1
|
Xu W, Mo Y, He Y, Fan Y, He G, Fu W, Chen S, Liu J, Liu W, Peng L, Xiao Y. A New Method for Chromosomes Preparation by ATP-Competitive Inhibitor SP600125 via Enhancement of Endomitosis in Fish. Front Bioeng Biotechnol 2021; 8:606496. [PMID: 33520960 PMCID: PMC7838586 DOI: 10.3389/fbioe.2020.606496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Previous studies have suggested that 1,9-Pyrazoloanthrone, known as SP600125, can induce cell polyploidization. However, what is the phase of cell cycle arrest caused by SP600125 and the underlying regulation is still an interesting issue to be further addressed. Research in this article shows that SP600125 can block cell cycle progression at the prometaphase of mitosis and cause endomitosis. It is suggested that enhancement of the p53 signaling pathway and weakening of the spindle assembly checkpoint are associated with the SP600125-induced cell cycle arrest. Using preliminary SP600125 treatment, the samples of the cultured fish cells and the fish tissues display a great number of chromosome splitting phases. Summarily, SP600125 can provide a new protocol of chromosomes preparation for karyotype analysis owing to its interference with prometaphase of mitosis.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yanxiu Mo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China.,Department of Histology and Embryology, School of Basic Medical Science, Xiangnan University, Chenzhou, China
| | - Yu He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunpeng Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guomin He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shujuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
2
|
Matsumoto T, Wakefield L, Tarlow BD, Grompe M. In Vivo Lineage Tracing of Polyploid Hepatocytes Reveals Extensive Proliferation during Liver Regeneration. Cell Stem Cell 2019; 26:34-47.e3. [PMID: 31866222 DOI: 10.1016/j.stem.2019.11.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/06/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Leslie Wakefield
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Markus Grompe
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Ohshima S, Seyama A. Establishment of Proliferative Tetraploid Cells from Nontransformed Human Fibroblasts. J Vis Exp 2017. [PMID: 28117785 DOI: 10.3791/55028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Polyploid (mostly tetraploid) cells are often observed in preneoplastic lesions of human tissues and their chromosomal instability has been considered to be responsible for carcinogenesis in such tissues. Although proliferative polyploid cells are requisite for analyzing chromosomal instability of polyploid cells, creating such cells from nontransformed human cells is rather challenging. Induction of tetraploidy by chemical agents usually results in a mixture of diploid and tetraploid populations, and most studies employed fluorescence-activated cell sorting or cloning by limiting dilution to separate tetraploid from diploid cells. However, these procedures are time-consuming and laborious. The present report describes a relatively simple protocol to induce proliferative tetraploid cells from normal human fibroblasts with minimum contamination by diploid cells. Briefly, the protocol is comprised of the following steps: arresting cells in mitosis by demecolcine (DC), collecting mitotic cells after shaking off, incubating collected cells with DC for an additional 3 days, and incubating cells in drug-free medium (They resume proliferation as tetraploid cells within several days). Depending on cell type, the collection of mitotic cells by shaking off might be omitted. This protocol provides a simple and feasible method to establish proliferative tetraploid cells from normal human fibroblasts. Tetraploid cells established by this method could be a useful model for studying chromosome instability and the oncogenic potential of polyploid human cells.
Collapse
Affiliation(s)
- Susumu Ohshima
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University;
| | - Atsushi Seyama
- Department of Pathology, International Medical Center, Saitama Medical University
| |
Collapse
|
4
|
Potapova TA, Seidel CW, Box AC, Rancati G, Li R. Transcriptome analysis of tetraploid cells identifies cyclin D2 as a facilitator of adaptation to genome doubling in the presence of p53. Mol Biol Cell 2016; 27:3065-3084. [PMID: 27559130 PMCID: PMC5063615 DOI: 10.1091/mbc.e16-05-0268] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/16/2016] [Indexed: 01/12/2023] Open
Abstract
Tetraploidization, or genome doubling, is a prominent event in tumorigenesis, primarily because cell division in polyploid cells is error-prone and produces aneuploid cells. This study investigates changes in gene expression evoked in acute and adapted tetraploid cells and their effect on cell-cycle progression. Acute polyploidy was generated by knockdown of the essential regulator of cytokinesis anillin, which resulted in cytokinesis failure and formation of binucleate cells, or by chemical inhibition of Aurora kinases, causing abnormal mitotic exit with formation of single cells with aberrant nuclear morphology. Transcriptome analysis of these acute tetraploid cells revealed common signatures of activation of the tumor-suppressor protein p53. Suppression of proliferation in these cells was dependent on p53 and its transcriptional target, CDK inhibitor p21. Rare proliferating tetraploid cells can emerge from acute polyploid populations. Gene expression analysis of single cell-derived, adapted tetraploid clones showed up-regulation of several p53 target genes and cyclin D2, the activator of CDK4/6/2. Overexpression of cyclin D2 in diploid cells strongly potentiated the ability to proliferate with increased DNA content despite the presence of functional p53. These results indicate that p53-mediated suppression of proliferation of polyploid cells can be averted by increased levels of oncogenes such as cyclin D2, elucidating a possible route for tetraploidy-mediated genomic instability in carcinogenesis.
Collapse
Affiliation(s)
| | | | - Andrew C Box
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Giulia Rancati
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
5
|
Ohshima S, Seyama A. Establishment of proliferative tetraploid cells from telomerase-immortalized normal human fibroblasts. Genes Chromosomes Cancer 2016; 55:522-30. [PMID: 26917432 DOI: 10.1002/gcc.22354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/15/2022] Open
Abstract
Aneuploidy is observed in the majority of human cancers and is considered to be causally related to carcinogenesis. Although malignant aneuploid cells are suggested to develop from polyploid cells formed in precancerous lesions, the mechanisms of this process remain elusive. This is partly because no experimental model is available where nontransformed polyploid human cells propagate in vitro. We previously showed that proliferative tetraploid cells can be established from normal human fibroblasts by treatment with the spindle poison demecolcine (DC). However, the limited lifespan of these cells hampered detailed analysis of a link between chromosomal instability and the oncogenic transformation of polyploid cells. Here, we report the establishment of proliferative tetraploid cells from the telomerase-immortalized normal human fibroblast cell line TIG-1. Treatment of immortalized diploid cells with DC for 4 days resulted in proliferation of cells with tetraploid DNA content and near-tetraploid/tetraploid chromosome counts. Established tetraploid cells had functional TP53 despite growing at almost the same rate as diploid cells. The frequency of clonal and sporadic chromosome aberrations in tetraploid cells was higher than in diploid cells and in one experiment, gradually increased with repeated subculture. This study suggests that tetraploid cells established from telomerase-immortalized normal human fibroblasts can be a valuable model for studying chromosomal instability and the oncogenic potential of polyploid cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Susumu Ohshima
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University, Morohongo, Moroyama, Iruma, Saitama, Japan
| | - Atsushi Seyama
- Department of Pathology, International Medical Center, Saitama Medical University, Yamane, Hidaka, Saitama, Japan
| |
Collapse
|
6
|
Autotetraploid cell line induced by SP600125 from crucian carp and its developmental potentiality. Sci Rep 2016; 6:21814. [PMID: 26898354 PMCID: PMC4761888 DOI: 10.1038/srep21814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Polyploidy has many advantages over diploidy, such as rapid growth, sterility, and disease resistance, and has been extensively applied in agriculture and aquaculture. Though generation of new polyploids via polyploidization has been achieved in plants by different ways, it is comparatively rare in animals. In this article, by a chemical compound, SP600125, polyploidization is induced in fish cells in vitro, and a stable autotetraploid cell line has been generated from diploid fibroblast cells of crucian carp. As a c-Jun N-terminal kinase (Jnk) inhibitor, SP600125 does not function during the induction process of polyploidization. Instead, the p53 signal pathway might be involved. Using the SP600125-induced tetraploid cells and eggs of crucian carp as the donors and recipients, respectively, nuclear transplantation was conducted such that tetraploid embryos were obtained. It suggests that combining polyploidization and the somatic cell nuclear transfer technique (SCNT) is an efficient way to generate polyploidy, and the presented method in this research for generating the tetraploid fish from diploid fish can provide a useful platform for polyploid breeding.
Collapse
|
7
|
Bakhoum SF, Swanton C. Chromosomal instability, aneuploidy, and cancer. Front Oncol 2014; 4:161. [PMID: 24995162 PMCID: PMC4062911 DOI: 10.3389/fonc.2014.00161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022] Open
Affiliation(s)
- Samuel F. Bakhoum
- Department of Internal Medicine, Mount Auburn Hospital, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Charles Swanton
- Cancer Research UK London Research Institute, London, UK
- University College London Cancer Institute, London, UK
| |
Collapse
|