1
|
Magrì A, Reina S, De Pinto V. VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Front Chem 2018; 6:108. [PMID: 29682501 PMCID: PMC5897536 DOI: 10.3389/fchem.2018.00108] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 01/15/2023] Open
Abstract
Cancer and neurodegeneration are different classes of diseases that share the involvement of mitochondria in their pathogenesis. Whereas the high glycolytic rate (the so-called Warburg metabolism) and the suppression of apoptosis are key elements for the establishment and maintenance of cancer cells, mitochondrial dysfunction and increased cell death mark neurodegeneration. As a main actor in the regulation of cell metabolism and apoptosis, VDAC may represent the common point between these two broad families of pathologies. Located in the outer mitochondrial membrane, VDAC forms channels that control the flux of ions and metabolites across the mitochondrion thus mediating the organelle's cross-talk with the rest of the cell. Furthermore, the interaction with both pro-apoptotic and anti-apoptotic factors makes VDAC a gatekeeper for mitochondria-mediated cell death and survival signaling pathways. Unfortunately, the lack of an evident druggability of this protein, since it has no defined binding or active sites, makes the quest for VDAC interacting molecules a difficult tale. Pharmacologically active molecules of different classes have been proposed to hit cancer and neurodegeneration. In this work, we provide an exhaustive and detailed survey of all the molecules, peptides, and microRNAs that exploit VDAC in the treatment of the two examined classes of pathologies. The mechanism of action and the potential or effectiveness of each compound are discussed.
Collapse
Affiliation(s)
- Andrea Magrì
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.,Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.,Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| |
Collapse
|
2
|
Deoxyarbutin displays antitumour activity against melanoma in vitro and in vivo through a p38-mediated mitochondria associated apoptotic pathway. Sci Rep 2017; 7:7197. [PMID: 28775302 PMCID: PMC5543205 DOI: 10.1038/s41598-017-05416-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/30/2017] [Indexed: 02/05/2023] Open
Abstract
Deoxyarbutin (DeoxyArbutin, dA), a natural compound widely used in skin lighting, displayed selectively cytotoxicity in vitro. In the study, we found that dA significantly inhibited viability/proliferation of B16F10 melanoma cells, induced tumour cell arrest and apoptosis. Furthermore, dA triggered its pro-apoptosis through damaging the mitochondrial function (membrane potential loss, ATP depletion and ROS overload generation etc.) and activating caspase-9, PARP, caspase-3 and the phosphorylation of p38. Treatment with p38 agonist confirmed the involvement of p38 pathway triggered by dA in B16F10 cells. The in vivo finding also revealed that administration of dA significantly decreased the tumour volume and tumour metastasis in B16F10 xenograft model by inhibiting tumour proliferation and inducing tumour apoptosis. Importantly, the results indicated that dA was specific against tumour cell lines and had no observed systemic toxicity in vivo. Taken together, our study demonstrated that dA could combate tumour in vitro and in vivo by inhibiting the proliferation and metastasis of tumour via a p38-mediated mitochondria associated apoptotic pathway.
Collapse
|
3
|
Xiong F, Jiang M, Chen M, Wang X, Zhang S, Zhou J, Li K, Sheng Y, Yin L, Tang Y, Ye L, Wu M, Fu H, Zhang X. Study on Inhibitory Effect of MaiMenDong Decoction and WeiJing Decoction Combination with Cisplatin on NCI-A549 Xenograft in Nude Mice and Its Mechanism. J Cancer 2017; 8:2449-2455. [PMID: 28900482 PMCID: PMC5595074 DOI: 10.7150/jca.17720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/10/2017] [Indexed: 01/24/2023] Open
Abstract
MaiMenDong Decoction and WeiJing Decoction (Jin formula) is a traditional Chinese medication that consists of 8 medicinal plants, which recorded in the classical TCM literature Jin Kui Yao Lue and has been utilized in the treatment of lung diseases for hundreds of years in China. The present study aimed to determine the anti-tumor activity and the underlying mechanisms of Jin formula combined with cisplatin in the treatment of non-small cell lung cancer (NSCLC). Xenograft model of NCI-A549 was established in Balb/c nude mice. Five groups, including normal, MOCK, Jin, cisplatin (DDP), and Jin+DDP were included in the study. We found that Jin formula ameliorated the body weight loss caused by DDP 15 days after drug administration. Moreover, the combination of Jin with DDP enhanced the anti-tumor function of DDP. Microarray analysis showed that Jin suppressed gene expression of certain pathways which regulating cell cycle and apoptosis. Furthermore, DDP mainly decreased the gene expression level of angiogenesis associated factors, such as VEGFA, TGF-β and MMP-1. Moreover, co-treatment with Jin and DDP not only down-regulated Bcl-2 and E2F1, but also decreased the expression of MYC, MET, and MCAM. In addition, co-formula decreased the levels of p-AKT (thr308) and p-PTEN, increased Bax/Bcl-2 value, and resulted in apoptosis of tumor cells. Taken together, Jin+DDP significantly inhibited the growth of A549 cell transplanted solid tumor with slight side effect compared to the treatment by DDP only, and had a better effect than the Jin group. The mechanisms may be mainly associated with inactivation of PI3K/AKT pathway and apoptosis induction.
Collapse
Affiliation(s)
- Fei Xiong
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Miao Jiang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meijuan Chen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoxia Wang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiping Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Li
- Department of Medical Oncology, Cancer Hospital of JiangSu Province, Nanjing, 210023, China
| | - Yan Sheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lian Yin
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lihong Ye
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mianhua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haian Fu
- Department of Pharmacology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xu Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|