1
|
Guo X, Zhang S, Lei C, Jia C, Yin R, Zhang M, Liu W, Lu D. Oligotrophic state reduces the time dependence of the observed survival fraction for heavy ion beam-irradiated Saccharomyces cerevisiae and provides new insights into DNA repair. Appl Environ Microbiol 2024; 90:e0111324. [PMID: 39365040 PMCID: PMC11497803 DOI: 10.1128/aem.01113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
Heavy ion beam (HIB) irradiation is widely utilized in studies of cosmic rays-induced cellular effects and microbial breeding. Establishing an accurate dose-survival relationship is crucial for selecting the optimal irradiation dose. Typically, after irradiating logarithmic-phase cell suspensions with HIB, the survival fraction (SF) is determined by the ratio of clonal-forming units in irradiated versus control groups. However, our findings indicated that SF measurements were time sensitive. For the Saccharomyces cerevisiae model, the observed SF initially declined and subsequently increased in a eutrophic state; conversely, in an oligotrophic state, it remained relatively stable within 120 minutes. This time effect of SF observations in the eutrophic state can be ascribed to HIB-exposed cells experiencing cell cycle arrest, whereas the control proliferated rapidly, resulting in an over-time disproportionate change in viable cell count. Therefore, an alternative involves irradiating oligotrophic cells, determining SF thereafter, and transferring cells to the eutrophic state to facilitate DNA repair-mutation. Transcriptomic comparisons under these two trophic states yield valuable insights into the DNA damage response. Although DNA repair was postponed in an oligotrophic state, cells proactively mobilized specific repair pathways to advance this process. Effective nutritional supplementation should occur within 120 minutes, beyond this window, a decline in SF indicates an irreversible loss of repair capability. Upon transition to the eutrophic state, S. cerevisiae swiftly adapted and completed the repair. This study helps to minimize time-dependent variability in SF observations and to ensure effective damage repair and mutation in microbial breeding using HIB or other mutagens. It also promotes the understanding of microbial responses to complex environments.IMPORTANCEMutation breeding is a vital means of developing excellent microbial resources. Consequently, understanding the mechanisms through which microorganisms respond to complex environments characterized by mutagens and specific physiological-biochemical states holds significant theoretical and practical values. This study utilized Saccharomyces cerevisiae as a microbial model and highly efficient heavy ion beam (HIB) radiation as a mutagen, it revealed the time dependence of observations of survival fractions (SF) in response to HIB radiation and proposed an alternative to avoid the indeterminacy that this variable brings. Meanwhile, by incorporating an oligotrophic state into the alternative, this study constructed a dynamic map of gene expression during the fast-repair and slow-repair stages. It also highlighted the influence of trophic states on DNA repair. The findings apply to the survival-damage repair-mutation effects of single-celled microorganisms in response to various mutagens and contribute to elucidating the biological mechanisms underlying microbial survival in complex environments.
Collapse
Affiliation(s)
- Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shengli Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Runsheng Yin
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
2
|
Rødland GE, Temelie M, Eek Mariampillai A, Hauge S, Gilbert A, Chevalier F, Savu DI, Syljuåsen RG. Potential Benefits of Combining Proton or Carbon Ion Therapy with DNA Damage Repair Inhibitors. Cells 2024; 13:1058. [PMID: 38920686 PMCID: PMC11201490 DOI: 10.3390/cells13121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The use of charged particle radiotherapy is currently increasing, but combination therapy with DNA repair inhibitors remains to be exploited in the clinic. The high-linear energy transfer (LET) radiation delivered by charged particles causes clustered DNA damage, which is particularly effective in destroying cancer cells. Whether the DNA damage response to this type of damage is different from that elicited in response to low-LET radiation, and if and how it can be targeted to increase treatment efficacy, is not fully understood. Although several preclinical studies have reported radiosensitizing effects when proton or carbon ion irradiation is combined with inhibitors of, e.g., PARP, ATR, ATM, or DNA-PKcs, further exploration is required to determine the most effective treatments. Here, we examine what is known about repair pathway choice in response to high- versus low-LET irradiation, and we discuss the effects of inhibitors of these pathways when combined with protons and carbon ions. Additionally, we explore the potential effects of DNA repair inhibitors on antitumor immune signaling upon proton and carbon ion irradiation. Due to the reduced effect on healthy tissue and better immune preservation, particle therapy may be particularly well suited for combination with DNA repair inhibitors.
Collapse
Affiliation(s)
- Gro Elise Rødland
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Mihaela Temelie
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Adrian Eek Mariampillai
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Sissel Hauge
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Antoine Gilbert
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France (F.C.)
| | - François Chevalier
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France (F.C.)
| | - Diana I. Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Randi G. Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| |
Collapse
|
3
|
LIU F, WEI Y, WANG Z. β-D-Glucan promotes NF-κB activation and ameliorates high-LET carbon-ion irradiation-induced human umbilical vein endothelial cell injury. Turk J Med Sci 2023; 53:1621-1634. [PMID: 38813508 PMCID: PMC10760591 DOI: 10.55730/1300-0144.5731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 09/21/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Heavy-ion irradiation seriously perturbs cellular homeostasis and thus damages cells. Vascular endothelial cells (ECs) play an important role in the pathological process of radiation damage. Protecting ECs from heavy-ion radiation is of great significance in the radioprotection of normal tissues. In this study, the radioprotective effect of β-D-glucan (BG) derived from Saccharomyces cerevisiae on human umbilical vein endothelial cell (EA.hy926) cytotoxicity produced by carbon-ion irradiation was examined and the probable mechanism was established. Materials and methods EA.hy926 cells were divided into seven groups: a control group; 1, 2, or 4 Gy radiation; and 10 μg/mL BG pretreatment for 24 h before 1, 2, or 4 Gy irradiation. Cell survival was assessed by colony formation assay. Cell cycles, apoptosis, DNA damage, and reactive oxygen species (ROS) levels were measured through flow cytometry. The level of malondialdehyde and antioxidant enzyme activities were analyzed using assay kits. The activation of NF-κB was analyzed using western blotting and a transcription factor assay kit. The expression of downstream target genes was detected by western blotting. Results BG pretreatment significantly increased the survival of irradiated cells, improved cell cycle progression, and decreased DNA damage and apoptosis. The levels of ROS and malondialdehyde were also decreased by BG. Further study indicated that BG increased the antioxidant enzyme activities, activated Src, and promoted NF-κB activation, especially for the p65, p50, and RelB subunits. The activated NF-κB upregulated the expression of antioxidant protein MnSOD, DNA damage-response and repair-related proteins BRCA2 and Hsp90α, and antiapoptotic protein Bcl-2. Conclusion Our results demonstrated that BG protects EA.hy926 cells from high linear-energy-transfer carbon-ion irradiation damage through the upregulation of prosurvival signaling triggered by the interaction of BG with its receptor. This confirms that BG is a promising radioprotective agent for heavy-ion exposure.
Collapse
Affiliation(s)
- Fang LIU
- International Genome Center, Jiangsu University, Zhenjiang, Jiangsu, P.R.
China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| | - Yanting WEI
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| | - Zhuanzi WANG
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| |
Collapse
|
4
|
Du TQ, Liu R, Zhang Q, Luo H, Chen Y, Tan M, Wang Q, Wu X, Liu Z, Sun S, Yang K, Tian J, Wang X. Does particle radiation have superior radiobiological advantages for prostate cancer cells? A systematic review of in vitro studies. Eur J Med Res 2022; 27:306. [PMID: 36572945 PMCID: PMC9793637 DOI: 10.1186/s40001-022-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Charged particle beams from protons to carbon ions provide many significant physical benefits in radiation therapy. However, preclinical studies of charged particle therapy for prostate cancer are extremely limited. The aim of this study was to comprehensively investigate the biological effects of charged particles on prostate cancer from the perspective of in vitro studies. METHODS We conducted a systematic review by searching EMBASE (OVID), Medline (OVID), and Web of Science databases to identify the publications assessing the radiobiological effects of charged particle irradiation on prostate cancer cells. The data of relative biological effectiveness (RBE), surviving fraction (SF), standard enhancement ratio (SER) and oxygen enhancement ratio (OER) were extracted. RESULTS We found 12 studies met the eligible criteria. The relative biological effectiveness values of proton and carbon ion irradiation ranged from 0.94 to 1.52, and 1.67 to 3.7, respectively. Surviving fraction of 2 Gy were 0.17 ± 0.12, 0.55 ± 0.20 and 0.53 ± 0.16 in carbon ion, proton, and photon irradiation, respectively. PNKP inhibitor and gold nanoparticles were favorable sensitizing agents, while it was presented poorer performance in GANT61. The oxygen enhancement ratio values of photon and carbon ion irradiation were 2.32 ± 0.04, and 1.77 ± 0.13, respectively. Charged particle irradiation induced more G0-/G1- or G2-/M-phase arrest, more expression of γ-H2AX, more apoptosis, and lower motility and/or migration ability than photon irradiation. CONCLUSIONS Both carbon ion and proton irradiation have advantages over photon irradiation in radiobiological effects on prostate cancer cell lines. Carbon ion irradiation seems to have further advantages over proton irradiation.
Collapse
Affiliation(s)
- Tian-Qi Du
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Ruifeng Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Qiuning Zhang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Hongtao Luo
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Yanliang Chen
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Mingyu Tan
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Qian Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Xun Wu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Zhiqiang Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Shilong Sun
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Kehu Yang
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Jinhui Tian
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Xiaohu Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
5
|
Utilizing Carbon Ions to Treat Medulloblastomas that Exhibit Chromothripsis. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
Novel radiation therapies with accelerated charged particles such as protons and carbon ions have shown encouraging results in oncology. We present recent applications as well as benefits and risks associated with their use.
Recent Findings
We discuss the use of carbon ion radiotherapy to treat a specific type of aggressive pediatric brain tumors, namely medulloblastomas with chromothripsis. Potential reasons for the resistance to conventional treatment, such as the presence of cancer stem cells with unique properties, are highlighted. Finally, advantages of particle radiation alone and in combination with other therapies to overcome resistance are featured.
Summary
Provided that future preclinical studies confirm the evidence of high effectiveness, favorable toxicity profiles, and no increased risk of secondary malignancy, carbon ion therapy may offer a promising tool in pediatric (neuro)oncology and beyond.
Collapse
|
6
|
Yang Z, Luo H, Feng S, Geng Y, Zhao X, Li C, Liu R, Zhang Q, Wang X. Anti‐proliferative and metastasis‐inhibiting effect of carbon ions on non‐small cell lung adenocarcinoma A549 cells. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zhen Yang
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Gansu University of Chinese Medicine Lanzhou China
| | - Hongtao Luo
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Lanzhou Heavy Ion Hospital Lanzhou China
| | - Shuangwu Feng
- The First Clinical Medical College Lanzhou University Lanzhou China
| | - Yichao Geng
- The First Clinical Medical College Lanzhou University Lanzhou China
| | - Xueshan Zhao
- The First Clinical Medical College Lanzhou University Lanzhou China
| | - Chengcheng Li
- The First Clinical Medical College Lanzhou University Lanzhou China
| | - Ruifeng Liu
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Lanzhou Heavy Ion Hospital Lanzhou China
| | - Qiuning Zhang
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Lanzhou Heavy Ion Hospital Lanzhou China
| | - Xiaohu Wang
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Lanzhou Heavy Ion Hospital Lanzhou China
| |
Collapse
|
7
|
Panek A, Miszczyk J. ATM and RAD51 Repair Pathways in Human Lymphocytes Irradiated with 70 MeV Therapeutic Proton Beam. Radiat Res 2021; 197:396-402. [PMID: 34958667 DOI: 10.1667/rade-21-00109.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Abstract
The repair of radiation-induced DNA damage is a key factor differentiating patients in terms of the therapeutic efficacy and toxicity to surrounding normal tissue. Proton energy substantially determines the types of cancers that can be treated. The present work investigated the DNA double-strand break repair systems, represented by phosphorylated ATM and Rad51. The status of proton therapy energy used to treat major types of cancer is summarized. Here, human lymphocytes from eight healthy donors (male and female) were irradiated with a spread-out Bragg peak using a therapeutic 70 MeV proton beam or with reference X rays. For both types of radiation, the kinetics of pATM and Rad51 repair protein activation (0-24 h) were estimated as determinants of homologous and non-homologous double-strand break repair. Additionally, γ-H2AX was used as the gold standard marker of double-strand breaks. Our results showed that at 30 min postirradiation there was significantly greater accumulation of γ-H2AX (0.6-fold), pATM (2.0-fold), and Rad51 (0.6-fold) in the proton-irradiated cells compared with the X-ray-treated cells. At 24 h post irradiation, for both types of radiation and all investigated proteins, the foci number was still significantly higher when compared with control. Furthermore, the mean value of pATM and Rad51 repair effectiveness was higher in cells exposed to protons than in cells exposed to X rays; however, the difference was significant only for pATM. The largest inter-individual differences in the repair capabilities were noted for Rad51. The association between the frequency of repair protein foci and the frequency of lymphocyte viability at 1 h post irradiation showed a positive correlation for protons but a negative correlation for X rays. These findings indicate that the accumulation of radiation-induced repair protein foci after proton versus X-ray irradiation differs between patients, consequently affecting the cellular responses to particle therapy and conventional radiation therapy.
Collapse
Affiliation(s)
- Agnieszka Panek
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31-342 Krakow, Poland
| | - Justyna Miszczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31-342 Krakow, Poland
| |
Collapse
|
8
|
Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C, Hernández-de la Cruz ON. Biological Adaptations of Tumor Cells to Radiation Therapy. Front Oncol 2021; 11:718636. [PMID: 34900673 PMCID: PMC8652287 DOI: 10.3389/fonc.2021.718636] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation therapy has been used worldwide for many decades as a therapeutic regimen for the treatment of different types of cancer. Just over 50% of cancer patients are treated with radiotherapy alone or with other types of antitumor therapy. Radiation can induce different types of cell damage: directly, it can induce DNA single- and double-strand breaks; indirectly, it can induce the formation of free radicals, which can interact with different components of cells, including the genome, promoting structural alterations. During treatment, radiosensitive tumor cells decrease their rate of cell proliferation through cell cycle arrest stimulated by DNA damage. Then, DNA repair mechanisms are turned on to alleviate the damage, but cell death mechanisms are activated if damage persists and cannot be repaired. Interestingly, some cells can evade apoptosis because genome damage triggers the cellular overactivation of some DNA repair pathways. Additionally, some surviving cells exposed to radiation may have alterations in the expression of tumor suppressor genes and oncogenes, enhancing different hallmarks of cancer, such as migration, invasion, and metastasis. The activation of these genetic pathways and other epigenetic and structural cellular changes in the irradiated cells and extracellular factors, such as the tumor microenvironment, is crucial in developing tumor radioresistance. The tumor microenvironment is largely responsible for the poor efficacy of antitumor therapy, tumor relapse, and poor prognosis observed in some patients. In this review, we describe strategies that tumor cells use to respond to radiation stress, adapt, and proliferate after radiotherapy, promoting the appearance of tumor radioresistance. Also, we discuss the clinical impact of radioresistance in patient outcomes. Knowledge of such cellular strategies could help the development of new clinical interventions, increasing the radiosensitization of tumor cells, improving the effectiveness of these therapies, and increasing the survival of patients.
Collapse
Affiliation(s)
- Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Marcos A. Muñiz-Lino
- Laboratorio de Patología y Medicina Bucal, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City, Mexico
| | - Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico City
| | | |
Collapse
|
9
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
10
|
Yang Z, Zhang Q, Luo H, Shao L, Liu R, Kong Y, Zhao X, Geng Y, Li C, Wang X. Effect of Carbon Ion Radiation Induces Bystander Effect on Metastasis of A549 Cells and Metabonomic Correlation Analysis. Front Oncol 2021; 10:601620. [PMID: 33738244 PMCID: PMC7962605 DOI: 10.3389/fonc.2020.601620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/31/2020] [Indexed: 01/18/2023] Open
Abstract
Objective To analyze the effect of carbon ion (12C6+) radiation may induce bystander effect on A549 cell metastasis and metabonomics. Methods A549 cell was irradiated with carbon ion to establish the clone survival model and the transwell matrix assay was applied to measure the effect of carbon ion on cell viability, migration, and invasion, respectively. Normal human embryonic lung fibroblasts (WI-38) were irradiated with carbon ions of 0 and 2 Gy and then transferred to A549 cell co-culture medium for 24 h. The migration and invasion of A549 cells were detected by the Transwell chamber. The analysis of metabonomic information in transfer medium by liquid phase mass spectrometry (LC-MS), The differential molecules were obtained by principal pomponent analysis (PCA) and the target proteins of significant differences (p = 1.7 × 10−3) obtained by combining with the STICH database. KEGG pathway was used to analyze the enrichment of the target protein pathway. Results Compared with 0 Gy, the colony formation, migration, and invasion of A549 cells were significantly inhibited by carbon ion 2 and 4 Gy irradiation, while the inhibitory effect was not significant after 1 Gy irradiation. Compared with 0 Gy, the culture medium 24 h after carbon ion 2 Gy irradiation significantly inhibited the metastasis of tumor cells (p = 0.03). LC-MS analysis showed that 23 differential metabolites were obtained in the cell culture medium 24 h after carbon ion 0 and 2 Gy irradiation (9 up-regulated and 14 down-regulated). Among them, two were up-regulated and two down-regulated (p = 2.9 × 10−3). 41 target proteins were corresponding to these four differential molecules. Through the analysis of the KEGG signal pathway, it was found that these target molecules were mainly enriched in purine metabolism, tyrosine metabolism, cysteine and methionine metabolism, peroxisome, and carbon metabolism. Neuroactive ligand-receptor interaction, calcium signaling pathway, arachidonic acid metabolism, and Fc epsilon RI signaling pathway. Conclusion The bystander effect induced by 2 Gy carbon ion radiation inhibits the metastasis of tumor cells, which indicates that carbon ions may change the metabolites of irradiated cells, so that it may indirectly affect the metabolism of tumor cell growth microenvironment, thus inhibiting the metastasis of malignant tumor cells.
Collapse
Affiliation(s)
- Zhen Yang
- The Basic Medical College of Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lihua Shao
- Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yarong Kong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xueshan Zhao
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yichao Geng
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chengcheng Li
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaohu Wang
- The Basic Medical College of Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China.,Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Belmans N, Gilles L, Welkenhuysen J, Vermeesen R, Baselet B, Salmon B, Baatout S, Jacobs R, Lucas S, Lambrichts I, Moreels M. In vitro Assessment of the DNA Damage Response in Dental Mesenchymal Stromal Cells Following Low Dose X-ray Exposure. Front Public Health 2021; 9:584484. [PMID: 33692980 PMCID: PMC7939020 DOI: 10.3389/fpubh.2021.584484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells contained within the dental mesenchymal stromal cell (MSC) population are crucial for tissue homeostasis. Assuring their genomic stability is therefore essential. Exposure of stem cells to ionizing radiation (IR) is potentially detrimental for normal tissue homeostasis. Although it has been established that exposure to high doses of ionizing radiation (IR) has severe adverse effects on MSCs, knowledge about the impact of low doses of IR is lacking. Here we investigated the effect of low doses of X-irradiation with medical imaging beam settings (<0.1 Gray; 900 mGray per hour), in vitro, on pediatric dental mesenchymal stromal cells containing dental pulp stem cells from deciduous teeth, dental follicle progenitor cells and stem cells from the apical papilla. DNA double strand break (DSB) formation and repair kinetics were monitored by immunocytochemistry of γH2AX and 53BP1 as well as cell cycle progression by flow cytometry and cellular senescence by senescence-associated β-galactosidase assay and ELISA. Increased DNA DSB repair foci, after exposure to low doses of X-rays, were measured as early as 30 min post-irradiation. The number of DSBs returned to baseline levels 24 h after irradiation. Cell cycle analysis revealed marginal effects of IR on cell cycle progression, although a slight G2/M phase arrest was seen in dental pulp stromal cells from deciduous teeth 72 h after irradiation. Despite this cell cycle arrest, no radiation-induced senescence was observed. In conclusion, low X-ray IR doses (< 0.1 Gray; 900 mGray per hour), were able to induce significant increases in the number of DNA DSBs repair foci, but cell cycle progression seems to be minimally affected. This highlights the need for more detailed and extensive studies on the effects of exposure to low IR doses on different mesenchymal stromal cells.
Collapse
Affiliation(s)
- Niels Belmans
- Morphology Group, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.,Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| | - Liese Gilles
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium.,Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Randy Vermeesen
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| | - Bjorn Baselet
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| | - Benjamin Salmon
- Université de Paris, Orofacial Pathologies, Imaging and Biotherapies UR2496 Lab, Montrouge, France.,Dental Medicine Department, AP-HP, Bretonneau hospital, Paris, France
| | - Sarah Baatout
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| | - Reinhilde Jacobs
- Oral and Maxillofacial Surgery, Dentomaxillofacial Imaging Center, Department of Imaging and Pathology, OMFS-IMPATH Research Group, and University Hospitals, Katholieke Universiteit Leuven, Leuven, Belgium.,Department Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN/PMR), Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Ivo Lambrichts
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| | - Marjan Moreels
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| |
Collapse
|
12
|
Impact of hypoxia on the double-strand break repair after photon and carbon ion irradiation of radioresistant HNSCC cells. Sci Rep 2020; 10:21357. [PMID: 33288855 PMCID: PMC7721800 DOI: 10.1038/s41598-020-78354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) induced by photon irradiation are the most deleterious damage for cancer cells and their efficient repair may contribute to radioresistance, particularly in hypoxic conditions. Carbon ions (C-ions) act independently of the oxygen concentration and trigger complex- and clustered-DSBs difficult to repair. Understanding the interrelation between hypoxia, radiation-type, and DNA-repair is therefore essential for overcoming radioresistance. The DSBs signaling and the contribution of the canonical non-homologous end-joining (NHEJ-c) and homologous-recombination (HR) repair pathways were assessed by immunostaining in two cancer-stem-cell (CSCs) and non-CSCs HNSCC cell lines. Detection and signaling of DSBs were lower in response to C-ions than photons. Hypoxia increased the decay-rate of the detected DSBs (γH2AX) in CSCs after photons and the initiation of DSB repair signaling (P-ATM) in CSCs and non-CSCs after both radiations, but not the choice of DSB repair pathway (53BP1). Additionally, hypoxia increased the NHEJ-c (DNA-PK) and the HR pathway (RAD51) activation only after photons. Furthermore, the involvement of the HR seemed to be higher in CSCs after photons and in non-CSCs after C-ions. Taken together, our results show that C-ions may overcome the radioresistance of HNSCC associated with DNA repair, particularly in CSCs, and independently of a hypoxic microenvironment.
Collapse
|
13
|
Ristic-Fira AM, Keta OD, Petković VD, Cammarata FP, Petringa G, Cirrone PG, Cuttone G, Incerti S, Petrović IM. DNA damage assessment of human breast and lung carcinoma cells irradiated with protons and carbon ions. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1825035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Otilija D. Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D. Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Francesco P. Cammarata
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
- CNR-IBFM, UOS, Cefalù, Italy
| | - Giada Petringa
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Pablo G.A. Cirrone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Giacomo Cuttone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | | | - Ivan M. Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Zhang J, Si J, Gan L, Zhou R, Guo M, Zhang H. Harnessing the targeting potential of differential radiobiological effects of photon versus particle radiation for cancer treatment. J Cell Physiol 2020; 236:1695-1711. [PMID: 32691425 DOI: 10.1002/jcp.29960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/09/2020] [Indexed: 01/04/2023]
Abstract
Radiotherapy is one of the major modalities for malignancy treatment. High linear energy transfer (LET) charged-particle beams, like proton and carbon ions, exhibit favourable depth-dose distributions and radiobiological enhancement over conventional low-LET photon irradiation, thereby marking a new era in high precision medicine. Tumour cells have developed multicomponent signal transduction networks known as DNA damage responses (DDRs), which initiate cell-cycle checkpoints and induce double-strand break (DSB) repairs in the nucleus by nonhomologous end joining or homologous recombination pathways, to manage ionising radiation (IR)-induced DNA lesions. DNA damage induction and DSB repair pathways are reportedly dependent on the quality of radiation delivered. In this review, we summarise various types of DNA lesion and DSB repair mechanisms, upon irradiation with low and high-LET radiation, respectively. We also analyse factors influencing DNA repair efficiency. Inhibition of DNA damage repair pathways and dysfunctional cell-cycle checkpoint sensitises tumour cells to IR. Radio-sensitising agents, including DNA-PK inhibitors, Rad51 inhibitors, PARP inhibitors, ATM/ATR inhibitors, chk1 inhibitors, wee1 kinase inhibitors, Hsp90 inhibitors, and PI3K/AKT/mTOR inhibitors have been found to enhance cell killing by IR through interference with DDRs, cell-cycle arrest, or other cellular processes. The cotreatment of these inhibitors with IR may represent a promising therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Gan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Zhou
- Research Center for Ecological Impacts and Environmental Health Effects of Toxic and Hazardous Chemicals, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| | - Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Chevalier F, Hamdi DH, Lepleux C, Temelie M, Nicol A, Austry JB, Lesueur P, Vares G, Savu D, Nakajima T, Saintigny Y. High LET Radiation Overcomes In Vitro Resistance to X-Rays of Chondrosarcoma Cell Lines. Technol Cancer Res Treat 2020; 18:1533033819871309. [PMID: 31495269 PMCID: PMC6732854 DOI: 10.1177/1533033819871309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chondrosarcomas are malignant tumors of the cartilage that are chemoresistant and
radioresistant to X-rays. This restricts the treatment options essential to surgery. In
this study, we investigated the sensitivity of chondrosarcoma to X-rays and C-ions
in vitro. The sensitivity of 4 chondrosarcoma cell lines (SW1353,
CH2879, OUMS27, and L835) was determined by clonogenic survival assays and cell cycle
progression. In addition, biomarkers of DNA damage responses were analyzed in the SW1353
cell line. Chondrosarcoma cells showed a heterogeneous sensitivity toward irradiation.
Chondrosarcoma cell lines were more sensitive to C-ions exposure compared to X-rays. Using
D10 values, the relative biological effectiveness of C-ions was higher (relative
biological effectiveness = 5.5) with cells resistant to X-rays (CH2879) and lower
(relative biological effectiveness = 3.7) with sensitive cells (L835). C-ions induced more
G2 phase blockage and micronuclei in SW1353 cells as compared to X-rays with the same
doses. Persistent unrepaired DNA damage was also higher following C-ions irradiation.
These results indicate that chondrosarcoma cell lines displayed a heterogeneous response
to conventional radiation treatment; however, treatment with C-ions irradiation was more
efficient in killing chondrosarcoma cells, compared to X-rays.
Collapse
Affiliation(s)
- Francois Chevalier
- 1 CEA GANIL, Caen, France.,2 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
| | - Dounia Houria Hamdi
- 1 CEA GANIL, Caen, France.,2 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
| | - Charlotte Lepleux
- 1 CEA GANIL, Caen, France.,2 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
| | - Mihaela Temelie
- 1 CEA GANIL, Caen, France.,2 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.,3 Centre Paul Strauss, Strasbourg, Alsace, France
| | - Anaïs Nicol
- 3 Centre Paul Strauss, Strasbourg, Alsace, France
| | | | - Paul Lesueur
- 4 Centre Francois Baclesse Centre de Lutte Contre le Cancer, Caen, France
| | - Guillaume Vares
- 5 Okinawa Institute of Science and Technology, Kunigami-gun, Okinawa, Japan
| | - Diana Savu
- 2 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
| | | | | |
Collapse
|
16
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
17
|
Peng Y, Fu S, Hu W, Qiu Y, Zhang L, Tan R, Sun LQ. Glutamine synthetase facilitates cancer cells to recover from irradiation-induced G2/M arrest. Cancer Biol Ther 2019; 21:43-51. [PMID: 31526079 DOI: 10.1080/15384047.2019.1665394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Resistance to radiation of cancer cells can be either intrinsic or acquired, leading to treatment failure. In response to DNA damage caused by IR, cancer cells are arrested in cell cycle showing limited proliferation and increased apoptosis. However, radiation-resistant cells are able to overcome the cell cycle block and proceed to proliferation, for which the detailed mechanism remains to be elucidated. In the present study, we showed that radioresistant cells exhibited a recoverable G2/M phase during prolonged cell cycle and manifested lower apoptosis rate and more colony formation. RNA-seq analysis revealed that glutamine synthetase (GS, GLUL) gene was highly expressed in radioresistant cancer cells in comparison with the parental cells, which was in accordance with the G2/M arrest after ionizing radiation. Knocking out of GS in radioresistant cells resulted in a delayed G2/M recovery and lowered proliferation rate after ionizing radiation treatment, which was accompanied with increased inhibitory phosphorylation of CDK1 at Y15 and downregulated Cdc25B, a dual specific phosphatase of CDK1. Moreover, there was an enhanced complex formation of CDK1 and Cyclin B1 when the cells were rescued by re-introducing GS. In vivo, knocking down of GS significantly sensitized CNE2-R xenografts to RT in mice. In this study, we demonstrate a novel role of glutamine synthetase independent of metabolic function in promoting recovery from G2/M arrest caused by ionizing radiation, thus, causing cancer cell resistance to radiotherapy.
Collapse
Affiliation(s)
- Yanni Peng
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Shujun Fu
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of MolecularRadiation Oncology Hunan Province, Changsha, China
| | - Wenfeng Hu
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of MolecularRadiation Oncology Hunan Province, Changsha, China
| | - Yanfang Qiu
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhang
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of MolecularRadiation Oncology Hunan Province, Changsha, China
| | - Rong Tan
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of MolecularRadiation Oncology Hunan Province, Changsha, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
| | - Lun-Quan Sun
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of MolecularRadiation Oncology Hunan Province, Changsha, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China.,National Clinical Research Center for Gerontology, Changsha, China
| |
Collapse
|
18
|
Belmans N, Gilles L, Virag P, Hedesiu M, Salmon B, Baatout S, Lucas S, Jacobs R, Lambrichts I, Moreels M. Method validation to assess in vivo cellular and subcellular changes in buccal mucosa cells and saliva following CBCT examinations. Dentomaxillofac Radiol 2019; 48:20180428. [PMID: 30912976 PMCID: PMC6747439 DOI: 10.1259/dmfr.20180428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Cone-beam CT (CBCT) is a medical imaging technique used in dental medicine. However, there are no conclusive data available indicating that exposure to X-ray doses used by CBCT are harmless. We aim, for the first time, to characterize the potential age-dependent cellular and subcellular effects related to exposure to CBCT imaging. Current objective is to describe and validate the protocol for characterization of cellular and subcellular changes after diagnostic CBCT. METHODS Development and validation of a dedicated two-part protocol: 1) assessing DNA double strand breaks (DSBs) in buccal mucosal (BM) cells and 2) oxidative stress measurements in saliva samples. BM cells and saliva samples are collected prior to and 0.5 h after CBCT examination. BM cells are also collected 24 h after CBCT examination. DNA DSBs are monitored in BM cells via immunocytochemical staining for γH2AX and 53BP1. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and total antioxidant capacity are measured in saliva to assess oxidative damage. RESULTS Validation experiments show that sufficient BM cells are collected (97.1 ± 1.4 %) and that γH2AX/53BP1 foci can be detected before and after CBCT examination. Collection and analysis of saliva samples, either sham exposed or exposed to IR, show that changes in 8-oxo-dG and total antioxidant capacity can be detected in saliva samples after CBCT examination. CONCLUSION The DIMITRA Research Group presents a two-part protocol to analyze potential age-related biological differences following CBCT examinations. This protocol was validated for collecting BM cells and saliva and for analyzing these samples for DNA DSBs and oxidative stress markers, respectively.
Collapse
Affiliation(s)
| | - Liese Gilles
- Morphology Group, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Piroska Virag
- ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, Department of Oral and Maxillofacial Radiology, Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, Department of Oral and Maxillofacial Radiology, Cluj-Napoca, Romania
| | - Benjamin Salmon
- Department of Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine, Paris Descartes University - Sorbonne Paris Cité, Bretonneau Hospital, HUPNVS, AP-HP, Paris, France
| | - Sarah Baatout
- Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium
| | - Stéphane Lucas
- University of Namur, Research Institute for Life Sciences, Namur, Belgium
| | | | - Ivo Lambrichts
- Morphology Group, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Marjan Moreels
- Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium
| |
Collapse
|
19
|
Aninditha KP, Weber KJ, Brons S, Debus J, Hauswald H. In vitro sensitivity of malignant melanoma cells lines to photon and heavy ion radiation. Clin Transl Radiat Oncol 2019; 17:51-56. [PMID: 31211251 PMCID: PMC6562297 DOI: 10.1016/j.ctro.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/18/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Superior proliferation inhibiting effects of heavy ions compared to photons. Increased G2/M arrest on heavy ion radiation compared to photon irradiation. Heavy ions might overcome radioresistance in malignant melanoma cells.
Background The role of radiotherapy in malignant melanoma is still in discussion due to its relative resistance to radiation. In various literature, heavy ions show a higher relative biological effectiveness than photons. The aim of this work is to evaluate the radiotherapeutical effect from photons as well as heavy ions on malignant melanoma cells and to indicate the possible radiosensitivity based on its proliferation-inhibitory effect. Methods Two different cell lines of malignant melanoma, WM115 (primary tumor) and WM266-4 (metastatic site, skin) were used in this in vitro study. The cells were treated with photons or heavy ions (C12 and O16 ions). Cell-proliferation assay using hemocytometer was used for the quantitative and qualitative evaluation of cell growth. Furthermore, flow cytometry was also used to analyze the cell cycle distribution. Results Heavy ions compared to photons and between the two heavy ion modalities, O16 ions showed an improved suppression of cell growth in both cell lines. Furthermore, a G2/M arrest was detected in both cell lines after all radiotherapy modalities – with the arrest increasing with the dose applied. Conclusion Heavy ions showed a greater inhibitory effect on cell proliferation compared to photons and an increased G2/M arrest. Therefore, C12 and O16 heavy ions might overcome the relative radioresistance of malignant melanoma to photons. Further research is warranted.
Collapse
Key Words
- Cell experiment
- DMEM, Dulbecco’s modified Eagle’s Medium
- DNA, deoxyribonucleic acid
- EDTA, ethylendiamin-tetraacetate
- FCS, fetal calf serum
- HIT, Heidelberg Ion-Beam Therapy Centre
- In vitro
- Ion beam therapy
- KeV, kilo electron volt
- LET, linear energy transfer
- MM, malignant melanoma
- Malignant melanoma
- MeV, mega electron volt
- PBS, phosphate-buffered saline
- Particle beam therapy
- RBE, relative biological effectiveness
- RNA, ribonucleic acid
- RT, radiotherapy
- Radiotherapy
Collapse
Affiliation(s)
- K P Aninditha
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - K J Weber
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - S Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - J Debus
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), 69120 Heidelberg, Germany.,Clinical Cooperation Unit E050, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,DKTK Site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - H Hauswald
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), 69120 Heidelberg, Germany.,Clinical Cooperation Unit E050, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Liu F, Wang Z, Li W, Zhou L, Du Y, Zhang M, Wei Y. The mechanisms for the radioprotective effect of beta-d-glucan on high linear-energy-transfer carbon ion irradiated mice. Int J Biol Macromol 2019; 131:282-292. [DOI: 10.1016/j.ijbiomac.2019.03.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
|
21
|
Konings K, Vandevoorde C, Belmans N, Vermeesen R, Baselet B, Walleghem MV, Janssen A, Isebaert S, Baatout S, Haustermans K, Moreels M. The Combination of Particle Irradiation With the Hedgehog Inhibitor GANT61 Differently Modulates the Radiosensitivity and Migration of Cancer Cells Compared to X-Ray Irradiation. Front Oncol 2019; 9:391. [PMID: 31139573 PMCID: PMC6527843 DOI: 10.3389/fonc.2019.00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the advantages of charged particles compared to conventional radiotherapy, a vast increase is noted in the use of particle therapy in the clinic. These advantages include an improved dose deposition and increased biological effectiveness. Metastasis is still an important cause of mortality in cancer patients and evidence has shown that conventional radiotherapy can increase the formation of metastasizing cells. An important pathway involved in the process of metastasis is the Hedgehog (Hh) signaling pathway. Recent studies have demonstrated that activation of the Hh pathway, in response to X-rays, can lead to radioresistance and increased migratory, and invasive capabilities of cancer cells. Here, we investigated the effect of X-rays, protons, and carbon ions on cell survival, migration, and Hh pathway gene expression in prostate cancer (PC3) and medulloblastoma (DAOY) cell lines. In addition, the potential modulation of cell survival and migration by the Hh pathway inhibitor GANT61 was investigated. We found that in both cell lines, carbon ions were more effective in decreasing cell survival and migration as well as inducing more significant alterations in the Hh pathway genes compared to X-rays or protons. In addition, we show here for the first time that the Hh inhibitor GANT61 is able to sensitize DAOY medulloblastoma cells to particle radiation (proton and carbon ion) but not to conventional X-rays. This important finding demonstrates that the results of combination treatment strategies with X-ray radiotherapy cannot be automatically extrapolated to particle therapy and should be investigated separately. In conclusion, combining GANT61 with particle radiation could offer a benefit for specific cancer types with regard to cancer cell survival.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium.,Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Niels Belmans
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium.,Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Merel Van Walleghem
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Sofie Isebaert
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| |
Collapse
|
22
|
Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, Overgaard J, Horsman MR. Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers (Basel) 2019; 11:E60. [PMID: 30634444 PMCID: PMC6356970 DOI: 10.3390/cancers11010060] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.
Collapse
Affiliation(s)
- Pernille B Elming
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Brita S Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Arlene L Oei
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Johannes Crezee
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
23
|
Ray S, Cekanaviciute E, Lima IP, Sørensen BS, Costes SV. Comparing Photon and Charged Particle Therapy Using DNA Damage Biomarkers. Int J Part Ther 2018; 5:15-24. [PMID: 31773017 DOI: 10.14338/ijpt-18-00018.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Treatment modalities for cancer radiation therapy have become increasingly diversified given the growing number of facilities providing proton and carbon-ion therapy in addition to the more historically accepted photon therapy. An understanding of high-LET radiobiology is critical for optimization of charged particle radiation therapy and potential DNA damage response. In this review, we present a comprehensive summary and comparison of these types of therapy monitored primarily by using DNA damage biomarkers. We focus on their relative profiles of dose distribution and mechanisms of action from the level of nucleic acid to tumor cell death.
Collapse
Affiliation(s)
- Shayoni Ray
- USRA/NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | | | | |
Collapse
|
24
|
Hellweg CE, Chishti AA, Diegeler S, Spitta LF, Henschenmacher B, Baumstark-Khan C. Molecular Signaling in Response to Charged Particle Exposures and its Importance in Particle Therapy. Int J Part Ther 2018; 5:60-73. [PMID: 31773020 PMCID: PMC6871585 DOI: 10.14338/ijpt-18-00016.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Energetic, charged particles elicit an orchestrated DNA damage response (DDR) during their traversal through healthy tissues and tumors. Complex DNA damage formation, after exposure to high linear energy transfer (LET) charged particles, results in DNA repair foci formation, which begins within seconds. More protein modifications occur after high-LET, compared with low-LET, irradiation. Charged-particle exposure activates several transcription factors that are cytoprotective or cytodestructive, or that upregulate cytokine and chemokine expression, and are involved in bystander signaling. Molecular signaling for a survival or death decision in different tumor types and healthy tissues should be studied as prerequisite for shaping sensitizing and protective strategies. Long-term signaling and gene expression changes were found in various tissues of animals exposed to charged particles, and elucidation of their role in chronic and late effects of charged-particle therapy will help to develop effective preventive measures.
Collapse
Affiliation(s)
- Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Arif Ali Chishti
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Sebastian Diegeler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Luis F. Spitta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Bernd Henschenmacher
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Christa Baumstark-Khan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| |
Collapse
|
25
|
Srivastava P, Sarma A, Chaturvedi CM. Targeting DNA repair with PNKP inhibition sensitizes radioresistant prostate cancer cells to high LET radiation. PLoS One 2018; 13:e0190516. [PMID: 29320576 PMCID: PMC5762163 DOI: 10.1371/journal.pone.0190516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
High linear energy transfer (LET) radiation or heavy ion such as carbon ion radiation is used as a method for advanced radiotherapy in the treatment of cancer. It has many advantages over the conventional photon based radiotherapy using Co-60 gamma or high energy X-rays from a Linear Accelerator. However, charged particle therapy is very costly. One way to reduce the cost as well as irradiation effects on normal cells is to reduce the dose of radiation by enhancing the radiation sensitivity through the use of a radiomodulator. PNKP (polynucleotide kinase/phosphatase) is an enzyme which plays important role in the non-homologous end joining (NHEJ) DNA repair pathway. It is expected that inhibition of PNKP activity may enhance the efficacy of the charged particle irradiation in the radioresistant prostate cancer cell line PC-3. To test this hypothesis, we investigated cellular radiosensitivity by clonogenic cell survival assay in PC-3 cells.12Carbon ion beam of62 MeVenergy (equivalent 5.16 MeV/nucleon) and with an entrance LET of 287 kev/μm was used for the present study. Apoptotic parameters such as nuclear fragmentation and caspase-3 activity were measured by DAPI staining, nuclear ladder assay and colorimetric caspase-3method. Cell cycle arrest was determined by FACS analysis. Cell death was enhanced when carbon ion irradiation is combined with PNKPi (PNKP inhibitor) to treat cells as compared to that seen for PNKPi untreated cells. A low concentration (10μM) of PNKPi effectively radiosensitized the PC-3 cells in terms of reduction of dose in achieving the same survival fraction. PC-3 cells underwent significant apoptosis and cell cycle arrest too was enhanced at G2/M phase when carbon ion irradiation was combined with PNKPi treatment. Our findings suggest that combined treatment of carbon ion irradiation and PNKP inhibition could enhance cellular radiosensitivity in a radioresistant prostate cancer cell line PC-3. The synergistic effect of PNKPi and carbon ion irradiation could be used as a promising method for carbon-ion therapy in radioresistant cells.
Collapse
Affiliation(s)
- Pallavi Srivastava
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Asitikantha Sarma
- Radiation Biology Laboratory, Inter University Accelerator Centre, New Delhi, India
| | | |
Collapse
|
26
|
Baselet B, Azimzadeh O, Erbeldinger N, Bakshi MV, Dettmering T, Janssen A, Ktitareva S, Lowe DJ, Michaux A, Quintens R, Raj K, Durante M, Fournier C, Benotmane MA, Baatout S, Sonveaux P, Tapio S, Aerts A. Differential Impact of Single-Dose Fe Ion and X-Ray Irradiation on Endothelial Cell Transcriptomic and Proteomic Responses. Front Pharmacol 2017; 8:570. [PMID: 28993729 PMCID: PMC5622284 DOI: 10.3389/fphar.2017.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial aspect for the development of protective measures for cancer patients undergoing particle therapy and for astronauts in space.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium.,Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de LouvainBrussels, Belgium
| | - Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental HealthMunich, Germany
| | - Nadine Erbeldinger
- GSI Helmholtz Centre for Heavy Ion ResearchDarmstadt, Germany.,Technical University DarmstadtDarmstadt, Germany
| | - Mayur V Bakshi
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental HealthMunich, Germany
| | - Till Dettmering
- GSI Helmholtz Centre for Heavy Ion ResearchDarmstadt, Germany
| | - Ann Janssen
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | | | - Donna J Lowe
- Department of Radiation Effects, Centre for Radiation, Chemical and Environmental Hazards, Public Health EnglandDidcot, United Kingdom
| | - Arlette Michaux
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | - Kenneth Raj
- Department of Radiation Effects, Centre for Radiation, Chemical and Environmental Hazards, Public Health EnglandDidcot, United Kingdom
| | - Marco Durante
- GSI Helmholtz Centre for Heavy Ion ResearchDarmstadt, Germany.,Technical University DarmstadtDarmstadt, Germany
| | | | - Mohammed A Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium.,Department of Molecular Biotechnology, Ghent UniversityGhent, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de LouvainBrussels, Belgium
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental HealthMunich, Germany
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| |
Collapse
|
27
|
Ni J, Bucci J, Chang L, Malouf D, Graham P, Li Y. Targeting MicroRNAs in Prostate Cancer Radiotherapy. Theranostics 2017; 7:3243-3259. [PMID: 28900507 PMCID: PMC5595129 DOI: 10.7150/thno.19934] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most important treatment options for localized early-stage or advanced-stage prostate cancer (CaP). Radioresistance (relapse after radiotherapy) is a major challenge for the current radiotherapy. There is great interest in investigating mechanisms of radioresistance and developing novel treatment strategies to overcome radioresistance. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level, participating in numerous physiological and pathological processes including cancer invasion, progression, metastasis and therapeutic resistance. Emerging evidence indicates that miRNAs play a critical role in the modulation of key cellular pathways that mediate response to radiation, influencing the radiosensitivity of the cancer cells through interplaying with other biological processes such as cell cycle checkpoints, apoptosis, autophagy, epithelial-mesenchymal transition and cancer stem cells. Here, we summarize several important miRNAs in CaP radiation response and then discuss the regulation of the major signalling pathways and biological processes by miRNAs in CaP radiotherapy. Finally, we emphasize on microRNAs as potential predictive biomarkers and/or therapeutic targets to improve CaP radiosensitivity.
Collapse
|
28
|
Abstract
The radiation stress response can have broad impact. In this Failla Award presentation it is discussed in three components using terms relevant to the current political season as to how the radiation stress response can be applied to the benefit for cancer care and as service to society. Of the people refers to the impact of radiation on cells, tissues and patients. The paradigm our laboratory uses is radiation as a drug, called "focused biology", and physics as "nano-IMRT" because at the nanometer level physics and biology merge. By the people refers to how the general population often reacts to the word "radiation" and how the Radiation Research Society can better enable society to deal with the current realities of radiation in our lives. For the people refers to the potential for radiation oncology and radiation sciences to improve the lives of millions of people globally who are now beyond benefits of cancer treatment and research.
Collapse
Affiliation(s)
- C. Norman Coleman
- Associate Director, Radiation Research Program, Division of Cancer Treatment and Diagnosis; Senior Investigator, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and Senior Medical Advisor, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington DC
| |
Collapse
|
29
|
Panzetta V, De Menna M, Musella I, Pugliese M, Quarto M, Netti PA, Fusco S. X-rays effects on cytoskeleton mechanics of healthy and tumor cells. Cytoskeleton (Hoboken) 2016; 74:40-52. [DOI: 10.1002/cm.21334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Valeria Panzetta
- Center for Advanced Biomaterials for Health Care@CRIB - Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 Napoli 80125 Italy
| | - Marta De Menna
- Department of Experimental and Clinic Medicine; University of Catanzaro Magna Graecia; Catanzaro Italy
| | - Ida Musella
- Center for Advanced Biomaterials for Health Care@CRIB - Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 Napoli 80125 Italy
| | - Mariagabriella Pugliese
- Dipartimento di Fisica; Università Federico II and INFN-Sezione di Napoli; Monte S. Angelo, Via Cintia Napoli 80126 Italy
| | - Maria Quarto
- Dipartimento di Fisica; Università Federico II and INFN-Sezione di Napoli; Monte S. Angelo, Via Cintia Napoli 80126 Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Health Care@CRIB - Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 Napoli 80125 Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II; P.le Tecchio 80 Napoli 80125 Italy
| | - Sabato Fusco
- Center for Advanced Biomaterials for Health Care@CRIB - Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 Napoli 80125 Italy
| |
Collapse
|