1
|
Müller D, Loskutov J, Küffer S, Marx A, Regenbrecht CRA, Ströbel P, Regenbrecht MJ. Cell Culture Models for Translational Research on Thymomas and Thymic Carcinomas: Current Status and Future Perspectives. Cancers (Basel) 2024; 16:2762. [PMID: 39123489 PMCID: PMC11312172 DOI: 10.3390/cancers16152762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cell culture model systems are fundamental tools for studying cancer biology and identifying therapeutic vulnerabilities in a controlled environment. TET cells are notoriously difficult to culture, with only a few permanent cell lines available. The optimal conditions and requirements for the ex vivo establishment and permanent expansion of TET cells have not been systematically studied, and it is currently unknown whether different TET subtypes require different culture conditions or specific supplements. The few permanent cell lines available represent only type AB thymomas and thymic carcinomas, while attempts to propagate tumor cells derived from type B thymomas so far have been frustrated. It is conceivable that epithelial cells in type B thymomas are critically dependent on their interaction with immature T cells or their three-dimensional scaffold. Extensive studies leading to validated cell culture protocols would be highly desirable and a major advance in the field. Alternative methods such as tumor cell organoid models, patient-derived xenografts, or tissue slices have been sporadically used in TETs, but their specific contributions and advantages remain to be shown.
Collapse
Affiliation(s)
- Denise Müller
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | | | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | - Alexander Marx
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | - Christian R. A. Regenbrecht
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
- CELLphenomics GmbH, 13125 Berlin, Germany (M.J.R.)
- ASC Oncology GmbH, 13125 Berlin, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | - Manuela J. Regenbrecht
- CELLphenomics GmbH, 13125 Berlin, Germany (M.J.R.)
- ASC Oncology GmbH, 13125 Berlin, Germany
- Department for Pneumology, Palliative Medicine, DRK Kliniken Berlin, 14050 Berlin, Germany
| |
Collapse
|
2
|
Peng X, Yang Y, Hou R, Zhang L, Shen C, Yang X, Luo Z, Yin Z, Cao Y. MTCH2 in Metabolic Diseases, Neurodegenerative Diseases, Cancers, Embryonic Development and Reproduction. Drug Des Devel Ther 2024; 18:2203-2213. [PMID: 38882047 PMCID: PMC11180440 DOI: 10.2147/dddt.s460448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Mitochondrial carrier homolog 2 (MTCH2) is a member of the solute carrier 25 family, located on the outer mitochondrial membrane. MTCH2 was first identified in 2000. The development in MTCH2 research is rapidly increasing. The most well-known role of MTCH2 is linking to the pro-apoptosis BID to facilitate mitochondrial apoptosis. Genetic variants in MTCH2 have been investigated for their association with metabolic and neurodegenerative diseases, however, no intervention or therapeutic suggestions were provided. Recent studies revealed the physiological and pathological function of MTCH2 in metabolic diseases, neurodegenerative diseases, cancers, embryonic development and reproduction via regulating mitochondrial apoptosis, metabolic shift between glycolysis and oxidative phosphorylation, mitochondrial fusion/fission, epithelial-mesenchymal transition, etc. This review endeavors to assess a total of 131 published articles to summarise the structure and physiological/pathological role of MTCH2, which has not previously been conducted. This review concludes that MTCH2 plays a crucial role in metabolic diseases, neurodegenerative diseases, cancers, embryonic development and reproduction, and the predominant molecular mechanism is regulation of mitochondrial function. This review gives a comprehensive state of current knowledgement on MTCH2, which will promote the therapeutic research of MTCH2.
Collapse
Affiliation(s)
- Xiaoqing Peng
- School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, Anhui, People’s Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, People’s Republic of China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, People’s Republic of China
| | - Ruirui Hou
- School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
| | - Longbiao Zhang
- School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
| | - Can Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoyan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhigang Luo
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zongzhi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, People’s Republic of China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, People’s Republic of China
| |
Collapse
|
3
|
Zheng X, Chu B. The biology of mitochondrial carrier homolog 2. Mitochondrion 2024; 75:101837. [PMID: 38158152 DOI: 10.1016/j.mito.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The mitochondrial carrier system is in charge of small molecule transport between the mitochondria and the cytoplasm as well as being an integral portion of the core mitochondrial function. One member of the mitochondrial carrier family of proteins, mitochondrial carrier homolog 2 (MTCH2), is characterized as a critical mitochondrial outer membrane protein insertase participating in mitochondrial homeostasis. Accumulating evidence demonstrate that MTCH2 is integrally linked to cell death and mitochondrial metabolism, and its genetic alterations cause a variety of disease phenotypes, ranging from obesity, Alzheimer's disease, and tumor. To provide a comprehensive insight into the current understanding of MTCH2, we present a detailed description of the physiopathological functions of MTCH2, ranging from apoptosis, mitochondrial dynamics, and metabolic homeostasis regulation. Moreover, we summarized the impact of MTCH2 in human diseases, and highlighted tumors, to assess the role of MTCH2 mutations or variable expression on pathogenesis and target therapeutic options.
Collapse
Affiliation(s)
- Xiaohe Zheng
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China
| | - Binxiang Chu
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China.
| |
Collapse
|
4
|
Küffer S, Müller D, Marx A, Ströbel P. Non-Mutational Key Features in the Biology of Thymomas. Cancers (Basel) 2024; 16:942. [PMID: 38473304 DOI: 10.3390/cancers16050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Thymomas (THs) are a unique group of heterogeneous tumors of the thymic epithelium. In particular, the subtypes B2 and B3 tend to be aggressive and metastatic. Radical tumor resection remains the only curative option for localized tumors, while more advanced THs require multimodal treatment. Deep sequencing analyses have failed to identify known oncogenic driver mutations in TH, with the notable exception of the GTF2I mutation, which occurs predominantly in type A and AB THs. However, there are multiple alternative non-mutational mechanisms (e.g., perturbed thymic developmental programs, metabolism, non-coding RNA networks) that control cellular behavior and tumorigenesis through the deregulation of critical molecular pathways. Here, we attempted to show how the results of studies investigating such alternative mechanisms could be integrated into a current model of TH biology. This model could be used to focus ongoing research and therapeutic strategies.
Collapse
Affiliation(s)
- Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Denise Müller
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
5
|
Barachini S, Pardini E, Burzi IS, Sardo Infirri G, Montali M, Petrini I. Molecular and Functional Key Features and Oncogenic Drivers in Thymic Carcinomas. Cancers (Basel) 2023; 16:166. [PMID: 38201593 PMCID: PMC10778094 DOI: 10.3390/cancers16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Thymic epithelial tumors, comprising thymic carcinomas and thymomas, are rare neoplasms. They differ in histology, prognosis, and association with autoimmune diseases such as myasthenia gravis. Thymomas, but not thymic carcinomas, often harbor GTF2I mutations. Mutations of CDKN2A, TP53, and CDKN2B are the most common thymic carcinomas. The acquisition of mutations in genes that control chromatin modifications and epigenetic regulation occurs in the advanced stages of thymic carcinomas. Anti-angiogenic drugs and immune checkpoint inhibitors targeting the PD-1/PD-L1 axis have shown promising results for the treatment of unresectable tumors. Since thymic carcinomas are frankly aggressive tumors, this report presents insights into their oncogenic drivers, categorized under the established hallmarks of cancer.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Eleonora Pardini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Irene Sofia Burzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Marina Montali
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Iacopo Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
6
|
Yamada Y. Histogenetic and disease-relevant phenotypes in thymic epithelial tumors (TETs): The potential significance for future TET classification. Pathol Int 2023; 73:265-280. [PMID: 37278579 DOI: 10.1111/pin.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Thymic epithelial tumors (TETs) encompass morphologically various subtypes. Thus, it would be meaningful to explore the expression phenotypes that delineate each TET subtype or overarching multiple subtypes. If these profiles are related to thymic physiology, they will improve our biological understanding of TETs and may contribute to the establishment of a more rational TET classification. Against this background, pathologists have attempted to identify histogenetic features in TETs for a long time. As part of this work, our group has reported several TET expression profiles that are histotype-dependent and related to the nature of thymic epithelial cells (TECs). For example, we found that beta5t, a constituent of thymoproteasome unique to cortical TECs, is expressed mainly in type B thymomas, for which the nomenclature of cortical thymoma was once considered. Another example is the discovery that most thymic carcinomas, especially thymic squamous cell carcinomas, exhibit expression profiles similar to tuft cells, a recently discovered special type of medullary TEC. This review outlines the currently reported histogenetic phenotypes of TETs, including those related to thymoma-associated myasthenia gravis, summarizes their genetic signatures, and provides a perspective for the future direction of TET classification.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
7
|
Nicolì V, Coppedè F. Epigenetics of Thymic Epithelial Tumors. Cancers (Basel) 2023; 15:360. [PMID: 36672310 PMCID: PMC9856807 DOI: 10.3390/cancers15020360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
Thymic epithelial tumors (TETs) arise from the epithelial cells of the thymus and consist in the 1% of all adult malignancies, despite the fact that they are the most common lesions of the anterior mediastinum. TETs can be divided mainly into thymomas, thymic carcinomas, and the rarest ad aggressive neuroendocrine forms. Despite the surgical resection is quite resolving, the diagnosis of TETs is complicated by the absence of symptoms and the clinical presentation aggravated by several paraneoplastic disorders, including myasthenia gravis. Thus, the heterogeneity of TETs prompts the search for molecular biomarkers that could be helpful for tumor characterization and clinical outcomes prediction. With these aims, several researchers investigated the epigenetic profiles of TETs. In this manuscript, we narratively review the works investigating the deregulation of epigenetic mechanisms in TETs, highlighting the need for further studies combining genetic, epigenetic, and expression data to better characterize the different molecular subtypes and identify, for each of them, the most relevant epigenetic biomarkers of clinical utility.
Collapse
Affiliation(s)
- Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
8
|
Zhang X, Schalke B, Kvell K, Kriegsmann K, Kriegsmann M, Graeter T, Preissler G, Ott G, Kurz K, Bulut E, Ströbel P, Marx A, Belharazem D. WNT4 overexpression and secretion in thymic epithelial tumors drive an autocrine loop in tumor cells in vitro. Front Oncol 2022; 12:920871. [PMID: 35965500 PMCID: PMC9372913 DOI: 10.3389/fonc.2022.920871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundWNT4-driven non-canonical signaling is crucial for homeostasis and age-related involution of the thymus. Abnormal WNT signaling is important in many cancers, but the role of WNT signaling in thymic tumors is largely unknown.Materials & MethodsExpression and function of WNT4 and FZD6 were analyzed using qRT–PCR, Western blot, ELISA, in biopsies of non-neoplastic thymi (NT), thymoma and thymic carcinomas. ShRNA techniques and functional assays were used in primary thymic epithelial cells (pTECs) and TC cell line 1889c. Cells were conventionally (2D) grown and in three-dimensional (3D) spheroids.ResultsIn biopsy, WHO classified B3 thymomas and TCs showed increased WNT4 expression compared with NTs. During short-term 2D culture, WNT4 expression and secretion declined in neoplastic pTECs but not in 3D spheroids or medium supplemented with recombinant WNT4 cultures. Under the latter condition, the growth of pTECs was accompanied by increased expression of non-canonical targets RAC1 and JNK. Down-regulation of WNT4 by shRNA induced cell death in pTECs derived from B3 thymomas and led to decreased RAC1, but not JNK protein phosphorylation. Pharmacological inhibition of NF-κB decreased both RAC1 and JNK phosphorylation in neoplastic pTECs.ConclusionsLack of the age-related decline of non-canonical WNT4 expression in TETs and restoration of declining WNT4 expression through exogeneous WNT4 or 3D culture of pTECs hints at an oncogenic role of WNT4 in TETs and is compatible with the WNT4 autocrine loop model. Crosstalk between WNT4 and NF-κB signaling may present a promising target for combined interventions in TETs.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Pecs, Hungary
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- Translational Lung Research Centre Heidelberg, German Centre for Lung Research, Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas Graeter
- Department of Thoracic Surgery, University Medical Centre Erlangen, Erlangen, Germany
| | - Gerhard Preissler
- Department of Thoraxic Surgery, Clinic Schillerhöhe, Robert-Bosch-Hospital, Gerlingen, Löwenstein, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Katrin Kurz
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Elena Bulut
- Department of Thoraxic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Djeda Belharazem
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- *Correspondence: Djeda Belharazem,
| |
Collapse
|
9
|
Müller D, Mazzeo P, Koch R, Bösherz MS, Welter S, von Hammerstein-Equord A, Hinterthaner M, Cordes L, Belharazem D, Marx A, Ströbel P, Küffer S. Functional apoptosis profiling identifies MCL-1 and BCL-xL as prognostic markers and therapeutic targets in advanced thymomas and thymic carcinomas. BMC Med 2021; 19:300. [PMID: 34781947 PMCID: PMC8594228 DOI: 10.1186/s12916-021-02158-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multi-omics studies have shown a high and lack of common driver mutations in most thymomas (TH) and thymic carcinomas (TC) that hamper the development of novel treatment approaches. However, deregulation of apoptosis has been proposed as a common hallmark of TH and TC. BH3 profiling can be utilized to study the readiness of living cancer cells to undergo apoptosis and their dependency on pro-survival BCL-2 family proteins. METHODS We screened a cohort of 62 TH and TC patient samples for expression of BCL-2 family proteins and used the TC cell line 1889c and native TH for dynamic BH3 profiling and treatment with BH3 mimetics. RESULTS Immunohistochemical overexpression of MCL-1 and BCL-xL was a strong prognostic marker of TH and TC, and BH3 profiling indicated a strong dependency on MCL-1 and BCL-xL in TH. Single inhibition of MCL-1 resulted in increased binding of BIM to BCL-xL as an escape mechanism that the combined inhibition of both factors could overcome. Indeed, the inhibition of MCL-1 and BCL-xL in combination induced apoptosis in a caspase-dependent manner in untreated and MCL-1-resistant 1889c cells. CONCLUSION TH and TC are exquisitely dependent on the pro-survival factors MCL-1 and BCL-xL, making them ideal candidates for co-inhibition by BH3 mimetics. Since TH show a heterogeneous dependency on BCL-2 family proteins, upfront BH3 profiling could select patients and tailor the optimal therapy with the least possible toxicity.
Collapse
Affiliation(s)
- Denise Müller
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Paolo Mazzeo
- Department of Haematology and Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Raphael Koch
- Department of Haematology and Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Mark-Sebastian Bösherz
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Stefan Welter
- Thoracic Surgery Department, Lung Clinic Hemer, Hemer, Germany
| | | | - Marc Hinterthaner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | - Lucia Cordes
- Thoracic Surgery Department, Lung Clinic Hemer, Hemer, Germany
| | - Djeda Belharazem
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
10
|
Combined evaluation of proliferation and apoptosis to calculate IC 50 of VPA-induced PANC-1 cells and assessing its effect on the Wnt signaling pathway. Med Oncol 2021; 38:109. [PMID: 34357487 DOI: 10.1007/s12032-021-01560-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most deadly cancers. Since most patients develop resistance to conventional treatments, new approaches are in urgency. Valproic acid (VPA) was shown to induce apoptosis and reduce proliferation in PANC-1 cells. Wnt signaling pathway is known to be involved in apoptosis and PDAC onset. However, VPA-induced apoptosis and its impact on Wnt signaling in PDACs are not linked, yet. We aimed to calculate IC50 of VPA-induced PANC-1 cells by combined analyses of proliferation and apoptosis, while assessing its effect on Wnt signaling pathway. PANC-1 was induced with increased VPA doses and time points. Three independent proliferation and apoptosis assays were performed utilizing carboxyfluorescein succinimidyl ester and Annexin V/PI staining, respectively. Flow cytometry measurements were analyzed by CellQuest and NovoExpress. Taqman hydrolysis probes and SYBR Green PCR Mastermix were assessed in expression analyses of Wnt components utilizing 2-ΔΔCt method. Cell proliferation was inhibited by 50% at 2.5 mM VPA that evoked a significant apoptotic response. Among the screened Wnt components and target genes, only LEF1 exhibited significant four-fold upregulation at this concentration. In conclusion, cancer studies mostly utilize MTT or BrdU assays in estimating cell proliferation and calculating IC50 of drugs, which provided conflicting VPA dosages utilizing PANC-1 cells. Our novel combined approach enabled specific, accurate and reproducible IC50 calculation at single cell basis with no apparent effect on Wnt signaling components. Future studies are needed to clarify the role of LEF1 in this model.
Collapse
|
11
|
Shah H, Shakir HA, Safi SZ, Ali A. Hippophae rhamnoides mediate gene expression profiles against keratinocytes infection of Staphylococcus aureus. Mol Biol Rep 2021; 48:1409-1422. [PMID: 33608810 DOI: 10.1007/s11033-021-06221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
|
12
|
Feed-forward regulatory loop driven by IRF4 and NF-κB in adult T-cell leukemia/lymphoma. Blood 2020; 135:934-947. [PMID: 31972002 DOI: 10.1182/blood.2019002639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a highly aggressive hematological malignancy derived from mature CD4+ T-lymphocytes. Here, we demonstrate the transcriptional regulatory network driven by 2 oncogenic transcription factors, IRF4 and NF-κB, in ATL cells. Gene expression profiling of primary ATL samples demonstrated that the IRF4 gene was more highly expressed in ATL cells than in normal T cells. Chromatin immunoprecipitation sequencing analysis revealed that IRF4-bound regions were more frequently found in super-enhancers than in typical enhancers. NF-κB was found to co-occupy IRF4-bound regulatory elements and formed a coherent feed-forward loop to coordinately regulate genes involved in T-cell functions and development. Importantly, IRF4 and NF-κB regulated several cancer genes associated with super-enhancers in ATL cells, including MYC, CCR4, and BIRC3. Genetic inhibition of BIRC3 induced growth inhibition in ATL cells, implicating its role as a critical effector molecule downstream of the IRF4-NF-κB transcriptional network.
Collapse
|
13
|
Radovich M, Pickering CR, Felau I, Ha G, Zhang H, Jo H, Hoadley KA, Anur P, Zhang J, McLellan M, Bowlby R, Matthew T, Danilova L, Hegde AM, Kim J, Leiserson MDM, Sethi G, Lu C, Ryan M, Su X, Cherniack AD, Robertson G, Akbani R, Spellman P, Weinstein JN, Hayes DN, Raphael B, Lichtenberg T, Leraas K, Zenklusen JC, Fujimoto J, Scapulatempo-Neto C, Moreira AL, Hwang D, Huang J, Marino M, Korst R, Giaccone G, Gokmen-Polar Y, Badve S, Rajan A, Ströbel P, Girard N, Tsao MS, Marx A, Tsao AS, Loehrer PJ. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018; 33:244-258.e10. [PMID: 29438696 PMCID: PMC5994906 DOI: 10.1016/j.ccell.2018.01.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/15/2017] [Accepted: 01/09/2018] [Indexed: 12/31/2022]
Abstract
Thymic epithelial tumors (TETs) are one of the rarest adult malignancies. Among TETs, thymoma is the most predominant, characterized by a unique association with autoimmune diseases, followed by thymic carcinoma, which is less common but more clinically aggressive. Using multi-platform omics analyses on 117 TETs, we define four subtypes of these tumors defined by genomic hallmarks and an association with survival and World Health Organization histological subtype. We further demonstrate a marked prevalence of a thymoma-specific mutated oncogene, GTF2I, and explore its biological effects on multi-platform analysis. We further observe enrichment of mutations in HRAS, NRAS, and TP53. Last, we identify a molecular link between thymoma and the autoimmune disease myasthenia gravis, characterized by tumoral overexpression of muscle autoantigens, and increased aneuploidy.
Collapse
Affiliation(s)
- Milan Radovich
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | | | - Ina Felau
- National Cancer Institute, Bethesda, MD 20892, USA
| | - Gavin Ha
- Broad Institute, Cambridge, MA 02142, USA
| | | | - Heejoon Jo
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine A Hoadley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pavana Anur
- Oregon Health & Science University, Portland, OR 97239, USA
| | - Jiexin Zhang
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mike McLellan
- McDonnell Genome Institute at Washington University, St. Louis, MO 63108, USA
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Thomas Matthew
- University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | - Jaegil Kim
- Broad Institute, Cambridge, MA 02142, USA
| | - Mark D M Leiserson
- Department of Computer Science & Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Geetika Sethi
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Charles Lu
- McDonnell Genome Institute at Washington University, St. Louis, MO 63108, USA
| | - Michael Ryan
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoping Su
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Rehan Akbani
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Spellman
- Oregon Health & Science University, Portland, OR 97239, USA
| | | | - D Neil Hayes
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ben Raphael
- Department of Computer Science & Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | - David Hwang
- University Health Network, Toronto, ON M5G 2C4, Canada
| | - James Huang
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mirella Marino
- Department of Pathology, Regina Elena National Cancer Institute, Rome 00144, Italy
| | | | | | - Yesim Gokmen-Polar
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Sunil Badve
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Arun Rajan
- National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Nicolas Girard
- Institute of Oncology, Cardiobiotec, Hospices Civils de Lyon, Lyon 69002, France
| | - Ming S Tsao
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Alexander Marx
- University Medical Centre Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Anne S Tsao
- MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Patrick J Loehrer
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
14
|
Bellissimo T, Ganci F, Gallo E, Sacconi A, Tito C, De Angelis L, Pulito C, Masciarelli S, Diso D, Anile M, Petrozza V, Giangaspero F, Pescarmona E, Facciolo F, Venuta F, Marino M, Blandino G, Fazi F. Thymic Epithelial Tumors phenotype relies on miR-145-5p epigenetic regulation. Mol Cancer 2017; 16:88. [PMID: 28486946 PMCID: PMC5424390 DOI: 10.1186/s12943-017-0655-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Thymoma and thymic carcinoma are the most frequent subtypes of thymic epithelial tumors (TETs). A relevant advance in TET management could derive from a deeper molecular characterization of these neoplasms. We previously identified a set of microRNA (miRNAs) differentially expressed in TETs and normal thymic tissues and among the most significantly deregulated we described the down-regulation of miR-145-5p in TET. Here we describe the mRNAs diversely regulated in TETs and analyze the correlation between these and the miRNAs previously identified, focusing in particular on miR-145-5p. Then, we examine the functional role of miR-145-5p in TETs and its epigenetic transcriptional regulation. METHODS mRNAs expression profiling of a cohort of fresh frozen TETs and normal tissues was performed by microarray analysis. MiR-145-5p role in TETs was evaluated in vitro, modulating its expression in a Thymic Carcinoma (TC1889) cell line. Epigenetic transcriptional regulation of miR-145-5p was examined by treating the TC1889 cell line with the HDAC inhibitor Valproic Acid (VPA). RESULTS Starting from the identification of a 69-gene signature of miR-145-5p putative target mRNAs, whose expression was inversely correlated to that of miR-145-5p, we followed the expression of some of them in vitro upon overexpression of miR-145-5p; we observed that this resulted in the down-regulation of the target genes, impacting on TETs cancerous phenotype. We also found that VPA treatment of TC1889 cells led to miR-145-5p up-regulation and concomitant down-regulation of miR-145-5p target genes and exhibited antitumor effects, as indicated by the induction of cell cycle arrest and by the reduction of cell viability, colony forming ability and migration capability. The importance of miR-145-5p up-regulation mediated by VPA is evidenced by the fact that hampering miR-145-5p activity by a LNA inhibitor reduced the impact of VPA treatment on cell viability and colony forming ability of TET cells. Finally, we observed that VPA was also able to enhance the response of TET cells to cisplatin and erlotinib. CONCLUSIONS Altogether our results suggest that the epigenetic regulation of miR-145-5p expression, as well as the modulation of its functional targets, could be relevant players in tumor progression and treatment response in TETs.
Collapse
Affiliation(s)
- Teresa Bellissimo
- Deptartment of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Claudia Tito
- Deptartment of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Luciana De Angelis
- Deptartment of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Claudio Pulito
- Molecular Chemoprevention Unit, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Silvia Masciarelli
- Deptartment of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Daniele Diso
- Department of Thoracic Surgery, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Fondazione Eleonora Lorillard Spencer Cenci, Rome, Italy
| | - Marco Anile
- Department of Thoracic Surgery, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Fondazione Eleonora Lorillard Spencer Cenci, Rome, Italy
| | - Vincenzo Petrozza
- Pathology Unit, ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological, and Anatomo-pathological Science, Sapienza University of Rome, Rome, Italy and IRCCS Neuromed, Pozzilli, Italy
| | - Edoardo Pescarmona
- Department of Pathology, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Francesco Facciolo
- Thoracic Surgery Unit, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Federico Venuta
- Department of Thoracic Surgery, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Fondazione Eleonora Lorillard Spencer Cenci, Rome, Italy
| | - Mirella Marino
- Department of Pathology, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, "Regina Elena" National Cancer Institute, Rome, Italy.
| | - Francesco Fazi
- Deptartment of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Belharazem D, Grass A, Paul C, Vitacolonna M, Schalke B, Rieker RJ, Körner D, Jungebluth P, Simon-Keller K, Hohenberger P, Roessner EM, Wiebe K, Gräter T, Kyriss T, Ott G, Geserick P, Leverkus M, Ströbel P, Marx A. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling. Oncotarget 2017; 8:89580-89594. [PMID: 29163772 PMCID: PMC5685693 DOI: 10.18632/oncotarget.15929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022] Open
Abstract
The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1high thymomas and TCs.
Collapse
Affiliation(s)
- Djeda Belharazem
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Albert Grass
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Cornelia Paul
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mario Vitacolonna
- Department of Thoracic Surgery, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Ralf J Rieker
- Institute of Pathology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Körner
- Department of Thoracic Surgery, Thorax Clinic, University of Heidelberg, Heidelberg, Germany
| | - Philipp Jungebluth
- Department of Thoracic Surgery, Thorax Clinic, University of Heidelberg, Heidelberg, Germany
| | - Katja Simon-Keller
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Hohenberger
- Department of Thoracic Surgery, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Eric M Roessner
- Department of Thoracic Surgery, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karsten Wiebe
- Department of Thoracic Surgery, University of Münster, Münster, Germany
| | - Thomas Gräter
- Department of Thoracic Surgery, Clinic Löwenstein, Löwenstein, Germany
| | - Thomas Kyriss
- Department of Thoracic Surgery, Clinic Schillerhöhe, Robert-Bosch-Hospital, Gerlingen, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Peter Geserick
- Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Leverkus
- Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
16
|
Pfister F, Hussain H, Belharazem D, Busch S, Simon-Keller K, Becker D, Pfister E, Rieker R, Ströbel P, Marx A. Vascular architecture as a diagnostic marker for differentiation of World Health Organization thymoma subtypes and thymic carcinoma. Histopathology 2017; 70:693-703. [DOI: 10.1111/his.13114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 10/26/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Frederick Pfister
- Department of Nephropathology; Institute of Pathology; Universitätsklinikum Erlangen; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
- Institute of Pathology; University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| | - Hussam Hussain
- Institute of Pathology; University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| | - Djeda Belharazem
- Institute of Pathology; University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| | - Svenja Busch
- Institute of Pathology; University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| | - Katja Simon-Keller
- Institute of Pathology; University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| | - Dominic Becker
- Institute of Pathology; University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| | - Eva Pfister
- Department of Nephropathology; Institute of Pathology; Universitätsklinikum Erlangen; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
- Institute of Pathology; University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| | - Ralf Rieker
- Institute of Pathology; Universitätsklinikum Erlangen; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Philipp Ströbel
- Institute of Pathology; University Medicine Göttingen; Göttingen Germany
| | - Alexander Marx
- Institute of Pathology; University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
17
|
The 2015 World Health Organization Classification of Tumors of the Thymus: Continuity and Changes. J Thorac Oncol 2016; 10:1383-95. [PMID: 26295375 DOI: 10.1097/jto.0000000000000654] [Citation(s) in RCA: 404] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This overview of the 4th edition of the World Health Organization (WHO) Classification of thymic tumors has two aims. First, to comprehensively list the established and new tumor entities and variants that are described in the new WHO Classification of thymic epithelial tumors, germ cell tumors, lymphomas, dendritic cell and myeloid neoplasms, and soft-tissue tumors of the thymus and mediastinum; second, to highlight major differences in the new WHO Classification that result from the progress that has been made since the 3rd edition in 2004 at immunohistochemical, genetic and conceptual levels. Refined diagnostic criteria for type A, AB, B1-B3 thymomas and thymic squamous cell carcinoma are given, and it is hoped that these criteria will improve the reproducibility of the classification and its clinical relevance. The clinical perspective of the classification has been strengthened by involving experts from radiology, thoracic surgery, and oncology; by incorporating state-of-the-art positron emission tomography/computed tomography images; and by depicting prototypic cytological specimens. This makes the thymus section of the new WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart a valuable tool for pathologists, cytologists, and clinicians alike. The impact of the new WHO Classification on therapeutic decisions is exemplified in this overview for thymic epithelial tumors and mediastinal lymphomas, and future perspectives and challenges are discussed.
Collapse
|
18
|
Rajan A, Wakelee H, Giaccone G. Novel Treatments for Thymoma and Thymic Carcinoma. Front Oncol 2015; 5:267. [PMID: 26649279 PMCID: PMC4663242 DOI: 10.3389/fonc.2015.00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022] Open
Affiliation(s)
- Arun Rajan
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Heather Wakelee
- Department of Medicine, Division of Medical Oncology, Stanford University , Stanford, CA , USA
| | - Giuseppe Giaccone
- Lombardi Comprehensive Cancer Center, Georgetown University , Washington, DC , USA
| |
Collapse
|
19
|
Belharazem D, Schalke B, Gold R, Nix W, Vitacolonna M, Hohenberger P, Roessner E, Schulze TJ, Saruhan-Direskeneli G, Yilmaz V, Ott G, Ströbel P, Marx A. cFLIP overexpression in T cells in thymoma-associated myasthenia gravis. Ann Clin Transl Neurol 2015; 2:894-905. [PMID: 26401511 PMCID: PMC4574807 DOI: 10.1002/acn3.210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/02/2022] Open
Abstract
Objective The capacity of thymomas to generate mature CD4+ effector T cells from immature precursors inside the tumor and export them to the blood is associated with thymoma-associated myasthenia gravis (TAMG). Why TAMG(+) thymomas generate and export more mature CD4+ T cells than MG(−) thymomas is unknown. Methods Unfixed thymoma tissue, thymocytes derived thereof, peripheral blood mononuclear cells (PBMCs), T-cell subsets and B cells were analysed using qRT-PCR and western blotting. Survival of PBMCs was measured by MTT assay. FAS-mediated apoptosis in PBMCs was quantified by flow cytometry. NF-κB in PBMCs was inhibited by the NF-κB-Inhibitor, EF24 prior to FAS-Ligand (FASLG) treatment for apoptosis induction. Results Expression levels of the apoptosis inhibitor cellular FLICE-like inhibitory protein (c-FLIP) in blood T cells and intratumorous thymocytes were higher in TAMG(+) than in MG(−) thymomas and non-neoplastic thymic remnants. Thymocytes and PBMCs of TAMG patients showed nuclear NF-κB accumulation and apoptosis resistance to FASLG stimulation that was sensitive to NF-κB blockade. Thymoma removal reduced cFLIP expression in PBMCs. Interpretation We conclude that thymomas induce cFLIP overexpression in thymocytes and their progeny, blood T cells. We suggest that the stronger cFLIP overexpression in TAMG(+) compared to MG(−) thymomas allows for the more efficient generation of mature CD4+ T cells in TAMG(+) thymomas. cFLIP overexpression in thymocytes and exported CD4+ T cells of patients with TAMG might contribute to the pathogenesis of TAMG by impairing central and peripheral T-cell tolerance.
Collapse
Affiliation(s)
- Djeda Belharazem
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, University of Regensburg Regensburg, Germany
| | - Ralf Gold
- Department of Neurology, University of Bochum Bochum, Germany
| | - Wilfred Nix
- Department of Neurology, University of Mainz Mainz, Germany
| | - Mario Vitacolonna
- Department of Thoracic Surgery, University Medical Centre Mannheim Mannheim, Germany
| | - Peter Hohenberger
- Department of Thoracic Surgery, University Medical Centre Mannheim Mannheim, Germany
| | - Eric Roessner
- Department of Thoracic Surgery, University Medical Centre Mannheim Mannheim, Germany
| | - Torsten J Schulze
- Institute for Transfusion Medicine and Immunology, German Red Cross Blood Service, University Medical Centre Mannheim Mannheim, Germany
| | | | - Vuslat Yilmaz
- Department of Physiology, School of Medicine, Istanbul University Istanbul, Turkey
| | - German Ott
- Department of Pathology, Robert-Bosch Hospital Stuttgart, Germany
| | - Philipp Ströbel
- Institute of Pathology, University of Goettingen Goettingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
20
|
Abstract
The rapid advent of technology in recent years has resulted in a substantial increase in our knowledge of the molecular underpinnings of thymic epithelial tumors. In addition to previously described chromosomal aberrations and alterations in DNA methylation, genome sequencing has helped unravel hitherto unknown mutations in these tumors. Attempts are also being made to develop gene signatures to help in the identification of patients likely to benefit from adjuvant therapy. Some of the recently identified genetic alterations have the potential to serve as targets for biological therapy, thus opening newer avenues for treatment of thymic epithelial tumors and increasing the number of effective options for treatment of recurrent or refractory disease.
Collapse
|
21
|
Expression of cell cycle and apoptosis regulators in thymus and thymic epithelial tumors. Clin Exp Med 2015; 16:147-59. [PMID: 25794494 DOI: 10.1007/s10238-015-0344-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/05/2015] [Indexed: 12/15/2022]
Abstract
The human thymus supports the production of self-tolerant T cells with competent and regulatory functions. Various cellular components of the thymic microenvironment such as thymic epithelial cells (TEC) and dendritic cells play essential roles in thymic T cell differentiation. The multiple cellular events occurring during thymic T cell and TEC differentiation involve proteins regulating cell cycle and apoptosis. Dysregulation of the cell cycle and apoptosis networks is involved in the pathogenesis of thymic epithelial tumors (TET) which are divided into two broad categories, thymomas and thymic carcinomas. The present review focuses on the usefulness of the analysis of the expression patterns of major cell cycle and apoptosis regulators in order to gain insight in the histophysiology of thymus and the histopathology, the clinical behavior and the biology of TET.
Collapse
|
22
|
Ganci F, Vico C, Korita E, Sacconi A, Gallo E, Mori F, Cambria A, Russo E, Anile M, Vitolo D, Pescarmona E, Blandino R, Facciolo F, Venuta F, Blandino G, Marino M, Fazi F. MicroRNA expression profiling of thymic epithelial tumors. Lung Cancer 2014; 85:197-204. [DOI: 10.1016/j.lungcan.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/15/2014] [Accepted: 04/14/2014] [Indexed: 12/18/2022]
|