1
|
Abatti LE, Lado-Fernández P, Huynh L, Collado M, Hoffman M, Mitchell J. Epigenetic reprogramming of a distal developmental enhancer cluster drives SOX2 overexpression in breast and lung adenocarcinoma. Nucleic Acids Res 2023; 51:10109-10131. [PMID: 37738673 PMCID: PMC10602899 DOI: 10.1093/nar/gkad734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Enhancer reprogramming has been proposed as a key source of transcriptional dysregulation during tumorigenesis, but the molecular mechanisms underlying this process remain unclear. Here, we identify an enhancer cluster required for normal development that is aberrantly activated in breast and lung adenocarcinoma. Deletion of the SRR124-134 cluster disrupts expression of the SOX2 oncogene, dysregulates genome-wide transcription and chromatin accessibility and reduces the ability of cancer cells to form colonies in vitro. Analysis of primary tumors reveals a correlation between chromatin accessibility at this cluster and SOX2 overexpression in breast and lung cancer patients. We demonstrate that FOXA1 is an activator and NFIB is a repressor of SRR124-134 activity and SOX2 transcription in cancer cells, revealing a co-opting of the regulatory mechanisms involved in early development. Notably, we show that the conserved SRR124 and SRR134 regions are essential during mouse development, where homozygous deletion results in the lethal failure of esophageal-tracheal separation. These findings provide insights into how developmental enhancers can be reprogrammed during tumorigenesis and underscore the importance of understanding enhancer dynamics during development and disease.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Linh Huynh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Pluripotency Stemness and Cancer: More Questions than Answers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:77-100. [PMID: 34725790 DOI: 10.1007/5584_2021_663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells provided us with fascinating new knowledge in recent years. Mechanistic insight into intricate regulatory circuitry governing pluripotency stemness and disclosing parallels between pluripotency stemness and cancer instigated numerous studies focusing on roles of pluripotency transcription factors, including Oct4, Sox2, Klf4, Nanog, Sall4 and Tfcp2L1, in cancer. Although generally well substantiated as tumour-promoting factors, oncogenic roles of pluripotency transcription factors and their clinical impacts are revealing themselves as increasingly complex. In certain tumours, both Oct4 and Sox2 behave as genuine oncogenes, and reporter genes driven by composite regulatory elements jointly recognized by both the factors can identify stem-like cells in a proportion of tumours. On the other hand, cancer stem cells seem to be biologically very heterogeneous both among different tumour types and among and even within individual tumours. Pluripotency transcription factors are certainly implicated in cancer stemness, but do not seem to encompass its entire spectrum. Certain cancer stem cells maintain their stemness by biological mechanisms completely different from pluripotency stemness, sometimes even by engaging signalling pathways that promote differentiation of pluripotent stem cells. Moreover, while these signalling pathways may well be antithetical to stemness in pluripotent stem cells, they may cooperate with pluripotency factors in cancer stem cells - a paradigmatic example is provided by the MAPK-AP-1 pathway. Unexpectedly, forced expression of pluripotency transcription factors in cancer cells frequently results in loss of their tumour-initiating ability, their phenotypic reversion and partial epigenetic normalization. Besides the very different signalling contexts operating in pluripotent and cancer stem cells, respectively, the pronounced dose dependency of reprogramming pluripotency factors may also contribute to the frequent loss of tumorigenicity observed in induced pluripotent cancer cells. Finally, contradictory cell-autonomous and non-cell-autonomous effects of various signalling molecules operate during pluripotency (cancer) reprogramming. The effects of pluripotency transcription factors in cancer are thus best explained within the concept of cancer stem cell heterogeneity.
Collapse
|
3
|
Mohan A, Raj Rajan R, Mohan G, Kollenchery Puthenveettil P, Maliekal TT. Markers and Reporters to Reveal the Hierarchy in Heterogeneous Cancer Stem Cells. Front Cell Dev Biol 2021; 9:668851. [PMID: 34150761 PMCID: PMC8209516 DOI: 10.3389/fcell.2021.668851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
A subpopulation within cancer, known as cancer stem cells (CSCs), regulates tumor initiation, chemoresistance, and metastasis. At a closer look, CSCs show functional heterogeneity and hierarchical organization. The present review is an attempt to assign marker profiles to define the functional heterogeneity and hierarchical organization of CSCs, based on a series of single-cell analyses. The evidences show that analogous to stem cell hierarchy, self-renewing Quiescent CSCs give rise to the Progenitor CSCs with limited proliferative capacity, and later to a Progenitor-like CSCs, which differentiates to Proliferating non-CSCs. Functionally, the CSCs can be tumor-initiating cells (TICs), drug-resistant CSCs, or metastasis initiating cells (MICs). Although there are certain marker profiles used to identify CSCs of different cancers, molecules like CD44, CD133, ALDH1A1, ABCG2, and pluripotency markers [Octamer binding transcriptional factor 4 (OCT4), SOX2, and NANOG] are used to mark CSCs of a wide range of cancers, ranging from hematological malignancies to solid tumors. Our analysis of the recent reports showed that a combination of these markers can demarcate the heterogeneous CSCs in solid tumors. Reporter constructs are widely used for easy identification and quantification of marker molecules. In this review, we discuss the suitability of reporters for the widely used CSC markers that can define the heterogeneous CSCs. Since the CSC-specific functions of CD44 and CD133 are regulated at the post-translational level, we do not recommend the reporters for these molecules for the detection of CSCs. A promoter-based reporter for ABCG2 may also be not relevant in CSCs, as the expression of the molecule in cancer is mainly regulated by promoter demethylation. In this context, a dual reporter consisting of one of the pluripotency markers and ALDH1A1 will be useful in marking the heterogeneous CSCs. This system can be easily adapted to high-throughput platforms to screen drugs for eliminating CSCs.
Collapse
Affiliation(s)
- Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Reshma Raj Rajan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gayathri Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | |
Collapse
|
4
|
Mohan A, Raj R R, Mohan G, K P P, Thomas Maliekal T. Reporters of Cancer Stem Cells as a Tool for Drug Discovery. Front Oncol 2021; 11:669250. [PMID: 33968778 PMCID: PMC8100607 DOI: 10.3389/fonc.2021.669250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
In view of the importance of cancer stem cells (CSCs) in chemoresistance, metastasis and recurrence, the biology of CSCs were explored in detail. Based on that, several modalities were proposed to target them. In spite of the several clinical trials, a successful CSC-targeting drug is yet to be identified. The number of molecules screened and entered for clinical trial for CSC-targeting is comparatively low, compared to other drugs. The bottle neck is the lack of a high-throughput adaptable screening strategy for CSCs. This review is aimed to identify suitable reporters for CSCs that can be used to identify the heterogeneous CSC populations, including quiescent CSCs, proliferative CSCs, drug resistant CSCs and metastatic CSCs. Analysis of the tumor microenvironment regulating CSCs revealed that the factors in CSC-niche activates effector molecules that function as CSC markers, including pluripotency markers, CD133, ABCG2 and ALDH1A1. Among these factors OCT4, SOX2, NANOG, ABCG2 and ALDH1A1 are ideal for making reporters for CSCs. The pluripotency molecules, like OCT4, SOX2 and NANOG, regulate self-renewal, chemoresistance and metastasis. ABCG2 is a known regulator of drug resistance while ALDH1A1 modulates self-renewal, chemoresistance and metastasis. Considering the heterogeneity of CSCs, including a quiescent population and a proliferative population with metastatic ability, we propose the use of a combination of reporters. A dual reporter consisting of a pluripotency marker and a marker like ALDH1A1 will be useful in screening drugs that target CSCs.
Collapse
Affiliation(s)
- Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
| | - Reshma Raj R
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gayathri Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Padmaja K P
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | |
Collapse
|
5
|
Jariyal H, Gupta C, Bhat VS, Wagh JR, Srivastava A. Advancements in Cancer Stem Cell Isolation and Characterization. Stem Cell Rev Rep 2020; 15:755-773. [PMID: 31863337 DOI: 10.1007/s12015-019-09912-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Occurrence of stem cells (CSCs) in cancer is well established in last two decades. These rare cells share several properties including presence of common surface markers, stem cell markers, chemo- and radio- resistance and are highly metastatic in nature; thus, considered as valuable prognostic and therapeutic targets in cancer. However, the studies related to CSCs pave number of issues due to rare cell population and difficulties in their isolation ascribed to common stem cell marker. Various techniques including flow cytometry, laser micro-dissection, fluorescent nanodiamonds and microfluidics are used for the isolation of these rare cells. In this review, we have included the advance strategies adopted for the isolation of CSCs using above mentioned techniques. Furthermore, CSCs are primarily found in the core of the solid tumors and their microenvironment plays an important role in maintenance, self-renewal, division and tumor development. Therefore, in vivo tracking and model development become obligatory for functional studies of CSCs. Fluorescence and bioluminescence tagging has been widely used for transplantation assay and lineage tracking experiments to improve our understanding towards CSCs behaviour in their niche. Techniques such as Magnetic resonance imaging (MRI) and Positron emission tomography (PET) have proved useful for tracking of endogenous CSCs which could be helpful in their identification in clinical settings.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Chanchal Gupta
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Vedika Sandeep Bhat
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Jayant Ramakant Wagh
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Device, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Menendez ST, Rey V, Martinez-Cruzado L, Gonzalez MV, Morales-Molina A, Santos L, Blanco V, Alvarez C, Estupiñan O, Allonca E, Rodrigo JP, García-Castro J, Garcia-Pedrero JM, Rodriguez R. SOX2 Expression and Transcriptional Activity Identifies a Subpopulation of Cancer Stem Cells in Sarcoma with Prognostic Implications. Cancers (Basel) 2020; 12:cancers12040964. [PMID: 32295077 PMCID: PMC7226033 DOI: 10.3390/cancers12040964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Stemness in sarcomas is coordinated by the expression of pluripotency factors, like SOX2, in cancer stem cells (CSC). The role of SOX2 in tumor initiation and progression has been well characterized in osteosarcoma. However, the pro-tumorigenic features of SOX2 have been scarcely investigated in other sarcoma subtypes. Here, we show that SOX2 depletion dramatically reduced the ability of undifferentiated pleomorphic sarcoma (UPS) cells to form tumorspheres and to initiate tumor growth. Conversely, SOX2 overexpression resulted in increased in vivo tumorigenicity. Moreover, using a reporter system (SORE6) which allows to monitor viable cells expressing SOX2 and/or OCT4, we found that SORE6+ cells were significantly more tumorigenic than the SORE6- subpopulation. In agreement with this findings, SOX2 expression in sarcoma patients was associated to tumor grade, differentiation, invasive potential and lower patient survival. Finally, we studied the effect of a panel of anti-tumor drugs on the SORE6+ cells of the UPS model and patient-derived chondrosarcoma lines. We found that the mithramycin analogue EC-8042 was the most efficient in reducing SORE6+ cells in vitro and in vivo. Overall, this study demonstrates that SOX2 is a pro-tumorigenic factor with prognostic potential in sarcoma. Moreover, SORE6 transcriptional activity is a bona fide CSC marker in sarcoma and constitutes an excellent biomarker for evaluating the efficacy of anti-tumor treatments on CSC subpopulations.
Collapse
Affiliation(s)
- Sofia T. Menendez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
| | - Veronica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Lucia Martinez-Cruzado
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - M. Victoria Gonzalez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
- Departamento de Cirugía, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alvaro Morales-Molina
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Laura Santos
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Verónica Blanco
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Servicio de Anatomía Patológica of the Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Carlos Alvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Servicio de Oncología Médica of the Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Oscar Estupiñan
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
| | - Eva Allonca
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
| | - Juan Pablo Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
| | - Javier García-Castro
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Juana Maria Garcia-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
7
|
Cuyàs E, Gumuzio J, Verdura S, Brunet J, Bosch-Barrera J, Martin-Castillo B, Alarcón T, Encinar JA, Martin ÁG, Menendez JA. The LSD1 inhibitor iadademstat (ORY-1001) targets SOX2-driven breast cancer stem cells: a potential epigenetic therapy in luminal-B and HER2-positive breast cancer subtypes. Aging (Albany NY) 2020; 12:4794-4814. [PMID: 32191225 PMCID: PMC7138538 DOI: 10.18632/aging.102887] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
SOX2 is a core pluripotency-associated transcription factor causally related to cancer initiation, aggressiveness, and drug resistance by driving the self-renewal and seeding capacity of cancer stem cells (CSC). Here, we tested the ability of the clinically proven inhibitor of the lysine-specific demethylase 1 (LSD1/KDM1A) iadademstat (ORY-100) to target SOX2-driven CSC in breast cancer. Iadademstat blocked CSC-driven mammosphere formation in breast cancer cell lines that are dependent on SOX2 expression to maintain their CSC phenotype. Iadademstat prevented the activation of an LSD1-targeted stemness-specific SOX2 enhancer in CSC-enriched 3-dimensional spheroids. Using high-throughput transcriptional data available from the METABRIC dataset, high expression of SOX2 was significantly more common in luminal-B and HER2-enriched subtypes according to PAM50 classifier and in IntClust1 (high proliferating luminal-B) and IntClust 5 (luminal-B and HER2-amplified) according to integrative clustering. Iadademstat significantly reduced mammospheres formation by CSC-like cells from a multidrug-resistant luminal-B breast cancer patient-derived xenograft but not of those from a treatment-naïve luminal-A patient. Iadademstat reduced the expression of SOX2 in luminal-B but not in luminal-A mammospheres, likely indicating a selective targeting of SOX2-driven CSC. The therapeutic relevance of targeting SOX2-driven breast CSC suggests the potential clinical use of iadademstat as an epigenetic therapy in luminal-B and HER2-positive subtypes.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | | | - Tomás Alarcón
- ICREA, Barcelona, Spain.,Centre de Recerca Matemàtica (CRM), Barcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain
| | | | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
8
|
Cuyàs E, Gumuzio J, Lozano-Sánchez J, Carreras D, Verdura S, Llorach-Parés L, Sanchez-Martinez M, Selga E, Pérez GJ, Scornik FS, Brugada R, Bosch-Barrera J, Segura-Carretero A, Martin ÁG, Encinar JA, Menendez JA. Extra Virgin Olive Oil Contains a Phenolic Inhibitor of the Histone Demethylase LSD1/KDM1A. Nutrients 2019; 11:nu11071656. [PMID: 31331073 PMCID: PMC6683035 DOI: 10.3390/nu11071656] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (LSD1) also known as lysine (K)-specific demethylase 1A (KDM1A) is a central epigenetic regulator of metabolic reprogramming in obesity-associated diseases, neurological disorders, and cancer. Here, we evaluated the ability of oleacein, a biophenol secoiridoid naturally present in extra virgin olive oil (EVOO), to target LSD1. Molecular docking and dynamic simulation approaches revealed that oleacein could target the binding site of the LSD1 cofactor flavin adenosine dinucleotide with high affinity and at low concentrations. At higher concentrations, oleacein was predicted to target the interaction of LSD1 with histone H3 and the LSD1 co-repressor (RCOR1/CoREST), likely disturbing the anchorage of LSD1 to chromatin. AlphaScreen-based in vitro assays confirmed the ability of oleacein to act as a direct inhibitor of recombinant LSD1, with an IC50 as low as 2.5 μmol/L. Further, oleacein fully suppressed the expression of the transcription factor SOX2 (SEX determining Region Y-box 2) in cancer stem-like and induced pluripotent stem (iPS) cells, which specifically occurs under the control of an LSD1-targeted distal enhancer. Conversely, oleacein failed to modify ectopic SOX2 overexpression driven by a constitutive promoter. Overall, our findings provide the first evidence that EVOO contains a naturally occurring phenolic inhibitor of LSD1, and support the use of oleacein as a template to design new secoiridoid-based LSD1 inhibitors.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | | | - Jesús Lozano-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Research and Development Functional Food Centre (CIDAF), PTS Granada, 18100 Granada, Spain
| | - David Carreras
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
| | - Sara Verdura
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | | | | | - Elisabet Selga
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Guillermo J Pérez
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Fabiana S Scornik
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ramon Brugada
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
| | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Medical Oncology, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
- Department of Medical Sciences, Medical School University of Girona, 17071 Girona, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Research and Development Functional Food Centre (CIDAF), PTS Granada, 18100 Granada, Spain
| | | | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain.
| |
Collapse
|
9
|
Wu C, Gupta N, Huang YH, Zhang HF, Alshareef A, Chow A, Lai R. Oxidative stress enhances tumorigenicity and stem-like features via the activation of the Wnt/β-catenin/MYC/Sox2 axis in ALK-positive anaplastic large-cell lymphoma. BMC Cancer 2018; 18:361. [PMID: 29609590 PMCID: PMC5879562 DOI: 10.1186/s12885-018-4300-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background The phenomenon that malignant cells can acquire stemness under specific stimuli, encompassed under the concept of cancer cell plasticity, has been well-described in epithelial malignancies. To our knowledge, cancer cell plasticity has not yet been described in hematopoietic cancers. To illustrate and study cancer cell plasticity in hematopoietic cancers, we employed an in-vitro experimental model of ALK-positive anaplastic large-cell lymphoma (ALK+ALCL) that is based on the phenotypic and functional dichotomy of these cells, with cells responsive to a Sox2 reporter (i.e. RR cells) being significantly more stem-like than those unresponsive to the reporter (i.e. RU cells). Methods H2O2 was employed to trigger oxidative stress. GFP expression and luciferase activity, readouts of the Sox2 reporter activity, were quantified by using flow cytometry and luciferase activity assay, respectively. Doxorubicin-resistance and clonogenicity were assessed by using the MTS, methylcellulose colony formation and limiting dilution assays. Western blotting and quantitative PCR were used to assess the expression of various members of the Wnt/β-catenin pathway. Pull-down studies using a Sox2 binding consensus sequence were used to assess Sox2-DNA binding. Quercetin and 10074-G5 were used to inhibit β-catenin and MYC, respectively. siRNA was used to downregulate Sox2. Results Under H2O2-induced oxidative stress, a substantial fraction of RU cells was found to convert to RR cells, as evidenced by their acquisition of GFP expression and luciferase activity. Compared to the native RU cells, converted RR cells had significantly higher levels of doxorubicin-resistance, clonogenicity and sphere formation. Converted RR cells were characterized by an upregulation of the Wnt/β-catenin/MYC/Sox2 signaling axis, previously found to be the key regulator of the RU/RR dichotomy in ALK+ALCL. Furthermore, Sox2 was found to bind to DNA efficiently in converted RR cells but not RU cells, and this finding correlated with significant elevations of several Sox2 downstream targets such as WNT2B and BCL9. Lastly, inhibition of β-catenin, MYC or Sox2 in RU cells significantly abrogated the H2O2-induced RU/RR conversion. Conclusions We have demonstrated that cancer cell plasticity exists in ALK+ALCL, a type of hematopoietic cancer. In this cancer type, the Wnt/β-catenin/MYC/Sox2 axis is an important regulator of cancer cell plasticity. Electronic supplementary material The online version of this article (10.1186/s12885-018-4300-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, 5142J Katz Group Centre for Pharmacy and Health Research, Edmonton, AB, T6G 1Z2, Canada.,Current Address: Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, 5142J Katz Group Centre for Pharmacy and Health Research, Edmonton, AB, T6G 1Z2, Canada
| | - Yung-Hsing Huang
- Department of Laboratory Medicine and Pathology, University of Alberta, 5142J Katz Group Centre for Pharmacy and Health Research, Edmonton, AB, T6G 1Z2, Canada
| | - Hai-Feng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, 5142J Katz Group Centre for Pharmacy and Health Research, Edmonton, AB, T6G 1Z2, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, 5142J Katz Group Centre for Pharmacy and Health Research, Edmonton, AB, T6G 1Z2, Canada.,Department of Laboratory Medicine and Pathology, Taibah University, Medina, Saudi Arabia
| | - Alexandra Chow
- Department of Laboratory Medicine and Pathology, University of Alberta, 5142J Katz Group Centre for Pharmacy and Health Research, Edmonton, AB, T6G 1Z2, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, 5142J Katz Group Centre for Pharmacy and Health Research, Edmonton, AB, T6G 1Z2, Canada. .,Department of Oncology, University of Alberta, Edmonton, AB, Canada. .,DynaLIFEDX Medical Laboratories, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Wuebben EL, Rizzino A. The dark side of SOX2: cancer - a comprehensive overview. Oncotarget 2018; 8:44917-44943. [PMID: 28388544 PMCID: PMC5546531 DOI: 10.18632/oncotarget.16570] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
The pluripotency-associated transcription factor SOX2 is essential during mammalian embryogenesis and later in life, but SOX2 expression can also be highly detrimental. Over the past 10 years, SOX2 has been shown to be expressed in at least 25 different cancers. This review provides a comprehensive overview of the roles of SOX2 in cancer and focuses on two broad topics. The first delves into the expression and function of SOX2 in cancer focusing on the connection between SOX2 levels and tumor grade as well as patient survival. As part of this discussion, we address the developing connection between SOX2 expression and tumor drug resistance. We also call attention to an under-appreciated property of SOX2, its levels in actively proliferating tumor cells appear to be optimized to maximize tumor growth - too little or too much SOX2 dramatically alters tumor growth. The second topic of this review focuses on the exquisite array of molecular mechanisms that control the expression and transcriptional activity of SOX2. In addition to its complex regulation at the transcriptional level, SOX2 expression and activity are controlled carefully by microRNAs, long non-coding RNAs, and post-translational modifications. In the Conclusion and Future Perspectives section, we point out that there are still important unanswered questions. Addressing these questions is expected to lead to new insights into the functions of SOX2 in cancer, which will help design novels strategies for more effectively treating some of the most deadly cancers.
Collapse
Affiliation(s)
- Erin L Wuebben
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
11
|
High Myc expression and transcription activity underlies intra-tumoral heterogeneity in triple-negative breast cancer. Oncotarget 2018; 8:28101-28115. [PMID: 28427212 PMCID: PMC5438634 DOI: 10.18632/oncotarget.15891] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/21/2017] [Indexed: 01/11/2023] Open
Abstract
We have previously identified a novel intra-tumoral dichotomy in triple-negative breast cancer (TNBC) based on the differential responsiveness to a reporter containing the Sox2 regulatory region-2 (SRR2), with reporter responsive (RR) cells being more stem-like than reporter unresponsive (RU) cells. Using bioinformatics, we profiled the protein-DNA binding motifs of SRR2 and identified Myc as one of the potential transcription factors driving SRR2 activity. In support of its role, Myc was found to be highly expressed in RR cells as compared to RU cells. Enforced expression of MYC in RU cells resulted in a significant increase in SRR2 activity, Myc-DNA binding, proportion of cellsexpressing CD44+/CD24-, chemoresistance and mammosphere formation. Knockdown of Myc using siRNA in RR cells led to the opposite effects. We also found evidence that the relatively high ERK activation in RR cells contributes to their high expression of Myc and stem-like features. Using confocal microscopy and patient samples, we found a co-localization between Myc and CD44 in the same cell population. Lastly, a high proportion of Myc-positive cells in tumors significantly correlated with a short patient survival. In conclusion, inhibition of the MAPK/ERK/Myc axis may be an effective approach in eliminating stem-like cells in TNBC.
Collapse
|
12
|
Gupta N, Gopal K, Wu C, Alshareef A, Chow A, Wu F, Wang P, Ye X, Bigras G, Lai R. Phosphorylation of Sox2 at Threonine 116 is a Potential Marker to Identify a Subset of Breast Cancer Cells with High Tumorigenecity and Stem-Like Features. Cancers (Basel) 2018; 10:cancers10020041. [PMID: 29401647 PMCID: PMC5836073 DOI: 10.3390/cancers10020041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
We have previously identified a novel phenotypic dichotomy in breast cancer (BC) based on the response to a SRR2 (Sox2 regulatory region 2) reporter, with reporter responsive (RR) cells being more tumorigenic/stem-like than reporter unresponsive (RU) cells. Since the expression level of Sox2 is comparable between the two cell subsets, we hypothesized that post-translational modifications of Sox2 contribute to their differential reporter response and phenotypic differences. By liquid chromatography-mass spectrometry, we found Sox2 to be phosphorylated in RR but not RU cells. Threonine 116 is an important phosphorylation site, since transfection of the T116A mutant into RR cells significantly decreased the SRR2 reporter luciferase activity and the RR-associated phenotype. Oxidative stress-induced conversion of RU into RR cells was accompanied by Sox2 phosphorylation at T116 and increased Sox2-DNA binding. In a cohort of BC, we found significant correlations between the proportion of tumor cells immuno-reactive with anti-phosphorylated Sox2T116 and a high tumor grade (p = 0.006), vascular invasion (p = 0.001) and estrogen receptor expression (p = 0.032). In conclusion, our data suggests that phosphorylation of Sox2T116 contributes to the tumorigenic/stem-like features in RR cells. Detection of phospho-Sox2T116 may be useful in identifying a small subset of tumor cells carrying stem-like/tumorigenic features in BC.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Keshav Gopal
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Alexandra Chow
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Fang Wu
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Peng Wang
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Xiaoxia Ye
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Gilbert Bigras
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
- DynaLIFEDX Medical Laboratories, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
13
|
Alshareef A, Gupta N, Zhang HF, Wu C, Haque M, Lai R. High expression of β-catenin contributes to the crizotinib resistant phenotype in the stem-like cell population in neuroblastoma. Sci Rep 2017; 7:16863. [PMID: 29203817 PMCID: PMC5715105 DOI: 10.1038/s41598-017-17319-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023] Open
Abstract
ALK has been identified as a novel therapeutic target in neuroblastoma (NB), but resistance to ALK inhibitors (such as crizotinib) is well recognized. We recently published that the crizotinib sensitivity in NB cells strongly correlates with the crizotinib—ALK binding, and β-catenin effectively hinders this interaction and confers crizotinib resistance. Here, we asked if these observations hold true for the stem-like cells in NB cells, which were purified based on their responsiveness to a Sox2 reporter. Compared to bulk, reporter unresponsive (RU) cells, reporter responsive (RR) cells had significantly higher neurosphere formation ability, expression of CD133/nestin and chemo-resistance. Using the cellular thermal shift assay, we found that RR cells exhibited significantly weaker crizotinib—ALK binding and higher crizotinib resistance than RU cells. The suboptimal crizotinib—ALK binding in RR cells can be attributed to their high β-catenin expression, since siRNA knockdown of β-catenin restored the crizotinib—ALK binding and lowered the crizotinib resistance to the level of RU cells. Enforced expression of β-catenin in RU cells resulted in the opposite effects. To conclude, high expression of β-catenin in the stem-like NB cells contributes to their crizotinib resistance. Combining β-catenin inhibitors and ALK inhibitors may be useful in treating NB patients.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Applied Medical Sciences, Taibah University, Almedinah, P.O. Box 41477, Saudi Arabia
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Hai-Feng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada. .,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada. .,DynaLIFE Medical Laboratories, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Alshareef A. Novel Molecular Challenges in Targeting Anaplastic Lymphoma Kinase in ALK-Expressing Human Cancers. Cancers (Basel) 2017; 9:cancers9110148. [PMID: 29143801 PMCID: PMC5704166 DOI: 10.3390/cancers9110148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/29/2017] [Accepted: 10/24/2017] [Indexed: 01/14/2023] Open
Abstract
Targeting anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase receptor initially identified as a potent oncogenic driver in anaplastic large-cell lymphoma (ALCL) in the form of nucleophosmin (NPM)-ALK fusion protein, using tyrosine kinase inhibitors has shown to be a promising therapeutic approach for ALK-expressing tumors. However, clinical resistance to ALK inhibitors invariably occurs, and the molecular mechanisms are incompletely understood. Recent studies have clearly shown that clinical resistance to ALK inhibitors is a multifactorial and complex mechanism. While few of the mechanisms of clinical resistance to ALK inhibitors such as gene mutation are well known, there are others that are not well covered. In this review, the molecular mechanisms of cancer stem cells in mediating resistance to ALK inhibitors as well as the current understanding of the molecular challenges in targeting ALK in ALK-expressing human cancers will be discussed.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Almedinah, Medina P.O. Box 41477, Saudi Arabia.
- Department of Laboratory Medicin and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
15
|
Iglesias JM, Gumuzio J, Martin AG. Linking Pluripotency Reprogramming and Cancer. Stem Cells Transl Med 2016; 6:335-339. [PMID: 28191771 PMCID: PMC5442824 DOI: 10.5966/sctm.2015-0225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/04/2015] [Indexed: 12/26/2022] Open
Abstract
Tumor development and the generation of induced pluripotent stem cells are highly comparable processes with striking similarities. Cellular plasticity is inherent to tumor evolution, rendering cells that acquire a stem cell-like phenotype, for which Sox2 activation has proved instrumental for the plastic acquisition of stemness properties in tumor cells. Understanding the molecular mechanisms underlying both events might uncover novel approaches for the development of anticancer therapeutics and constitute model systems for understanding tumor generation and ensuring the biosafety of cell-based therapies. Stem Cells Translational Medicine 2017;6:335-339.
Collapse
|
16
|
Jung K, Gupta N, Wang P, Lewis JT, Gopal K, Wu F, Ye X, Alshareef A, Abdulkarim BS, Douglas DN, Kneteman NM, Lai R. Triple negative breast cancers comprise a highly tumorigenic cell subpopulation detectable by its high responsiveness to a Sox2 regulatory region 2 (SRR2) reporter. Oncotarget 2016; 6:10366-73. [PMID: 25868977 PMCID: PMC4496361 DOI: 10.18632/oncotarget.3590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
We have recently described a novel phenotypic dichotomy within estrogen receptor-positive breast cancer cells; the cell subset responsive to a Sox2 regulatory region (SRR2) reporter (RR cells) are significantly more tumorigenic than the reporter unresponsive (RU) cells. Here, we report that a similar phenomenon also exists in triple negative breast cancer (TNBC), with RR cells more tumorigenic than RU cells. First, examination of all 3 TNBC cell lines stably infected with the SRR2 reporter revealed the presence of a cell subset exhibiting reporter activity. Second, RU and RR cells purified by flow cytometry showed that RR cells expressed higher levels of CD44, generated more spheres in a limiting dilution mammosphere formation assay, and formed larger and more complex structures in Matrigel. Third, within the CD44High/CD24− tumor-initiating cell population derived from MDA-MB-231, RR cells were significantly more tumorigenic than RU cells in an in vivo SCID/Beige xenograft mouse model. Examination of 4 TNBC tumors from patients also revealed the presence of a RR cell subset, ranging from 1.1-3.8%. To conclude, we described a novel phenotypic heterogeneity within TNBC, and the SRR2 reporter responsiveness is a useful marker for identifying a highly tumorigenic cell subset within the CD44High/CD24−tumor-initiating cell population.
Collapse
Affiliation(s)
- Karen Jung
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Peng Wang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jamie T Lewis
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Keshav Gopal
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Fang Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoxia Ye
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Donna N Douglas
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Norman M Kneteman
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond Lai
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,DynaLIFE Dx Medical Laboratories, Edmonton, Alberta, Canada
| |
Collapse
|