curcumin (SW480, EC50: 30.6 ± 1.4 µM) and SW620, EC50: 26.8 ± 2.1 µM). Treatment with MS13 at two different doses 1X EC50 and 2X EC50 suppressed the colon cancer cells growth with lower cytotoxicity against normal cells. A greater anti-proliferative effect was also observed in MS13 treated colon cancer cells compared to curcumin at 48 and 72 h. Subsequent analysis on the induction of apoptosis showed that MS13 treated cells exhibited morphological features associated with apoptosis. The findings are also consistent with cellular apoptotic activities shown by increased caspase-3 activity and decreased Bcl-2 protein level in both colon cancer cell lines. In conclusion, MS13 able to suppress colon cancer cell growth by inhibiting cell proliferation and induce apoptosis in primary and metastatic human colon cancer cells.
Collapse
|
3
|
Correcting an instance of synthetic lethality with a pro-survival sequence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118734. [PMID: 32389645 DOI: 10.1016/j.bbamcr.2020.118734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/11/2020] [Accepted: 05/02/2020] [Indexed: 11/21/2022]
Abstract
A human cDNA encoding the LIM domain containing 194 amino acid cysteine and glycine rich protein 3 (CSRP3) was identified as a BAX suppressor in yeast and a pro-survival sequence that abrogated copper mediated regulated cell death (RCD). Yeast lacks a CSRP3 orthologue but it has four LIM sequences, namely RGA1, RGA2, LRG1 and PXL1. These are known regulators of stress responses yet their roles in RCD remain unknown. Given that LIMs interact with other LIMs, we ruled out the possibility that overexpressed yeast LIMs alone could prevent RCD and that CSRP3 functions by acting as a dominant regulator of yeast LIMs. Of interest was the discovery that even though yeast cells lacking the LIM encoding PXL1 had no overt growth defect, it was nevertheless supersensitive to the effects of sublethal levels of copper. Heterologous expression of human CSPR3 as well as the pro-survival 14-3-3 sequence corrected this copper supersensitivity. These results show that the pxl1∆-copper synthetic lethality is likely due to the induction of RCD. This differs from the prevailing model in which synthetic lethality occurs because of specific defects generated by the combined loss of two overlapping but non-essential functions.
Collapse
|
4
|
Evolutionary Engineering of an Iron-Resistant Saccharomyces cerevisiae Mutant and Its Physiological and Molecular Characterization. Microorganisms 2019; 8:microorganisms8010043. [PMID: 31878309 PMCID: PMC7023378 DOI: 10.3390/microorganisms8010043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
Iron plays an essential role in all organisms and is involved in the structure of many biomolecules. It also regulates the Fenton reaction where highly reactive hydroxyl radicals occur. Iron is also important for microbial biodiversity, health and nutrition. Excessive iron levels can cause oxidative damage in cells. Saccharomyces cerevisiae evolved mechanisms to regulate its iron levels. To study the iron stress resistance in S. cerevisiae, evolutionary engineering was employed. The evolved iron stress-resistant mutant “M8FE” was analysed physiologically, transcriptomically and by whole genome re-sequencing. M8FE showed cross-resistance to other transition metals: cobalt, chromium and nickel and seemed to cope with the iron stress by both avoidance and sequestration strategies. PHO84, encoding the high-affinity phosphate transporter, was the most down-regulated gene in the mutant, and may be crucial in iron-resistance. M8FE had upregulated many oxidative stress response, reserve carbohydrate metabolism and mitophagy genes, while ribosome biogenesis genes were downregulated. As a possible result of the induced oxidative stress response genes, lower intracellular oxidation levels were observed. M8FE also had high trehalose and glycerol production levels. Genome re-sequencing analyses revealed several mutations associated with diverse cellular and metabolic processes, like cell division, phosphate-mediated signalling, cell wall integrity and multidrug transporters.
Collapse
|
5
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [PMID: 30716408 DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
6
|
Zhou DR, Eid R, Boucher E, Miller KA, Mandato CA, Greenwood MT. Stress is an agonist for the induction of programmed cell death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:699-712. [DOI: 10.1016/j.bbamcr.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
7
|
Eid R, Zhou DR, Arab NTT, Boucher E, Young PG, Mandato CA, Greenwood MT. Heterologous expression of anti-apoptotic human 14-3-3β/α enhances iron-mediated programmed cell death in yeast. PLoS One 2017; 12:e0184151. [PMID: 28854230 PMCID: PMC5576682 DOI: 10.1371/journal.pone.0184151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/20/2017] [Indexed: 01/06/2023] Open
Abstract
The induction of Programmed Cell Death (PCD) requires the activation of complex responses involving the interplay of a variety of different cellular proteins, pathways, and processes. Uncovering the mechanisms regulating PCD requires an understanding of the different processes that both positively and negatively regulate cell death. Here we have examined the response of normal as well as PCD resistant yeast cells to different PCD inducing stresses. As expected cells expressing the pro-survival human 14-3-3β/α sequence show increased resistance to numerous stresses including copper and rapamycin. In contrast, other stresses including iron were more lethal in PCD resistant 14-3-3β/α expressing cells. The increased sensitivity to PCD was not iron and 14-3-3β/α specific since it was also observed with other stresses (hydroxyurea and zinc) and other pro-survival sequences (human TC-1 and H-ferritin). Although microscopical examination revealed little differences in morphology with iron or copper stresses, cells undergoing PCD in response to high levels of prolonged copper treatment were reduced in size. This supports the interaction some forms of PCD have with the mechanisms regulating cell growth. Analysis of iron-mediated effects in yeast mutant strains lacking key regulators suggests that a functional vacuole is required to mediate the synergistic effects of iron and 14-3-3β/α on yeast PCD. Finally, mild sub-lethal levels of copper were found to attenuate the observed inhibitory effects of iron. Taken together, we propose a model in which a subset of stresses like iron induces a complex process that requires the cross-talk of two different PCD inducing pathways.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - David R. Zhou
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nagla T. T. Arab
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Paul G. Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Craig A. Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
9
|
Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci 2016; 73:2237-50. [PMID: 27048816 PMCID: PMC4887522 DOI: 10.1007/s00018-016-2197-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/30/2023]
Abstract
In recent years, yeast was confirmed as a useful eukaryotic model system to decipher the complex mechanisms and networks occurring in higher eukaryotes, particularly in mammalian cells, in physiological as well in pathological conditions. This article focuses attention on the contribution of yeast in the study of a very complex scenario, because of the number and interconnection of pathways, represented by cell death. Yeast, although it is a unicellular organism, possesses the basal machinery of different kinds of cell death occurring in higher eukaryotes, i.e., apoptosis, regulated necrosis and autophagy. Here we report the current knowledge concerning the yeast orthologs of main mammalian cell death regulators and executors, the role of organelles and compartments, and the cellular phenotypes observed in the different forms of cell death in response to external and internal triggers. Thanks to the ease of genetic manipulation of this microorganism, yeast strains expressing human genes that promote or counteract cell death, onset of tumors and neurodegenerative diseases have been constructed. The effects on yeast cells of some of these genes are also presented.
Collapse
Affiliation(s)
- Claudio Falcone
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
10
|
Abstract
Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals.
Collapse
|
11
|
Eid R, Boucher E, Gharib N, Khoury C, Arab NTT, Murray A, Young PG, Mandato CA, Greenwood MT. Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae. Exp Cell Res 2016; 342:52-61. [PMID: 26886577 DOI: 10.1016/j.yexcr.2016.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 02/06/2023]
Abstract
Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomyces cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nada Gharib
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
| | - Chamel Khoury
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada; Department of Biology, Queen's University, Kingston, Ontario, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Alistair Murray
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Paul G Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada.
| |
Collapse
|
12
|
Scope and limitations of yeast as a model organism for studying human tissue-specific pathways. BMC SYSTEMS BIOLOGY 2015; 9:96. [PMID: 26714768 PMCID: PMC4696342 DOI: 10.1186/s12918-015-0253-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/17/2015] [Indexed: 12/16/2022]
Abstract
Background Budding yeast, S. cerevisiae, has been used extensively as a model organism for studying cellular processes in evolutionarily distant species, including humans. However, different human tissues, while inheriting a similar genetic code, exhibit distinct anatomical and physiological properties. Specific biochemical processes and associated biomolecules that differentiate various tissues are not completely understood, neither is the extent to which a unicellular organism, such as yeast, can be used to model these processes within each tissue. Results We present a novel framework to systematically quantify the suitability of yeast as a model organism for different human tissues. To this end, we develop a computational method for dissecting the global human interactome into tissue-specific cellular networks. By individually aligning these networks with the yeast interactome, we simultaneously partition the functional space of human genes, and their corresponding pathways, based on their conservation both across species and among different tissues. Finally, we couple our framework with a novel statistical model to assess the conservation of tissue-specific pathways and infer the overall similarity of each tissue with yeast. We further study each of these subspaces in detail, and shed light on their unique biological roles in the human tissues. Conclusions Our framework provides a novel tool that can be used to assess the suitability of the yeast model for studying tissue-specific physiology and pathophysiology in humans. Many complex disorders are driven by a coupling of housekeeping (universally expressed in all tissues) and tissue-selective (expressed only in specific tissues) dysregulated pathways. While tissue-selective genes are significantly associated with the onset and development of a number of tissue-specific pathologies, we show that the human-specific subset has even higher association. Consequently, they provide excellent candidates as drug targets for therapeutic interventions. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0253-0) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Shlezinger N, Israeli M, Mochly E, Oren-Young L, Zhu W, Sharon A. Translocation from nuclei to cytoplasm is necessary for anti A-PCD activity and turnover of the Type II IAP BcBir1. Mol Microbiol 2015; 99:393-406. [DOI: 10.1111/mmi.13238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Neta Shlezinger
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Maayan Israeli
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Elad Mochly
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Liat Oren-Young
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
14
|
Jones NK, Arab NT, Eid R, Gharib N, Sheibani S, Vali H, Khoury C, Murray A, Boucher E, Mandato CA, Young PG, Greenwood MT. Human Thyroid Cancer-1 (TC-1) is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast. MICROBIAL CELL 2015; 2:247-255. [PMID: 28357300 PMCID: PMC5349172 DOI: 10.15698/mic2015.07.213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human Thyroid Cancer-1 (hTC-1) protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. Here we show that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. Analysis of the 106 residues of hTC-1 in available protein databases revealed direct orthologues in jawed-vertebrates, including mammals, frogs, fish and sharks. No TC-1 orthologue was detected in lower organisms, including yeast. Here we show that TC-1 is a general pro-survival peptide since it prevents the growth- and cell death-inducing effects of copper in yeast. Human TC-1 also prevented the deleterious effects that occur due to the over-expression of a number of key pro-apoptotic peptides, including YCA1, YBH3, NUC1, and AIF1. Even though the protective effects were more pronounced with the over-expression of YBH3 and YCA1, hTC-1 could still protect yeast mutants lacking YBH3 and YCA1 from the effects of copper sulfate. This suggests that the protective effects of TC-1 are not limited to specific pathways or processes. Taken together, our results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes.
Collapse
Affiliation(s)
- Natalie K Jones
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. ; Present address: Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nagla T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Nada Gharib
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Present address: Department of Biomedical Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sara Sheibani
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. ; Present address: Defence Research and Development Canada, Alberta, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Chamel Khoury
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Alistair Murray
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Paul G Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Sheibani S, Jones NK, Eid R, Gharib N, Arab NTT, Titorenko V, Vali H, Young PA, Greenwood MT. Inhibition of stress mediated cell death by human lactate dehydrogenase B in yeast. FEMS Yeast Res 2015; 15:fov032. [DOI: 10.1093/femsyr/fov032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
|
16
|
Casas C, Isus L, Herrando-Grabulosa M, Mancuso FM, Borrás E, Sabidó E, Forés J, Aloy P. Network-based proteomic approaches reveal the neurodegenerative, neuroprotective and pain-related mechanisms involved after retrograde axonal damage. Sci Rep 2015; 5:9185. [PMID: 25784190 PMCID: PMC5378195 DOI: 10.1038/srep09185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/05/2015] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative processes are preceded by neuronal dysfunction and synaptic disconnection. Disconnection between spinal motoneuron (MN) soma and synaptic target leads either to a retrograde degenerative process or to a regenerative reaction, depending injury proximity among other factors. Distinguished key events associated with one or other processes may give some clues towards new therapeutical approaches based on boosting endogenous neuroprotective mechanisms. Root mechanical traction leads to retrograde MN degeneration, but share common initial molecular mechanisms with a regenerative process triggered by distal axotomy and suture. By 7 days post-injury, key molecular events starts to diverge and sign apart each destiny. We used comparative unbiased proteomics to define these signatures, coupled to a novel network-based analysis to get biological meaning. The procedure implicated the previous generation of combined topological information from manual curated 19 associated biological processes to be contrasted with the proteomic list using gene enrichment analysis tools. The novel and unexpected results suggested that motoneurodegeneration is better explained mainly by the concomitant triggering of anoikis, anti-apoptotic and neuropathic-pain related programs. In contrast, the endogenous neuroprotective mechanisms engaged after distal axotomy included specifically rather anti-anoikis and selective autophagy. Validated protein-nodes and processes are highlighted across discussion.
Collapse
Affiliation(s)
- Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Barcelona, Spain
| | - Laura Isus
- Joint IRB-BSC-CRG Program in Computational Biology. Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Catalonia, Spain
| | - Mireia Herrando-Grabulosa
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Barcelona, Spain
| | - Francesco M. Mancuso
- Proteomic Unit, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eva Borrás
- Proteomic Unit, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eduardo Sabidó
- Proteomic Unit, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Joaquim Forés
- Hand and Peripheral Nerve Unit, Hospital Clínic i Provincial, Universitat de Barcelona, Barcelona, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology. Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Eid R, Sheibani S, Gharib N, Lapointe JF, Horowitz A, Vali H, Mandato CA, Greenwood MT. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast. FEMS Yeast Res 2013; 14:495-507. [DOI: 10.1111/1567-1364.12121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Sara Sheibani
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Nada Gharib
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Jason F. Lapointe
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Avital Horowitz
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Craig A. Mandato
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| |
Collapse
|
18
|
The human septin7 and the yeast CDC10 septin prevent Bax and copper mediated cell death in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3186-3194. [DOI: 10.1016/j.bbamcr.2013.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
|
19
|
Côrte-Real M, Madeo F. Yeast programed cell death and aging. Front Oncol 2013; 3:283. [PMID: 24303368 PMCID: PMC3831160 DOI: 10.3389/fonc.2013.00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 01/07/2023] Open
Affiliation(s)
- Manuela Côrte-Real
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho , Braga , Portugal
| | | |
Collapse
|
20
|
Dunham MJ, Fowler DM. Contemporary, yeast-based approaches to understanding human genetic variation. Curr Opin Genet Dev 2013; 23:658-64. [PMID: 24252429 DOI: 10.1016/j.gde.2013.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 01/11/2023]
Abstract
Determining how genetic variation contributes to human health and disease is a critical challenge. As one of the most genetically tractable model organisms, yeast has played a central role in meeting this challenge. The advent of new technologies, including high-throughput DNA sequencing and synthesis, proteomics, and computational methods, has vastly increased the power of yeast-based approaches to determine the consequences of human genetic variation. Recent successes include systematic exploration of the effects of gene dosage, large-scale analysis of the effect of coding variation on gene function, and the use of humanized yeast to model disease. By virtue of its manipulability, small genome size, and genetic tractability, yeast is poised to help us understand human genetic variation.
Collapse
Affiliation(s)
- Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Foege Building, Box 355065, 3720 15th Avenue NE, Seattle, WA 98195-5065, USA.
| | | |
Collapse
|
21
|
Guaragnella N, Palermo V, Galli A, Moro L, Mazzoni C, Giannattasio S. The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res 2013; 14:2-16. [PMID: 24103154 DOI: 10.1111/1567-1364.12094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/26/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022] Open
Abstract
When the glucose supply is high, despite the presence of oxygen, Saccharomyces cerevisiae uses fermentation as its main metabolic pathway and switches to oxidative metabolism only when this carbon source is limited. There are similarities between glucose-induced repression of oxidative metabolism of yeast and metabolic reprogramming of tumor cells. The glucose-induced repression of oxidative metabolism is regulated by oncogene homologues in yeast, such as RAS and Sch9p, the yeast homologue of Akt. Yeast also undergoes an apoptosis-like programmed cell death process sharing several features with mammalian apoptosis, including oxidative stress and a major role played by mitochondria. Evasion of apoptosis and sustained proliferative signaling are hallmarks of cancer. This, together with the possibility of heterologous expression of human genes in yeast, has allowed new insights to be obtained into the function of mammalian oncogenes/oncosuppressors. Here, we elaborate on the similarities between tumor and yeast cells underpinning the use of this model organism in cancer research. We also review the achievements obtained through heterologous expression in yeast of p53, BRCA1, and BRCA2, which are among the best-known cancer-susceptibility genes, with the aim of understanding their role in tumorigenesis. Yeast-cell-based functional assays for cancer genetic testing will also be dealt with.
Collapse
|
22
|
Rodicio R, Heinisch JJ. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 2013; 30:165-77. [PMID: 23576126 DOI: 10.1002/yea.2954] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/08/2022] Open
Abstract
The milk yeast Kluyveromyces lactis has a life cycle similar to that of Saccharomyces cerevisiae and can be employed as a model eukaryote using classical genetics, such as the combination of desired traits, by crossing and tetrad analysis. Likewise, a growing set of vectors, marker cassettes and tags for fluorescence microscopy are available for manipulation by genetic engineering and investigating its basic cell biology. We here summarize these applications, as well as the current knowledge regarding its central metabolism, glucose and extracellular stress signalling pathways. A short overview on the biotechnological potential of K. lactis concludes this review.
Collapse
Affiliation(s)
- Rosaura Rodicio
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Spain
| | | |
Collapse
|