1
|
Dias MH, Friskes A, Wang S, Fernandes Neto JM, van Gemert F, Mourragui S, Papagianni C, Kuiken HJ, Mainardi S, Alvarez-Villanueva D, Lieftink C, Morris B, Dekker A, van Dijk E, Wilms LH, da Silva MS, Jansen RA, Mulero-Sánchez A, Malzer E, Vidal A, Santos C, Salazar R, Wailemann RA, Torres TE, De Conti G, Raaijmakers JA, Snaebjornsson P, Yuan S, Qin W, Kovach JS, Armelin HA, te Riele H, van Oudenaarden A, Jin H, Beijersbergen RL, Villanueva A, Medema RH, Bernards R. Paradoxical Activation of Oncogenic Signaling as a Cancer Treatment Strategy. Cancer Discov 2024; 14:1276-1301. [PMID: 38533987 PMCID: PMC11215412 DOI: 10.1158/2159-8290.cd-23-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/06/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Cancer homeostasis depends on a balance between activated oncogenic pathways driving tumorigenesis and engagement of stress response programs that counteract the inherent toxicity of such aberrant signaling. Although inhibition of oncogenic signaling pathways has been explored extensively, there is increasing evidence that overactivation of the same pathways can also disrupt cancer homeostasis and cause lethality. We show here that inhibition of protein phosphatase 2A (PP2A) hyperactivates multiple oncogenic pathways and engages stress responses in colon cancer cells. Genetic and compound screens identify combined inhibition of PP2A and WEE1 as synergistic in multiple cancer models by collapsing DNA replication and triggering premature mitosis followed by cell death. This combination also suppressed the growth of patient-derived tumors in vivo. Remarkably, acquired resistance to this drug combination suppressed the ability of colon cancer cells to form tumors in vivo. Our data suggest that paradoxical activation of oncogenic signaling can result in tumor-suppressive resistance. Significance: A therapy consisting of deliberate hyperactivation of oncogenic signaling combined with perturbation of the stress responses that result from this is very effective in animal models of colon cancer. Resistance to this therapy is associated with loss of oncogenic signaling and reduced oncogenic capacity, indicative of tumor-suppressive drug resistance.
Collapse
Affiliation(s)
- Matheus Henrique Dias
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Siying Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Joao M. Fernandes Neto
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Frank van Gemert
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Soufiane Mourragui
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands.
| | - Chrysa Papagianni
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Hendrik J. Kuiken
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Sara Mainardi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Daniel Alvarez-Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain.
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Ben Morris
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Anna Dekker
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Emma van Dijk
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Lieke H.S. Wilms
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Marcelo S. da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Robin A. Jansen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Antonio Mulero-Sánchez
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elke Malzer
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain.
- Xenopat S.L., Parc Cientific de Barcelona (PCB), Barcelona, Spain.
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBERONC, Barcelona, Spain.
| | - Ramón Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBERONC, Barcelona, Spain.
| | | | - Thompson E.P. Torres
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, Brazil.
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
| | - Giulia De Conti
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jonne A. Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Petur Snaebjornsson
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland.
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - John S. Kovach
- Lixte Biotechnology Holdings, Inc., Pasadena, California.
| | - Hugo A. Armelin
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, Brazil.
| | - Hein te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands.
| | - Haojie Jin
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain.
- Xenopat S.L., Parc Cientific de Barcelona (PCB), Barcelona, Spain.
| | - Rene H. Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Lynch SM, Heeran AB, Burke C, Lynam-Lennon N, Eustace AJ, Dean K, Robson T, Rahman A, Marcone S. Precision Oncology, Artificial Intelligence, and Novel Therapeutic Advancements in the Diagnosis, Prevention, and Treatment of Cancer: Highlights from the 59th Irish Association for Cancer Research (IACR) Annual Conference. Cancers (Basel) 2024; 16:1989. [PMID: 38893110 PMCID: PMC11171401 DOI: 10.3390/cancers16111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Advancements in oncology, especially with the era of precision oncology, is resulting in a paradigm shift in cancer care. Indeed, innovative technologies, such as artificial intelligence, are paving the way towards enhanced diagnosis, prevention, and personalised treatments as well as novel drug discoveries. Despite excellent progress, the emergence of resistant cancers has curtailed both the pace and extent to which we can advance. By combining both their understanding of the fundamental biological mechanisms and technological advancements such as artificial intelligence and data science, cancer researchers are now beginning to address this. Together, this will revolutionise cancer care, by enhancing molecular interventions that may aid cancer prevention, inform clinical decision making, and accelerate the development of novel therapeutic drugs. Here, we will discuss the advances and approaches in both artificial intelligence and precision oncology, presented at the 59th Irish Association for Cancer Research annual conference.
Collapse
Affiliation(s)
- Seodhna M. Lynch
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, UK;
| | - Aisling B. Heeran
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.B.H.); (N.L.-L.); (S.M.)
| | - Caoimbhe Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 C1P1 Dublin, Ireland;
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.B.H.); (N.L.-L.); (S.M.)
| | - Alex J. Eustace
- Life Sciences Institute, Dublin City University, D09 NR58 Dublin, Ireland;
| | - Kellie Dean
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland;
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Arman Rahman
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 C1P1 Dublin, Ireland;
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.B.H.); (N.L.-L.); (S.M.)
| |
Collapse
|
3
|
Di Mambro A, Arroyo-Berdugo Y, Fioretti T, Randles M, Cozzuto L, Rajeeve V, Cevenini A, Austin MJ, Esposito G, Ponomarenko J, Lucas CM, Cutillas P, Gribben J, Williams O, Calle Y, Patel B, Esposito MT. SET-PP2A complex as a new therapeutic target in KMT2A (MLL) rearranged AML. Oncogene 2023; 42:3670-3683. [PMID: 37891368 PMCID: PMC10709139 DOI: 10.1038/s41388-023-02840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023]
Abstract
KMT2A-rearranged (KMT2A-R) is an aggressive and chemo-refractory acute leukemia which mostly affects children. Transcriptomics-based characterization and chemical interrogation identified kinases as key drivers of survival and drug resistance in KMT2A-R leukemia. In contrast, the contribution and regulation of phosphatases is unknown. In this study we uncover the essential role and underlying mechanisms of SET, the endogenous inhibitor of Ser/Thr phosphatase PP2A, in KMT2A-R-leukemia. Investigation of SET expression in acute myeloid leukemia (AML) samples demonstrated that SET is overexpressed, and elevated expression of SET is correlated with poor prognosis and with the expression of MEIS and HOXA genes in AML patients. Silencing SET specifically abolished the clonogenic ability of KMT2A-R leukemic cells and the transcription of KMT2A targets genes HOXA9 and HOXA10. Subsequent mechanistic investigations showed that SET interacts with both KMT2A wild type and fusion proteins, and it is recruited to the HOXA10 promoter. Pharmacological inhibition of SET by FTY720 disrupted SET-PP2A interaction leading to cell cycle arrest and increased sensitivity to chemotherapy in KMT2A-R-leukemic models. Phospho-proteomic analyses revealed that FTY720 reduced the activity of kinases regulated by PP2A, including ERK1, GSK3β, AURB and PLK1 and led to suppression of MYC, supporting the hypothesis of a feedback loop among PP2A, AURB, PLK1, MYC, and SET. Our findings illustrate that SET is a novel player in KMT2A-R leukemia and they provide evidence that SET antagonism could serve as a novel strategy to treat this aggressive leukemia.
Collapse
Affiliation(s)
| | | | - Tiziana Fioretti
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, Napoli, Italy
| | - Michael Randles
- Chester Centre for Leukaemia Research, Chester Medical School, University of Chester, Chester, UK
| | - Luca Cozzuto
- Centre Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Armando Cevenini
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Michael J Austin
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gabriella Esposito
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Julia Ponomarenko
- Centre Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Claire M Lucas
- Chester Centre for Leukaemia Research, Chester Medical School, University of Chester, Chester, UK
| | - Pedro Cutillas
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Owen Williams
- Great Ormond Street Institute of Child Health London, UCL, London, UK
| | - Yolanda Calle
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Bela Patel
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Maria Teresa Esposito
- School of Life and Health Sciences, University of Roehampton, London, UK.
- School of Biosciences, University of Surrey, Guildford, UK.
| |
Collapse
|
4
|
Wang L, Wang XD, Yang B, Wang XM, Peng YQ, Tan HJ, Xiao HM. Novel SETBP1 mutation in a chinese family with intellectual disability. BMC Med Genomics 2023; 16:233. [PMID: 37798664 PMCID: PMC10552191 DOI: 10.1186/s12920-023-01649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Intellectual disability (ID) is characterized by an IQ < 70, which implies below-average intellectual function and a lack of skills necessary for daily living. ID may occur due to multiple causes, such as metabolic, infectious, and chromosomal causes. ID affects approximately 1-3% of the population; however, the cause can be identified in only 25% of clinical patients. METHODS To find the cause of genetic ID in a family, we performed whole-exome sequencing and Sanger sequencing to confirm the presence of a SETBP1 variant and real-time quantitative polymerase chain reaction to detect SETBP1 expression in the proband and normal controls. RESULTS A novel variant, c.942_943insGT (p. Asp316TrpfsTer28), was found in SETBP1. Furthermore, we observed that SETBP1 expression in patients was only 20% that of normal controls (P < 0.05). CONCLUSION A heterozygous variant in SETBP1 associated with ID was found. This report provides further evidence for its genetic basis and support for clinical genetic diagnosis.
Collapse
Affiliation(s)
- Le Wang
- School of Basic Medical Science, Hunan University of Medicine, Huaihua, Hunan, China
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xu-Dong Wang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bo Yang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xue-Meng Wang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yu-Qian Peng
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hang-Jing Tan
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Di Mambro A, Esposito M. Thirty years of SET/TAF1β/I2PP2A: from the identification of the biological functions to its implications in cancer and Alzheimer's disease. Biosci Rep 2022; 42:BSR20221280. [PMID: 36345878 PMCID: PMC9679398 DOI: 10.1042/bsr20221280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
The gene encoding for the protein SE translocation (SET) was identified for the first time 30 years ago as part of a chromosomal translocation in a patient affected by leukemia. Since then, accumulating evidence have linked overexpression of SET, aberrant SET splicing, and cellular localization to cancer progression and development of neurodegenerative tauopathies such as Alzheimer's disease. Molecular biology tools, such as targeted genetic deletion, and pharmacological approaches based on SET antagonist peptides, have contributed to unveil the molecular functions of SET and its implications in human pathogenesis. In this review, we provide an overview of the functions of SET as inhibitor of histone and non-histone protein acetylation and as a potent endogenous inhibitor of serine-threonine phosphatase PP2A. We discuss the role of SET in multiple cellular processes, including chromatin remodelling and gene transcription, DNA repair, oxidative stress, cell cycle, apoptosis cell migration and differentiation. We review the molecular mechanisms linking SET dysregulation to tumorigenesis and discuss how SET commits neurons to progressive cell death in Alzheimer's disease, highlighting the rationale of exploiting SET as a therapeutic target for cancer and neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Antonella Di Mambro
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| | - Maria Teresa Esposito
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| |
Collapse
|
6
|
Poudel G, Tolland MG, Hughes TP, Pagani IS. Mechanisms of Resistance and Implications for Treatment Strategies in Chronic Myeloid Leukaemia. Cancers (Basel) 2022; 14:cancers14143300. [PMID: 35884363 PMCID: PMC9317051 DOI: 10.3390/cancers14143300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Chronic myeloid leukaemia (CML) is a type of blood cancer that is currently well-managed with drugs that target cancer-causing proteins. However, a significant proportion of CML patients do not respond to those drug treatments or relapse when they stop those drugs because the cancer cells in those patients stop relying on that protein and instead develop a new way to survive. Therefore, new treatment strategies may be necessary for those patients. In this review, we discuss those additional survival pathways and outline combination treatment strategies to increase responses and clinical outcomes, improving the lives of CML patients. Abstract Tyrosine kinase inhibitors (TKIs) have revolutionised the management of chronic myeloid leukaemia (CML), with the disease now having a five-year survival rate over 80%. The primary focus in the treatment of CML has been on improving the specificity and potency of TKIs to inhibit the activation of the BCR::ABL1 kinase and/or overcoming resistance driven by mutations in the BCR::ABL1 oncogene. However, this approach may be limited in a significant proportion of patients who develop TKI resistance despite the effective inhibition of BCR::ABL1. These patients may require novel therapeutic strategies that target both BCR::ABL1-dependent and BCR::ABL1-independent mechanisms of resistance. The combination treatment strategies that target alternative survival signalling, which may contribute towards BCR::ABL1-independent resistance, could be a successful strategy for eradicating residual leukaemic cells and consequently increasing the response rate in CML patients.
Collapse
Affiliation(s)
- Govinda Poudel
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
| | - Molly G. Tolland
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Timothy P. Hughes
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital and SA Pathology, Adelaide, SA 5000, Australia
| | - Ilaria S. Pagani
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- Correspondence:
| |
Collapse
|
7
|
Simón-Gracia L, Loisel S, Sidorenko V, Scodeller P, Parizot C, Savier E, Haute T, Teesalu T, Rebollo A. Preclinical Validation of Tumor-Penetrating and Interfering Peptides against Chronic Lymphocytic Leukemia. Mol Pharm 2022; 19:895-903. [PMID: 35113575 DOI: 10.1021/acs.molpharmaceut.1c00837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults. The disease is characterized by the accumulation of tumoral B cells resulting from a defect of apoptosis. We have in vitro and in vivo preclinically validated a tumor-penetrating peptide (named TT1) coupled to an interfering peptide (IP) that dissociates the interaction between the serine/threonine protein phosphatase 2A (PP2A) from its physiological inhibitor, the oncoprotein SET. This TT1-IP peptide has an antitumoral effect on CLL, as shown by the increased survival of mice bearing xenograft models of CLL, compared to control mice. The peptide did not show toxicity, as indicated by the mouse body weight and the biochemical parameters, such as renal and hepatic enzymes. In addition, the peptide-induced apoptosis in vitro of primary tumoral B cells isolated from CLL patients but not of those isolated from healthy patients. Finally, the peptide had approximately 5 h half-life in human serum and showed pharmacokinetic parameters compatible with clinical development as a therapeutic peptide against CLL.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Severine Loisel
- Université de Brest, Service Général des plateformes, Animalerie Commune, 29238 Brest, France
| | - Valeria Sidorenko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Christophe Parizot
- Sorbonne Université, Inserm, CIMI-Paris, Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Département d'Immunologie, 75013 Paris, France
| | - Eric Savier
- Department of Hepato-Biliary and Pancreatic Surgery and Liver Transplantation, Pitie-Salpetriere Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, 75013 Paris, France.,St Antoine Research Center (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne University, INSERM, 75012 Paris, France
| | - Tanguy Haute
- Université de Brest, Plateforme SyNanoVect, 29238 Brest, France
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.,Center for Nanomedicine, University of California Santa Barbara, 92037 Santa Barbara, California, United States
| | - Angelita Rebollo
- Université de Paris, Inserm U1267, CNRS, Faculté de Pharmacie, 75006 Paris, France
| |
Collapse
|
8
|
Li Z, Liu J, Inuzuka H, Wei W. Functional analysis of the emerging roles for the KISS1/KISS1R signaling pathway in cancer metastasis. J Genet Genomics 2021; 49:181-184. [PMID: 34767970 DOI: 10.1016/j.jgg.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Cancer metastasis, a process that primary tumor cells disseminate to secondary organs, is the most lethal and least effectively treated characteristic of human cancers. Kisspeptins are proteins encoded by the KISS1 gene that was originally described as a melanoma metastasis suppressor gene. Then, Kisspeptins were discovered as the natural ligands of the G-protein-coupled receptor 54 (GPR54) that is also called KISS1R. The KISS1/KISS1R signaling is essential to control GnRH secretion during puberty and to establish mammalian reproductive function through the hypothalamic-pituitary-gonadal (HPG) axis. Although KISS1 primarily plays a suppressive role in the metastasis progression in several cancer types, emerging evidence indicates that the physiological effect of KISS1/KISS1R in cancer metastasis is tissue context-dependent and still controversial. Here, we will discuss the epigenetic mechanism regulation of KISS1 gene expression, the context-dependent role of KISS1/KISS1R, pro-/anti-metastasis signaling pathways of KISS1/KISS1R, and the perspective anti-cancer therapeutics via targeting KISS1/KISS1R.
Collapse
Affiliation(s)
- Zhenxi Li
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Savier E, Simon-Gracia L, Charlotte F, Tuffery P, Teesalu T, Scatton O, Rebollo A. Bi-Functional Peptides as a New Therapeutic Tool for Hepatocellular Carcinoma. Pharmaceutics 2021; 13:pharmaceutics13101631. [PMID: 34683924 PMCID: PMC8541685 DOI: 10.3390/pharmaceutics13101631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The interfering peptides that block protein–protein interactions have been receiving increasing attention as potential therapeutic tools. Methods: We measured the internalization and biological effect of four bi-functional tumor-penetrating and interfering peptides into primary hepatocytes isolated from three non-malignant and 11 hepatocellular carcinomas. Results: These peptides are internalized in malignant hepatocytes but not in non-malignant cells. Furthermore, the degree of peptide internalization correlated with receptor expression level and tumor aggressiveness levels. Importantly, penetration of the peptides iRGD-IP, LinTT1-IP, TT1-IP, and RPARPAR-IP induced apoptosis of the malignant hepatocytes without effect on non-malignant cells. Conclusion: Receptor expression levels correlated with the level of peptide internalization and aggressiveness of the tumor. This study highlights the potential to exploit the expression of tumor-penetrating peptide receptors as a predictive marker of liver tumor aggressiveness. These bi-functional peptides could be developed for personalized tumor treatment.
Collapse
Affiliation(s)
- Eric Savier
- Department of Hepatobiliary and Liver Transplantation Surgery, AP-HP, Pitié–Salpêtrière Hospital, Sorbonne Université, 75006 Paris, France; (E.S.); (O.S.)
- Sant Antoine Research Center (CRSA), Institut Nationale de la Santé et la Recherche Médicale (Inserm), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75006 Paris, France
| | - Lorena Simon-Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia; (L.S.-G.); (T.T.)
| | - Frederic Charlotte
- Department of Pathology, AP-HP, Pitié–Salpêtrière Hospital, 75006 Paris, France;
| | - Pierre Tuffery
- Biologie Fontionelle Adaptative (BFA), Unité Mixte de Recherche (UMR) 8251, Centre National de la Recherche Scientifique (CNRS) ERL U1133, Inserm, Université de Paris, 75006 Paris, France;
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia; (L.S.-G.); (T.T.)
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Olivier Scatton
- Department of Hepatobiliary and Liver Transplantation Surgery, AP-HP, Pitié–Salpêtrière Hospital, Sorbonne Université, 75006 Paris, France; (E.S.); (O.S.)
- Sant Antoine Research Center (CRSA), Institut Nationale de la Santé et la Recherche Médicale (Inserm), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75006 Paris, France
| | - Angelita Rebollo
- Faculté de Pharmacie, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Inserm U1267, Centre National de la Recherche Scientifique CNRS UMR8258, Université de Paris, 75006 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Vainonen JP, Momeny M, Westermarck J. Druggable cancer phosphatases. Sci Transl Med 2021; 13:13/588/eabe2967. [PMID: 33827975 DOI: 10.1126/scitranslmed.abe2967] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
The phosphorylation status of oncoproteins is regulated by both kinases and phosphatases. Kinase inhibitors are rarely sufficient for successful cancer treatment, and phosphatases have been considered undruggable targets for cancer drug development. However, innovative pharmacological approaches for targeting phosphatases have recently emerged. Here, we review progress in the therapeutic targeting of oncogenic Src homology region 2 domain-containing phosphatase-2 (SHP2) and tumor suppressor protein phosphatase 2A (PP2A) and select other druggable oncogenic and tumor suppressor phosphatases. We describe the modes of action for currently available small molecules that target phosphatases, their use in drug combinations, and advances in clinical development toward future cancer therapies.
Collapse
Affiliation(s)
- Julia P Vainonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland. .,Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| |
Collapse
|
11
|
Targeting protein phosphatase PP2A for cancer therapy: development of allosteric pharmaceutical agents. Clin Sci (Lond) 2021; 135:1545-1556. [PMID: 34192314 DOI: 10.1042/cs20201367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 01/26/2023]
Abstract
Tumor initiation is driven by oncogenes that activate signaling networks for cell proliferation and survival involving protein phosphorylation. Protein kinases in these pathways have proven to be effective targets for pharmaceutical inhibitors that have progressed to the clinic to treat various cancers. Here, we offer a narrative about the development of small molecule modulators of the protein Ser/Thr phosphatase 2A (PP2A) to reduce the activation of cell proliferation and survival pathways. These novel drugs promote the assembly of select heterotrimeric forms of PP2A that act to limit cell proliferation. We discuss the potential for the near-term translation of this approach to the clinic for cancer and other human diseases.
Collapse
|
12
|
Tóth E, Erdődi F, Kiss A. Activation of Myosin Phosphatase by Epigallocatechin-Gallate Sensitizes THP-1 Leukemic Cells to Daunorubicin. Anticancer Agents Med Chem 2021; 21:1092-1098. [PMID: 32679023 DOI: 10.2174/1871520620666200717142315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Myosin Phosphatase (MP) holoenzyme is composed of a Protein Phosphatase type 1 (PP1) catalytic subunit and a regulatory subunit termed Myosin Phosphatase Target subunit 1 (MYPT1). Besides dephosphorylation of myosin, MP has been implicated in the control of cell proliferation via dephosphorylation and activation of the tumor suppressor gene products, retinoblastoma protein (pRb) and merlin. Inhibition of MP was shown to attenuate the drug-induced cell death of leukemic cells by chemotherapeutic agents, while activation of MP might have a sensitizing effect. OBJECTIVE Recently, Epigallocatechin-Gallate (EGCG), a major component of green tea, was shown to activate MP by inducing the dephosphorylation of MYPT1 at phospho-Thr696 (MYPT1pT696), which might confer enhanced chemosensitivity to cancer cells. METHODS THP-1 leukemic cells were treated with EGCG and Daunorubicin (DNR) and cell viability was analyzed. Phosphorylation of tumor suppressor proteins was detected by Western blotting. RESULTS EGCG or DNR (at sub-lethal doses) alone had moderate effects on cell viability, while the combined treatment caused a significant decrease in the number of viable cells by enhancing apoptosis and decreasing proliferation. EGCG plus DNR decreased the phosphorylation level of MYPT1pT696, which was accompanied by prominent dephosphorylation of pRb. In addition, significant dephosphorylation of merlin was observed when EGCG and DNR were applied together. CONCLUSION Our results suggest that EGCG-induced activation of MP might have a regulatory function in mediating the chemosensitivity of leukemic cells via dephosphorylation of tumor suppressor proteins.
Collapse
Affiliation(s)
- Emese Tóth
- Department of Medical Chemistry and MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry and MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kiss
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Simon‐Gracia L, Savier E, Parizot C, Brossas JY, Loisel S, Teesalu T, Conti F, Charlotte F, Scatton O, Aoudjehane L, Rebollo A. Bifunctional Therapeutic Peptides for Targeting Malignant B Cells and Hepatocytes: Proof of Concept in Chronic Lymphocytic Leukemia. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lorena Simon‐Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine University of Tartu Tartu 50411 Estonia
| | - Eric Savier
- Department of Hepatobiliary and Liver Transplantation Surgery, AP‐HP Pitié‐Salpêtrière Hospital Paris 75013 France
- Sorbonne Université INSERM, ICAN Paris 75006 France
| | - Christophe Parizot
- Department of Immunology, AP‐HP Pitié‐Salpêtrière Hospital Paris 75013 France
| | - Jean Yves Brossas
- Department of Parasitology, AP‐HP Pitié‐Salpêtrière Hospital Paris 75013 France
| | - Severine Loisel
- Service Général des plateformes, Animalerie Commune Université de Brest Brest 29238 France
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine University of Tartu Tartu 50411 Estonia
- Cancer Research Center Sanford Burnham Prebys Medical Discovery Institute La Jolla CA 92037 USA
- Center for Nanomedicine University of California Santa Barbara CA 93106 USA
| | - Filomena Conti
- Sorbonne Université INSERM, ICAN Paris 75006 France
- Department of Medical Liver Transplantation AP‐HP Pitié‐Salpêtrière Paris 75013 France
| | - Frederic Charlotte
- Department of Anatomophatoloty, AP‐HP Pitié‐Salpêtrière Hospital Paris 75013 France
| | - Olivier Scatton
- Department of Hepatobiliary and Liver Transplantation Surgery, AP‐HP Pitié‐Salpêtrière Hospital Paris 75013 France
| | | | - Angelita Rebollo
- Inserm U1267, CNRS‐UMR 8258, Faculté de Pharmacie Paris 75006 France
| |
Collapse
|
14
|
Perrotti D, Agarwal A, Lucas CM, Narla G, Neviani P, Odero MD, Ruvolo PP, Verrills NM. Comment on "PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL human leukemia". Sci Transl Med 2020; 11:11/501/eaau0416. [PMID: 31316003 DOI: 10.1126/scitranslmed.aau0416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
LB100 does not sensitize CML stem cells to tyrosine kinase inhibitor-induced apoptosis.
Collapse
Affiliation(s)
- Danilo Perrotti
- University of Maryland School of Medicine, Baltimore, MD 21201, USA. .,Department of Haematology, Imperial College London, London W12 0HS, UK
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Claire M Lucas
- University of Chester Medical School, Chester CH2 1BR, UK
| | - Goutham Narla
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paolo Neviani
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | | | - Peter P Ruvolo
- Department of Leukemia, MD Anderson Cancer Center, Houston, 77054 TX, USA
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
15
|
Silvestri G, Trotta R, Stramucci L, Ellis JJ, Harb JG, Neviani P, Wang S, Eisfeld AK, Walker CJ, Zhang B, Srutova K, Gambacorti-Passerini C, Pineda G, Jamieson CHM, Stagno F, Vigneri P, Nteliopoulos G, May PC, Reid AG, Garzon R, Roy DC, Moutuou MM, Guimond M, Hokland P, Deininger MW, Fitzgerald G, Harman C, Dazzi F, Milojkovic D, Apperley JF, Marcucci G, Qi J, Polakova KM, Zou Y, Fan X, Baer MR, Calabretta B, Perrotti D. Persistence of Drug-Resistant Leukemic Stem Cells and Impaired NK Cell Immunity in CML Patients Depend on MIR300 Antiproliferative and PP2A-Activating Functions. Blood Cancer Discov 2020; 1:48-67. [PMID: 32974613 DOI: 10.1158/0008-5472.bcd-19-0039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Persistence of drug-resistant quiescent leukemic stem cells (LSC) and impaired natural killer (NK) cell immune response account for relapse of chronic myelogenous leukemia (CML). Inactivation of protein phosphatase 2A (PP2A) is essential for CML-quiescent LSC survival and NK cell antitumor activity. Here we show that MIR300 has antiproliferative and PP2A-activating functions that are dose dependently differentially induced by CCND2/CDK6 and SET inhibition, respectively. MIR300 is upregulated in CML LSCs and NK cells by bone marrow microenvironment (BMM) signals to induce quiescence and impair immune response, respectively. Conversely, BCR-ABL1 downregulates MIR300 in CML progenitors to prevent growth arrest and PP2A-mediated apoptosis. Quiescent LSCs escape apoptosis by upregulating TUG1 long noncoding RNA that uncouples and limits MIR300 function to cytostasis. Genetic and pharmacologic MIR300 modulation and/or PP2A-activating drug treatment restore NK cell activity, inhibit BMM-induced growth arrest, and selectively trigger LSC apoptosis in vitro and in patient-derived xenografts; hence, the importance of MIR300 and PP2A activity for CML development and therapy.
Collapse
Affiliation(s)
- Giovannino Silvestri
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rossana Trotta
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lorenzo Stramucci
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Justin J Ellis
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jason G Harb
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Paolo Neviani
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Shuzhen Wang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ann-Kathrin Eisfeld
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Christopher J Walker
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Bin Zhang
- Division of Hematopoietic Stem Cell and Leukemia Research, City of Hope National Medical Center, Duarte, California
| | - Klara Srutova
- Institute of Hematology and Blood Transfusion, University of Prague, Prague, Czech Republic
| | | | - Gabriel Pineda
- Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Catriona H M Jamieson
- Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Fabio Stagno
- Division of Hematology and Unit of Medical Oncology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Paolo Vigneri
- Division of Hematology and Unit of Medical Oncology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Georgios Nteliopoulos
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Philippa C May
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Alistair G Reid
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Ramiro Garzon
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Denis-Claude Roy
- Department of Hematology and Cellular Therapy Laboratory, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Moutuaata M Moutuou
- Department of Hematology and Cellular Therapy Laboratory, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Martin Guimond
- Department of Hematology and Cellular Therapy Laboratory, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Peter Hokland
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Garrett Fitzgerald
- Center for Advanced Fetal Care University, University of Maryland School of Medicine, Baltimore, Maryland
| | - Christopher Harman
- Center for Advanced Fetal Care University, University of Maryland School of Medicine, Baltimore, Maryland
| | - Francesco Dazzi
- Division of Cancer Studies, Rayne Institute, King's College London, London, United Kingdom
| | - Dragana Milojkovic
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Jane F Apperley
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Guido Marcucci
- Division of Hematopoietic Stem Cell and Leukemia Research, City of Hope National Medical Center, Duarte, California
| | - Jianfei Qi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Ying Zou
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaoxuan Fan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R Baer
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bruno Calabretta
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Danilo Perrotti
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Hussain T, Zhao D, Shah SZA, Sabir N, Wang J, Liao Y, Song Y, Hussain Mangi M, Yao J, Dong H, Yang L, Zhou X. PP2Ac Modulates AMPK-Mediated Induction of Autophagy in Mycobacterium bovis-Infected Macrophages. Int J Mol Sci 2019; 20:ijms20236030. [PMID: 31795474 PMCID: PMC6928646 DOI: 10.3390/ijms20236030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/16/2019] [Accepted: 11/28/2019] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium bovis (M. bovis) is the causative agent of bovine tuberculosis in cattle population across the world. Human beings are at equal risk of developing tuberculosis beside a wide range of M. bovis infections in animal species. Autophagic sequestration and degradation of intracellular pathogens is a major innate immune defense mechanism adopted by host cells for the control of intracellular infections. It has been reported previously that the catalytic subunit of protein phosphatase 2A (PP2Ac) is crucial for regulating AMP-activated protein kinase (AMPK)-mediated autophagic signaling pathways, yet its role in tuberculosis is still unclear. Here, we demonstrated that M. bovis infection increased PP2Ac expression in murine macrophages, while nilotinib a tyrosine kinase inhibitor (TKI) significantly suppressed PP2Ac expression. In addition, we observed that TKI-induced AMPK activation was dependent on PP2Ac regulation, indicating the contributory role of PP2Ac towards autophagy induction. Furthermore, we found that the activation of AMPK signaling is vital for the regulating autophagy during M. bovis infection. Finally, the transient inhibition of PP2Ac expression enhanced the inhibitory effect of TKI-nilotinib on intracellular survival and multiplication of M. bovis in macrophages by regulating the host’s immune responses. Based on these observations, we suggest that PP2Ac should be exploited as a promising molecular target to intervene in host–pathogen interactions for the development of new therapeutic strategies towards the control of M. bovis infections in humans and animals.
Collapse
Affiliation(s)
- Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Syed Zahid Ali Shah
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Naveed Sabir
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Jie Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Yi Liao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Yinjuan Song
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Mazhar Hussain Mangi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Jiao Yao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Haodi Dong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Lifeng Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
- Correspondence: ; Tel.: +86-10-6273-4618
| |
Collapse
|
17
|
Ghias K, Rehmani SS, Razzak SA, Madhani S, Azim MK, Ahmed R, Khan MJ. Mutational landscape of head and neck squamous cell carcinomas in a South Asian population. Genet Mol Biol 2019; 4242:526-542. [PMID: 31188922 PMCID: PMC6905448 DOI: 10.1590/1678-4685-gmb-2018-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer
type globally and contributes significantly to burden of disease in South Asia.
In Pakistan, HNSCC is among the most commonly diagnosed cancer in males and
females. The increasing regional burden of HNSCC along with a unique set of risk
factors merited a deeper investigation of the disease at the genomic level.
Whole exome sequencing of HNSCC samples and matched normal genomic DNA analysis
(n=7) was performed. Significant somatic single nucleotide variants (SNVs) were
identified and pathway analysis performed to determine frequently affected
signaling pathways. We identified significant, novel recurrent mutations in
ASNS (asparagine synthetase) that may affect substrate
binding, and variants in driver genes including TP53, PIK3CA, FGFR2,
ARID2, MLL3, MYC and ALK. Using the IntOGen
platform, we identified MAP kinase, cell cycle, actin cytoskeleton regulation,
PI3K-Akt signaling and other pathways in cancer as affected in the samples. This
data is the first of its kind from the Pakistani population. The results of this
study can guide a better mechanistic understanding of HNSCC in the population,
ultimately contributing new, rational therapeutic targets for the treatment of
the disease.
Collapse
Affiliation(s)
- Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Sadiq S Rehmani
- Department of Thoracic Surgery, Mount Sinai St. Luke's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Safina A Razzak
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | | | - M Kamran Azim
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, Pakistan
| | - Rashida Ahmed
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Mumtaz J Khan
- Surgical Specialty Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Osther K, Förnvik K, Liljedahl E, Salford LG, Redebrandt HN. Upregulation of C1-inhibitor in pancreatic cancer. Oncotarget 2019; 10:5703-5712. [PMID: 31620245 PMCID: PMC6779287 DOI: 10.18632/oncotarget.27191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose The complement system has recently sparked more interest in cancer research. The classical pathway is initiated by activation of the C1 complex, which irreversibly can be bound to and inhibited by C1-INH. We have previously shown that C1-INH is upregulated in human glioblastoma (astrocytoma grade IV) on both gene and protein level. We here examine whether the complement system seems to play a role also in pancreatic cancer. Technique and results We performed an expression analysis of complement associated genes in 36 pancreatic ductal adenocarcinoma tumors and matching normal pancreatic tissue samples from pancreatic cancer patients (data from the publicly available database GSE15471). C1-INH was significantly upregulated in the pancreatic cancer tissue. None of the downstream components of the cascade were significantly upregulated in the cancer samples as compared to the control samples, which is the same pattern as we found in glioblastoma. GO analysis showed that membrane attack complex came up as the second most significantly associated cellular component. Analyzing gene expression of C1-INH in the pancreatic cancer cell lines from primary tumors versus metastatic tumor revealed no difference for the two mRNA transcripts (GSE59357). Interpretation Analysis of gene expression of complement related genes shows an upregulation of C1-INH and a downregulation of downstream components. This could suggest that C1-INH plays a role also in pancreatic cancer.
Collapse
Affiliation(s)
- Kurt Osther
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karolina Förnvik
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Clinical Chemistry, Skåne University Hospital, Scania, Sweden
| | - Emma Liljedahl
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurosurgery, Skåne University Hospital, Scania, Sweden
| | - Leif G Salford
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurosurgery, Skåne University Hospital, Scania, Sweden
| | - Henrietta Nittby Redebrandt
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurosurgery, Skåne University Hospital, Scania, Sweden
| |
Collapse
|
19
|
Dephosphorylation of HDAC4 by PP2A-Bδ unravels a new role for the HDAC4/MEF2 axis in myoblast fusion. Cell Death Dis 2019; 10:512. [PMID: 31273193 PMCID: PMC6609635 DOI: 10.1038/s41419-019-1743-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 11/14/2022]
Abstract
Muscle formation is controlled by a number of key myogenic transcriptional regulators that govern stage-specific gene expression programs and act as terminal effectors of intracellular signaling pathways. To date, the role of phosphatases in the signaling cascades instructing muscle development remains poorly understood. Here, we show that a specific PP2A-B55δ holoenzyme is necessary for skeletal myogenesis. The primary role of PP2A-B55δ is to dephosphorylate histone deacetylase 4 (HDAC4) following myocyte differentiation and ensure repression of Myocyte enhancer factor 2D (MEF2D)-dependent gene expression programs during myogenic fusion. As a crucial HDAC4/MEF2D target gene that governs myocyte fusion, we identify ArgBP2, an upstream inhibitor of Abl, which itself is a repressor of CrkII signaling. Consequently, cells lacking PP2A-B55δ show upregulation of ArgBP2 and hyperactivation of CrkII downstream effectors, including Rac1 and FAK, precluding cytoskeletal and membrane rearrangements associated with myoblast fusion. Both in vitro and in zebrafish, loss-of-function of PP2A-B55δ severely impairs fusion of myocytes and formation of multinucleated muscle fibers, without affecting myoblast differentiation. Taken together, our results establish PP2A-B55δ as the first protein phosphatase to be involved in myoblast fusion and suggest that reversible phosphorylation of HDAC4 may coordinate differentiation and fusion events during myogenesis.
Collapse
|
20
|
Brander DM, Friedman DR, Volkheimer AD, Christensen DJ, Rassenti LZ, Kipps TJ, Guadalupe E, Chen Y, Zhang D, Wang X, Davis C, Owzar K, Weinberg JB. SET alpha and SET beta mRNA isoforms in chronic lymphocytic leukaemia. Br J Haematol 2018; 184:605-615. [PMID: 30443898 DOI: 10.1111/bjh.15677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023]
Abstract
Alteration in RNA splicing is implicated in carcinogenesis and progression. Mutations in spliceosome genes and alternative splicing of other genes have been noted in chronic lymphocytic leukaemia (CLL), a common B cell malignancy with heterogeneous outcomes. We previously demonstrated that differences in the amount of SET oncoprotein (a physiological inhibitor of the serine/threonine phosphatase, PP2A) is associated with clinical aggressiveness in patients with CLL. It is unknown if alternative splicing of gene transcripts regulating kinases and phosphatases affects disease pathobiology and CLL progression. We show here for the first time that mRNA levels of the alternatively spliced SET isoforms, SETA and SETB (SETα and SETβ), significantly correlate with disease severity (overall survival and time-to-first-treatment) in CLL patients. In addition, we demonstrate that relative increase of SETA to SETB mRNA can discriminate patients with a more aggressive disease course within the otherwise favourable CLL risk classifications of IGHV mutated and favourable hierarchical fluorescence in situ hybridisation groups. We validate our finding by showing comparable relationships of SET mRNA with disease outcomes using samples from an independent CLL cohort from a separate institution. These findings indicate that alternative splicing of SET, and potentially other signalling cascade molecules, influences CLL biology and patient outcomes.
Collapse
Affiliation(s)
- Danielle M Brander
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA
| | - Daphne R Friedman
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA.,Durham VA Medical Center, Durham, NC, USA
| | | | | | - Laura Z Rassenti
- University of California San Diego Moores Cancer Center, San Diego, CA, USA
| | - Thomas J Kipps
- University of California San Diego Moores Cancer Center, San Diego, CA, USA
| | | | - Youwei Chen
- Duke University Medical Center, Durham, NC, USA
| | - Dadong Zhang
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA
| | - Xi Wang
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA
| | | | - Kouros Owzar
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA
| | - J Brice Weinberg
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA.,Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
21
|
Fan L, Liu MH, Guo M, Hu CX, Yan ZW, Chen J, Chen GQ, Huang Y. FAM122A, a new endogenous inhibitor of protein phosphatase 2A. Oncotarget 2018; 7:63887-63900. [PMID: 27588481 PMCID: PMC5325411 DOI: 10.18632/oncotarget.11698] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/24/2016] [Indexed: 01/19/2023] Open
Abstract
The regulation of the ubiquitously expressed protein phosphatase 2A (PP2A) is essential for various cellular functions such as cell proliferation, transformation, and fate determination. In this study, we demonstrate that the highly conserved protein in mammals, designated FAM122A, directly interacts with PP2A-Aα and B55α rather than B56α subunits, and inhibits the phosphatase activity of PP2A-Aα/B55α/Cα complex. Further, FAM122A potentiates the degradation of catalytic subunit PP2A-Cα with the increased poly-ubiquitination. In agreement, FAM122A silencing inhibits while its overexpression enhances cell growth and colony-forming ability. Collectively, we identify FAM122A as a new endogenous PP2A inhibitor and its physiological and pathophysiological significances warrant to be further investigated.
Collapse
Affiliation(s)
- Li Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng Guo
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuan-Xi Hu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhao-Wen Yan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
22
|
Kónya Z, Bécsi B, Kiss A, Tamás I, Lontay B, Szilágyi L, Kövér KE, Erdődi F. Aralkyl selenoglycosides and related selenosugars in acetylated form activate protein phosphatase-1 and -2A. Bioorg Med Chem 2018; 26:1875-1884. [PMID: 29501414 DOI: 10.1016/j.bmc.2018.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/03/2018] [Accepted: 02/20/2018] [Indexed: 01/03/2023]
Abstract
Aralkyl and aryl selenoglycosides as well as glycosyl selenocarboxylate derivatives were assayed on the activity of protein phosphatase-1 (PP1) and -2A (PP2A) catalytic subunits (PP1c and PP2Ac) in search of compounds for PP1c and PP2Ac effectors. The majority of tested selenoglycosides activated both PP1c and PP2Ac by ∼2-4-fold in a phosphatase assay with phosphorylated myosin light chain substrate when the hydroxyl groups of the glycosyl moiety were acetylated, but they were without any effects in the non-acetylated forms. A peptide from the myosin phosphatase target subunit-1 (MYPT123-38) that included an RVxF PP1c-binding motif attenuated activation of PP1c by 2-Trifluoromethylbenzyl 2,3,4,6-tetra-O-acetyl-1-seleno-β-d-glucopyranoside (TFM-BASG) and 4-Bromobenzyl 2,3,4,6-tetra-O-acetyl-1-seleno-β-d-glucopyranoside (Br-BASG). MYPT123-38 stimulated PP2Ac and contributed to PP2Ac activation exerted by either Br-BASG or TFM-BASG. Br-BASG and TFM-BASG suppressed partially binding of PP1c to MYPT1 in surface plasmon resonance based binding experiments. Molecular docking predicted that the hydrophobic binding surfaces in PP1c for interaction with either the RVxF residues of PP1c-interactors or selenoglycosides are partially overlapped. Br-BASG and TFM-BASG caused a moderate increase in the phosphatase activity of HeLa cells in 1 h, and suppressed cell viability in 24 h incubations. In conclusion, our present study identified selenoglycosides as novel activators of PP1 and PP2A as well as provided insights into the structural background of their interactions establishing a molecular model for future design of more efficient phosphatase activator molecules.
Collapse
Affiliation(s)
- Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary.
| | - Bálint Bécsi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - István Tamás
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - László Szilágyi
- Institute of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Katalin E Kövér
- Institute of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary.
| |
Collapse
|
23
|
Gerry CJ, Schreiber SL. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat Rev Drug Discov 2018; 17:333-352. [PMID: 29651105 PMCID: PMC6707071 DOI: 10.1038/nrd.2018.53] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Screening of small-molecule libraries is a productive method for identifying both chemical probes of disease-related targets and potential starting points for drug discovery. In this article, we focus on strategies such as diversity-oriented synthesis that aim to explore novel areas of chemical space efficiently by populating small-molecule libraries with compounds containing structural features that are typically under-represented in commercially available screening collections. Drawing from more than a decade's worth of examples, we highlight how the design and synthesis of such libraries have been enabled by modern synthetic chemistry, and we illustrate the impact of the resultant chemical probes and drug leads in a wide range of diseases.
Collapse
Affiliation(s)
- Christopher J Gerry
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- The Broad Institute of Harvard & MIT, Cambridge, MA, USA
| | - Stuart L Schreiber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- The Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
24
|
Fan F, Zhao J, Liu Y, Zhao H, Weng L, Li Q, Chen G, Xu Y. Identifying the SUMO1 modification of FAM122A leading to the degradation of PP2A-Cα by ubiquitin-proteasome system. Biochem Biophys Res Commun 2018; 500:676-681. [PMID: 29678583 DOI: 10.1016/j.bbrc.2018.04.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/22/2023]
Abstract
FAM122A is a highly conserved protein in mammals. Here, we identify that FAM122A can be sumoylated at lysine 89, which can be de-conjugated by SENP1. Furthermore, the sumoylation of FAM122A reduces the PP2A-Cα protein level together with the reduced phosphatase activity of PP2A, which suppresses cell proliferation. Collectively, our results suggest that the sumoylation of FAM122A may have a significant role in cellular function.
Collapse
Affiliation(s)
- Fangzhi Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junxing Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yali Liu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China
| | - Hongfang Zhao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China
| | - Lietao Weng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingqing Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
25
|
Smith AM, Dun MD, Lee EM, Harrison C, Kahl R, Flanagan H, Panicker N, Mashkani B, Don AS, Morris J, Toop H, Lock RB, Powell JA, Thomas D, Guthridge MA, Moore A, Ashman LK, Skelding KA, Enjeti A, Verrills NM. Activation of protein phosphatase 2A in FLT3+ acute myeloid leukemia cells enhances the cytotoxicity of FLT3 tyrosine kinase inhibitors. Oncotarget 2018; 7:47465-47478. [PMID: 27329844 PMCID: PMC5216954 DOI: 10.18632/oncotarget.10167] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Constitutive activation of the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3), via co-expression of its ligand or by genetic mutation, is common in acute myeloid leukemia (AML). In this study we show that FLT3 activation inhibits the activity of the tumor suppressor, protein phosphatase 2A (PP2A). Using BaF3 cells transduced with wildtype or mutant FLT3, we show that FLT3-induced PP2A inhibition sensitizes cells to the pharmacological PP2A activators, FTY720 and AAL(S). FTY720 and AAL(S) induced cell death and inhibited colony formation of FLT3 activated cells. Furthermore, PP2A activators reduced the phosphorylation of ERK and AKT, downstream targets shared by both FLT3 and PP2A, in FLT3/ITD+ BaF3 and MV4-11 cell lines. PP2A activity was lower in primary human bone marrow derived AML blasts compared to normal bone marrow, with blasts from FLT3-ITD patients displaying lower PP2A activity than WT-FLT3 blasts. Reduced PP2A activity was associated with hyperphosphorylation of the PP2A catalytic subunit, and reduced expression of PP2A structural and regulatory subunits. AML patient blasts were also sensitive to cell death induced by FTY720 and AAL(S), but these compounds had minimal effect on normal CD34+ bone marrow derived monocytes. Finally, PP2A activating compounds displayed synergistic effects when used in combination with tyrosine kinase inhibitors in FLT3-ITD+ cells. A combination of Sorafenib and FTY720 was also synergistic in the presence of a protective stromal microenvironment. Thus combining a PP2A activating compound and a FLT3 inhibitor may be a novel therapeutic approach for treating AML.
Collapse
Affiliation(s)
- Amanda M Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Current address: The University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Erwin M Lee
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales, Australia
| | - Celeste Harrison
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Richard Kahl
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Hayley Flanagan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Nikita Panicker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Baratali Mashkani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Current address: Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anthony S Don
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jonathan Morris
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Hamish Toop
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard B Lock
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales, Australia
| | - Jason A Powell
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Daniel Thomas
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Mark A Guthridge
- Department Clinical Haematology, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Andrew Moore
- Translational Research Institute, The University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | - Leonie K Ashman
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kathryn A Skelding
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Anoop Enjeti
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Calvary Mater Hospital, Newcastle, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
26
|
Enjoji S, Yabe R, Tsuji S, Yoshimura K, Kawasaki H, Sakurai M, Sakai Y, Takenouchi H, Yoshino S, Hazama S, Nagano H, Oshima H, Oshima M, Vitek MP, Matsuura T, Hippo Y, Usui T, Ohama T, Sato K. Stemness Is Enhanced in Gastric Cancer by a SET/PP2A/E2F1 Axis. Mol Cancer Res 2018; 16:554-563. [PMID: 29330298 DOI: 10.1158/1541-7786.mcr-17-0393] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/10/2017] [Accepted: 12/13/2017] [Indexed: 11/16/2022]
Abstract
Gastric cancer is the fifth most common malignancy and the third leading cause of cancer-related deaths worldwide. Chemotherapies against gastric cancer often fail, with cancer recurrence due potentially to the persistence of cancer stem cells. This unique subpopulation of cells in tumors possesses the ability to self-renew and dedifferentiate. These cancer stem cells are critical for initiation, maintenance, metastasis, and relapse of cancers; however, the molecular mechanisms supporting cancer stemness remain largely unknown. Increased kinase and decreased phosphatase activity are hallmarks of oncogenic signaling. Protein phosphatase 2A (PP2A) functions as a tumor-suppressor enzyme, and elevated levels of SET/I2PP2A, an endogenous PP2A protein inhibitor, are correlated with poor prognosis of several human cancers. Here, it was determined that SET expression was elevated in tumor tissue in a gastric cancer mouse model system, and SET expression was positively correlated with poor survival of human gastric cancer patients. Mechanistically, SET knockdown decreased E2F1 levels and suppressed the stemness of cancer cell lines. Immunoprecipitations show SET associated with the PP2A-B56 complex, and the B56 subunit interacted with the E2F1 transcription factor. Treatment of gastric cancer cells with the SET-targeting drug OP449 increased PP2A activity, decreased E2F1 protein levels, and suppressed stemness of cancer cells. These data indicate that a SET/PP2A/E2F1 axis regulates cancer cell stemness and is a potential target for gastric cancer therapy.Implications: This study highlights the oncogenic role of SET/I2PP2A in gastric cancer and suggests that SET maintains cancer cell stemness by suppressing PP2A activity and stabilizing E2F1. Mol Cancer Res; 16(3); 554-63. ©2018 AACR.
Collapse
Affiliation(s)
- Shuhei Enjoji
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ryotaro Yabe
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shunya Tsuji
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kazuhiro Yoshimura
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hideyoshi Kawasaki
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroko Takenouchi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Michael P Vitek
- Department of Neurology, Duke University Medical Center, Durham, North Carolina.,Oncotide Pharmaceuticals, Inc., Research Triangle Park, North Carolina
| | - Tetsuya Matsuura
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Kanagawa, Japan
| | | | - Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
27
|
Identification and characterization of novel enhanced cell penetrating peptides for anti-cancer cargo delivery. Oncotarget 2017; 9:5944-5957. [PMID: 29464046 PMCID: PMC5814186 DOI: 10.18632/oncotarget.23179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/16/2017] [Indexed: 01/22/2023] Open
Abstract
Cell penetrating peptides (CPP) are able cross the membrane and to transport cargos, presenting a great potential in drug delivery and diagnosis. In this paper, we have identified novel natural or synthetic CPPs. We have validated their rapid and efficient time and dose-dependent penetration, the absence of toxicity, the intracellular localization and the stability to proteases degradation, one of the main bottlenecks of peptides. Moreover, we have associate a cargo (an interfering peptide blocking the association of the serine/threonine phosphatase PP2A to its inhibitor, the oncogene SET) to the new generated shuttles and showed that they new bi-functional peptides keep the original properties of the shuttle and, in addition, are able to induce apoptosis due to the properties of the cargo. The CPPs identified in this study have promising perspectives for future anti-cancer drug delivery.
Collapse
|
28
|
Balliu M, Cellai C, Lulli M, Laurenzana A, Torre E, Vannucchi AM, Paoletti F. HDAC1 controls CIP2A transcription in human colorectal cancer cells. Oncotarget 2017; 7:25862-71. [PMID: 27029072 PMCID: PMC5041950 DOI: 10.18632/oncotarget.8406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/10/2016] [Indexed: 12/03/2022] Open
Abstract
This work describes the effectiveness of HDAC-inhibitor (S)-2 towards colorectal cancer (CRC) HCT116 cells in vitro by inducing cell cycle arrest and apoptosis, and in vivo by contrasting tumour growth in mice xenografts. Among the multifaceted drug-induced events described herein, an interesting link has emerged between the oncoprotein histone deacetylase HDAC1 and the oncogenic Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) which is overexpressed in several cancers including CRCs. HDAC1 inhibition by (S)-2 or specific siRNAs downregulates CIP2A transcription in three different CRC cell lines, thus restoring the oncosuppressor phosphatase PP2A activity that is reduced in most cancers. Once re-activated, PP2A dephosphorylates pGSK-3β(ser9) which phosphorylates β-catenin that remains within the cytosol where it undergoes degradation. The decreased amount/activity of β-catenin transcription factor prompts cell growth arrest by diminishing c-Myc and cyclin D1 expression and abrogating the prosurvival Wnt/β-catenin signaling pathway. These results are the first evidence that the inhibition of HDAC1 by (S)-2 downregulates CIP2A transcription and unleashes PP2A activity, thus inducing growth arrest and apoptosis in CRC cells.
Collapse
Affiliation(s)
- Manjola Balliu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| | - Cristina Cellai
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", 50134 Firenze, Italy
| | - Matteo Lulli
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", 50134 Firenze, Italy
| | - Anna Laurenzana
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", 50134 Firenze, Italy
| | - Eugenio Torre
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", 50134 Firenze, Italy
| | | | - Francesco Paoletti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", 50134 Firenze, Italy
| |
Collapse
|
29
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
30
|
Tian L, Zhang X, Haesen D, Bravo J, Fominaya J, Choquet S, Zini JM, Loisel S, Waelkens E, Janssens V, Rebollo A. Identification of PP2A/Set Binding Sites and Design of Interacting Peptides with Potential Clinical Applications. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9633-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Kake S, Tsuji S, Enjoji S, Hanasaki S, Hayase H, Yabe R, Tanaka Y, Nakagawa T, Liu HP, Chang SC, Usui T, Ohama T, Sato K. The role of SET/I2PP2A in canine mammary tumors. Sci Rep 2017; 7:4279. [PMID: 28655918 PMCID: PMC5487328 DOI: 10.1038/s41598-017-04291-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 05/12/2017] [Indexed: 01/27/2023] Open
Abstract
Canine mammary tumor is the most common neoplasm in female dogs, and it has generated considerable attention as a translational model for human breast cancer. Ser/Thr protein phosphatase 2A (PP2A) plays a critical role as a tumor suppressor, and SET/I2PP2A, the endogenous inhibitory protein of PP2A, binds directly to PP2A and suppresses its phosphatase activity. Here, we investigated the role of SET in the tumorigenic growth in canine mammary tumor as well as in the sensitivity of tumors to existing therapeutics. Elevated protein levels of SET were observed in advanced-stage of canine mammary tumor tissues of dogs compared with paired normal tissues. Knockdown of SET expression in a canine mammary tumor cell line CIP-m led to increased PP2A activity and decreased cell proliferation, colony formation, and in vivo tumor growth. We observed suppression of mTOR, β-catenin, and NFκB signaling by SET knockdown. The sensitivity of CIP-m cells to doxorubicin was decreased by SET knockdown, while SET knockdown in CIP-m cells did not affect sensitivity to 4-OH-tamoxifen, carboplatin, bortezomib, and X-ray radiation. These data suggest that SET plays important roles in the tumor progression of a subset of canine mammary tumor by suppressing PP2A activity and enhancing mTOR, β-catenin, and NFκB signaling.
Collapse
Affiliation(s)
- Satoru Kake
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, Okayama, Japan
| | - Shunya Tsuji
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shuhei Enjoji
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Sayaka Hanasaki
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroshi Hayase
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ryotaro Yabe
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuiko Tanaka
- The Laboratory of Veterinary Surgery and the Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- The Laboratory of Veterinary Surgery and the Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Chieh Chang
- Department of Veterinary Medicine, Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
32
|
Bartalucci N, Calabresi L, Balliu M, Martinelli S, Rossi MC, Villeval JL, Annunziato F, Guglielmelli P, Vannucchi AM. Inhibitors of the PI3K/mTOR pathway prevent STAT5 phosphorylation in JAK2V617F mutated cells through PP2A/CIP2A axis. Oncotarget 2017; 8:96710-96724. [PMID: 29228564 PMCID: PMC5722516 DOI: 10.18632/oncotarget.18073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the constitutively activated JAK/STAT pathway in JAK2V617F mutated cells by the JAK1/JAK2 inhibitor ruxolitinib resulted in clinical benefits in patients with myeloproliferative neoplasms. However, evidence of disease-modifying effects remains scanty; furthermore, some patients do not respond adequately to ruxolitinib, or have transient responses, thus novel treatment strategies are needed. Here we demonstrate that ruxolitinib causes incomplete inhibition of STAT5 in JAK2V617F mutated cells due to persistence of phosphorylated serine residues of STAT5b, that conversely are targeted by PI3K and mTORC1 inhibitors. We found that PI3K/mTOR-dependent phosphorylation of STAT5b serine residues involves Protein Phosphatase 2A and its repressor CIP2A. The levels of CIP2A were found increased in cells harboring the JAK2V617F mutation, and we provide evidence of a correlation between clinical responses and the extent of CIP2A downregulation in myelofibrosis patients receiving the mTOR inhibitor RAD001 in a phase II clinical trial. To achieve maximal inhibition of STAT5 phosphorylation, we combined ruxolitinib with BKM120, a PI3K inhibitor, and RAD001, an mTOR inhibitor, obtaining improved efficacy in JAK2V617F mutated cell lines, primary patients’ cells, and JAK2V617F knock-in mice. These findings contribute to understanding the effectiveness of PI3K/mTOR inhibitors in MPN and argue for the rationale to develop combination clinical trials.
Collapse
Affiliation(s)
- Niccolò Bartalucci
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,DENOTHE Excellence Center, Florence, Italy
| | - Laura Calabresi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,DENOTHE Excellence Center, Florence, Italy
| | - Manjola Balliu
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,DENOTHE Excellence Center, Florence, Italy
| | - Serena Martinelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,DENOTHE Excellence Center, Florence, Italy
| | - Maria Caterina Rossi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,DENOTHE Excellence Center, Florence, Italy
| | - Jean Luc Villeval
- INSERM, Unité Mixte de Recherche (UMR) 1170, Institut Gustave Roussy, Villejuif, France
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,DENOTHE Excellence Center, Florence, Italy
| | - Paola Guglielmelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,DENOTHE Excellence Center, Florence, Italy
| | - Alessandro M Vannucchi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,DENOTHE Excellence Center, Florence, Italy
| |
Collapse
|
33
|
Coccaro N, Tota G, Zagaria A, Anelli L, Specchia G, Albano F. SETBP1 dysregulation in congenital disorders and myeloid neoplasms. Oncotarget 2017; 8:51920-51935. [PMID: 28881700 PMCID: PMC5584301 DOI: 10.18632/oncotarget.17231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/30/2017] [Indexed: 01/19/2023] Open
Abstract
Myeloid malignancies are characterized by an extreme molecular heterogeneity, and many efforts have been made in the past decades to clarify the mechanisms underlying their pathogenesis. In this scenario SET binding protein 1 (SETBP1) has attracted a lot of interest as a new oncogene and potential marker, in addition to its involvement in the Schinzel-Giedon syndrome (SGS). Our review starts with the analysis of the structural characteristics of SETBP1, and extends to its corresponding physiological and pathological functions. Next, we describe the prevalence of SETBP1 mutations in congenital diseases and in hematologic malignancies, exploring how its alterations might contribute to tumor development and provoke clinical effects. Finally, we consider to understand how SETBP1 activation could be exploited in molecular medicine to enhance the cure rate.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| |
Collapse
|
34
|
Rahman MM, Prünte L, Lebender LF, Patel BS, Gelissen I, Hansbro PM, Morris JC, Clark AR, Verrills NM, Ammit AJ. The phosphorylated form of FTY720 activates PP2A, represses inflammation and is devoid of S1P agonism in A549 lung epithelial cells. Sci Rep 2016; 6:37297. [PMID: 27849062 PMCID: PMC5110966 DOI: 10.1038/srep37297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Protein phosphatase 2A (PP2A) activity can be enhanced pharmacologically by PP2A-activating drugs (PADs). The sphingosine analog FTY720 is the best known PAD and we have shown that FTY720 represses production of pro-inflammatory cytokines responsible for respiratory disease pathogenesis. Whether its phosphorylated form, FTY720-P, also enhances PP2A activity independently of the sphingosine 1-phosphate (S1P) pathway was unknown. Herein, we show that FTY720-P enhances TNF-induced PP2A phosphatase activity and significantly represses TNF-induced interleukin 6 (IL-6) and IL-8 mRNA expression and protein secretion from A549 lung epithelial cells. Comparing FTY720 and FTY720-P with S1P, we show that unlike S1P, the sphingosine analogs do not induce cytokine production on their own. In fact, FTY720 and FTY720-P significantly repress S1P-induced IL-6 and IL-8 production. We then examined their impact on expression of cyclooxygenase 2 (COX-2) and resultant prostaglandin E2 (PGE2) production. S1P did not increase production of this pro-inflammatory enzyme because COX-2 mRNA gene expression is NF-κB-dependent, and unlike TNF, S1P did not activate NF-κB. However, TNF-induced COX-2 mRNA expression and PGE2 secretion is repressed by FTY720 and FTY720-P. Hence, FTY720-P enhances PP2A activity and that PADs can repress production of pro-inflammatory cytokines and enzymes in A549 lung epithelial cells in a manner devoid of S1P agonism.
Collapse
Affiliation(s)
| | - Laura Prünte
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
| | | | | | - Ingrid Gelissen
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, NSW, 2308, Australia
| | | | - Andrew R. Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Nicole M. Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW, 2308, Australia
| | - Alaina J. Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
35
|
The broken "Off" switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA CLINICAL 2016; 6:87-99. [PMID: 27556014 PMCID: PMC4986044 DOI: 10.1016/j.bbacli.2016.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
Abstract
Aberrant activation of signal transduction pathways can transform a normal cell to a malignant one and can impart survival properties that render cancer cells resistant to therapy. A diverse set of cascades have been implicated in various cancers including those mediated by serine/threonine kinases such RAS, PI3K/AKT, and PKC. Signal transduction is a dynamic process involving both "On" and "Off" switches. Activating mutations of RAS or PI3K can be viewed as the switch being stuck in the "On" position resulting in continued signaling by a survival and/or proliferation pathway. On the other hand, inactivation of protein phosphatases such as the PP2A family can be seen as the defective "Off" switch that similarly can activate these pathways. A problem for therapeutic targeting of PP2A is that the enzyme is a hetero-trimer and thus drug targeting involves complex structures. More importantly, since PP2A isoforms generally act as tumor suppressors one would want to activate these enzymes rather than suppress them. The elucidation of the role of cellular inhibitors like SET and CIP2A in cancer suggests that targeting these proteins can have therapeutic efficacy by mechanisms involving PP2A activation. Furthermore, drugs such as FTY-720 can activate PP2A isoforms directly. This review will cover the current state of knowledge of PP2A role as a tumor suppressor in cancer cells and as a mediator of processes that can impact drug resistance and immune surveillance.
Collapse
|
36
|
Khatlani T, Pradhan S, Da Q, Shaw T, Buchman VL, Cruz MA, Vijayan KV. A Novel Interaction of the Catalytic Subunit of Protein Phosphatase 2A with the Adaptor Protein CIN85 Suppresses Phosphatase Activity and Facilitates Platelet Outside-in αIIbβ3 Integrin Signaling. J Biol Chem 2016; 291:17360-8. [PMID: 27334924 DOI: 10.1074/jbc.m115.704296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 11/06/2022] Open
Abstract
The transduction of signals generated by protein kinases and phosphatases are critical for the ability of integrin αIIbβ3 to support stable platelet adhesion and thrombus formation. Unlike kinases, it remains unclear how serine/threonine phosphatases engage the signaling networks that are initiated following integrin ligation. Because protein-protein interactions form the backbone of signal transduction, we searched for proteins that interact with the catalytic subunit of protein phosphatase 2A (PP2Ac). In a yeast two-hybrid study, we identified a novel interaction between PP2Ac and an adaptor protein CIN85 (Cbl-interacting protein of 85 kDa). Truncation and alanine mutagenesis studies revealed that PP2Ac binds to the P3 block ((396)PAIPPKKPRP(405)) of the proline-rich region in CIN85. The interaction of purified PP2Ac with CIN85 suppressed phosphatase activity. Human embryonal kidney 293 αIIbβ3 cells overexpressing a CIN85 P3 mutant, which cannot support PP2Ac binding, displayed decreased adhesion to immobilized fibrinogen. Platelets contain the ∼85 kDa CIN85 protein along with the PP2Ac-CIN85 complex. A myristylated cell-permeable peptide derived from residues 395-407 of CIN85 protein (P3 peptide) disrupted the platelet PP2Ac-CIN85 complex and decreased αIIbβ3 signaling dependent functions such as platelet spreading on fibrinogen and thrombin-mediated fibrin clot retraction. In a phospho-profiling study P3 peptide treated platelets also displayed decreased phosphorylation of several signaling proteins including Src and GSK3β. Taken together, these data support a role for the novel PP2Ac-CIN85 complex in supporting integrin-dependent platelet function by dampening the phosphatase activity.
Collapse
Affiliation(s)
| | | | - Qi Da
- From the Departments of Medicine
| | | | - Vladimir L Buchman
- the School of Biosciences, Cardiff University, Wales CF10 3AX, United Kingdom
| | - Miguel A Cruz
- From the Departments of Medicine, Pediatrics, and Molecular Physiology and Biophysics, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, Texas 77030 and
| | - K Vinod Vijayan
- From the Departments of Medicine, Pediatrics, and Molecular Physiology and Biophysics, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, Texas 77030 and
| |
Collapse
|
37
|
Fang C, Li L, Li J. Conditional Knockout in Mice Reveals the Critical Roles of Ppp2ca in Epidermis Development. Int J Mol Sci 2016; 17:ijms17050756. [PMID: 27213341 PMCID: PMC4881577 DOI: 10.3390/ijms17050756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
The epidermis is an important tissue in Homo sapines and other animals, and an abnormal epidermis will cause many diseases. Phosphatase 2A (PP2A) is an important serine and threonine phosphatase. The α isoform of the PP2A catalytic subunit (Ppp2ca gene encoding PP2Acα) is critical for cell proliferation, growth, metabolism and tumorigenesis. However, to date, no study has revealed its roles in epidermis development. To specifically investigate the roles of PP2Acα in epidermis development, we first generated Ppp2caflox/flox transgenic mice, and conditionally knocked out Ppp2ca in the epidermis driven by Krt14-Cre. Our study showed that Ppp2caflox/flox; Krt14-Cre mice had significant hair loss. In addition, histological analyses showed that the morphogenesis and hair regeneration cycle of hair follicles were disrupted in these mice. Moreover, Ppp2caflox/flox; Krt14-Cre mice had smaller size, melanin deposition and hyperproliferation at the base of the claws. Accordingly, our study demonstrates that PP2Acα plays important roles in both hair follicle and epidermis development. Additionally, the Ppp2caflox/flox mice generated in this study can serve as a useful transgene model to study the roles of PP2Acα in other developmental processes and diseases.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China.
| | - Lei Li
- Translational Medicine Center, Yancheng No. 1 People's Hospital, Yancheng 224000, China.
| | - Jianmin Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China.
- Model Animal Research Center of Nanjing Medical University, Nanjing 210029, China.
- Key Laboratory of National Reproductive Medicine Department of Cell Biology and Medical Genetics, Nanjing Medical University, Nanjing 210029, China.
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing, Nanjing 210029, China.
- Department of cell biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
38
|
Crivellaro S, Carrà G, Panuzzo C, Taulli R, Guerrasio A, Saglio G, Morotti A. The non-genomic loss of function of tumor suppressors: an essential role in the pathogenesis of chronic myeloid leukemia chronic phase. BMC Cancer 2016; 16:314. [PMID: 27184141 PMCID: PMC4869339 DOI: 10.1186/s12885-016-2346-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic Myeloid Leukemia was always referred as a unique cancer due to the apparent independence from tumor suppressors' deletions/mutations in the early stages of the disease. However, it is now well documented that even genetically wild-type tumor suppressors can be involved in tumorigenesis, when functionally inactivated. In particular, tumor suppressors' functions can be impaired by subtle variations of protein levels, changes in cellular compartmentalization and post-transcriptional/post-translational modifications, such as phosphorylation, acetylation, ubiquitination and sumoylation. Notably, tumor suppressors inactivation offers challenging therapeutic opportunities. The reactivation of an inactive and genetically wild-type tumor suppressor could indeed promote selective apoptosis of cancer cells without affecting normal cells. MAIN BODY Chronic Myeloid Leukemia (CML) could be considered as the paradigm for non-genomic loss of function of tumor suppressors due to the ability of BCR-ABL to directly promote functionally inactivation of several tumor suppressors. SHORT CONCLUSION In this review we will describe new insights on the role of FoxO, PP2A, p27, BLK, PTEN and other tumor suppressors in CML pathogenesis. Finally, we will describe strategies to promote tumor suppressors reactivation in CML.
Collapse
Affiliation(s)
- Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Orbassano, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy.
| |
Collapse
|
39
|
Arriazu E, Pippa R, Odero MD. Protein Phosphatase 2A as a Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2016; 6:78. [PMID: 27092295 PMCID: PMC4822158 DOI: 10.3389/fonc.2016.00078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignant disorder of hematopoietic progenitor cells in which several genetic and epigenetic aberrations have been described. Despite progressive advances in our understanding of the molecular biology of this disease, the outcome for most patients is poor. It is, therefore, necessary to develop more effective treatment strategies. Genetic aberrations affecting kinases have been widely studied in AML; however, the role of phosphatases remains underexplored. Inactivation of the tumor-suppressor protein phosphatase 2A (PP2A) is frequent in AML patients, making it a promising target for therapy. There are several PP2A inactivating mechanisms reported in this disease. Deregulation or specific post-translational modifications of PP2A subunits have been identified as a cause of PP2A malfunction, which lead to deregulation of proliferation or apoptosis pathways, depending on the subunit affected. Likewise, overexpression of either SET or cancerous inhibitor of protein phosphatase 2A, endogenous inhibitors of PP2A, is a recurrent event in AML that impairs PP2A activity, contributing to leukemogenesis progression. Interestingly, the anticancer activity of several PP2A-activating drugs (PADs) depends on interaction/sequestration of SET. Preclinical studies show that pharmacological restoration of PP2A activity by PADs effectively antagonizes leukemogenesis, and that these drugs have synergistic cytotoxic effects with conventional chemotherapy and kinase inhibitors, opening new possibilities for personalized treatment in AML patients, especially in cases with SET-dependent inactivation of PP2A. Here, we review the role of PP2A as a druggable tumor suppressor in AML.
Collapse
Affiliation(s)
- Elena Arriazu
- Hematology/Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Raffaella Pippa
- Centre for Gene Regulation and Expression, University of Dundee , Dundee , UK
| | - María D Odero
- Hematology/Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
40
|
Le Q, Maizels N. Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID. PLoS Genet 2015; 11:e1005411. [PMID: 26355458 PMCID: PMC4565580 DOI: 10.1371/journal.pgen.1005411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/02/2015] [Indexed: 12/12/2022] Open
Abstract
AID (Activation Induced Deaminase) deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome.
Collapse
Affiliation(s)
- Quy Le
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nancy Maizels
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine, Seattle, Washington, United States of America
- Departments of Immunology, Biochemistry and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|