1
|
Kotecha R, La Rosa A, Brown PD, Vogelbaum MA, Navarria P, Bodensohn R, Niyazi M, Karschnia P, Minniti G. Multidisciplinary management strategies for recurrent brain metastasis after prior radiotherapy: An overview. Neuro Oncol 2025; 27:597-615. [PMID: 39495010 DOI: 10.1093/neuonc/noae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
As cancer patients with intracranial metastatic disease experience increasingly prolonged survival, the diagnosis and management of recurrent brain metastasis pose significant challenges in clinical practice. Prior to deciding upon a management strategy, it is necessary to ascertain whether patients have recurrent/progressive disease vs adverse radiation effect, classify the recurrence as local or distant in the brain, evaluate the extent of intracranial disease (size, number and location of lesions, and brain metastasis velocity), the status of extracranial disease, and enumerate the interval from the last intracranially directed intervention to disease recurrence. A spectrum of salvage local treatment options includes surgery (resection and laser interstitial thermal therapy [LITT]) with or without adjuvant radiotherapy in the forms of external beam radiotherapy, intraoperative radiotherapy, or brachytherapy. Nonoperative salvage local treatments also range from single fraction and fractionated stereotactic radiosurgery (SRS/FSRS) to whole brain radiation therapy (WBRT). Optimal integration of systemic therapies, preferably with central nervous system (CNS) activity, may also require reinterrogation of brain metastasis tissue to identify actionable molecular alterations specific to intracranial progressive disease. Ultimately, the selection of the appropriate management approach necessitates a sophisticated understanding of patient, tumor, and prior treatment-related factors and is often multimodal; hence, interdisciplinary evaluation for such patients is indispensable.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Translational Medicine, Hebert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Hospital Universitario La Paz, Madrid, Spain
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, Milan, Italy
| | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology, and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
2
|
Harary PM, Rajaram S, Chen MS, Hori YS, Park DJ, Chang SD. Genomic predictors of radiation response: recent progress towards personalized radiotherapy for brain metastases. Cell Death Discov 2024; 10:501. [PMID: 39695143 DOI: 10.1038/s41420-024-02270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Radiotherapy remains a key treatment modality for both primary and metastatic brain tumors. Significant technological advances in precision radiotherapy, such as stereotactic radiosurgery and intensity-modulated radiotherapy, have contributed to improved clinical outcomes. Notably, however, molecular genetics is not yet widely used to inform brain radiotherapy treatment. By comparison, genetic testing now plays a significant role in guiding targeted therapies and immunotherapies, particularly for brain metastases (BM) of lung cancer, breast cancer, and melanoma. Given increasing evidence of the importance of tumor genetics to radiation response, this may represent a currently under-utilized means of enhancing treatment outcomes. In addition, recent studies have shown potentially actionable mutations in BM which are not present in the primary tumor. Overall, this suggests that further investigation into the pathways mediating radiation response variability is warranted. Here, we provide an overview of key mechanisms implicated in BM radiation resistance, including intrinsic and acquired resistance and intratumoral heterogeneity. We then discuss advances in tumor sampling methods, such as a collection of cell-free DNA and RNA, as well as progress in genomic analysis. We further consider how these tools may be applied to provide personalized radiotherapy for BM, including patient stratification, detection of radiotoxicity, and use of radiosensitization agents. In addition, we describe recent developments in preclinical models of BM and consider their relevance to investigating radiation response. Given the increase in clinical trials evaluating the combination of radiotherapy and targeted therapies, as well as the rising incidence of BM, it is essential to develop genomically informed approaches to enhance radiation response.
Collapse
Affiliation(s)
- Paul M Harary
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjeeth Rajaram
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maggie S Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yusuke S Hori
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Bhatia RK, George J, Siu C, Lee E, Redmond KJ, Baker B, Jackson CM, Bettegowda C, Mukherjee D, Hobbs RF, Weingart J, Lim M, Kleinberg L. Outcomes of Management of Progressive Radiosurgery-Treated Brain Metastasis With Resection Followed by Pathology-Informed Management: A Retrospective Study. NEUROSURGERY PRACTICE 2024; 5:e00117. [PMID: 39959539 PMCID: PMC11809956 DOI: 10.1227/neuprac.0000000000000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND OBJECTIVES In patients treated with stereotactic radiosurgery (SRS) for brain metastases, follow-up imaging demonstrating progression may result from treatment effect/radionecrosis (RN) or tumor progression. We report long-term outcomes for a cohort of patients who demonstrated radiological progression on serial imaging after initial radiation and who underwent resection, at which point histology informed further management. METHODS A retrospective chart review identified 76 patients with an associated 82 brain lesions between 2009 and 2022, that were initially treated with SRS, and then demonstrated suspicious imaging developing through at least 2 scan time points with either pathologic confirmation of tumor or RN. RESULTS Of the 82 lesions, 55 lesions (67.1%) were found to be tumor and were treated with repeat radiation and 27 (32.9%) were found to have pathologically confirmed RN and conservatively managed. 14/27 lesions ultimately found to be radionecrotic required steroids preoperatively due to neurological symptoms. None of these lesions required further intervention with median postsurgery follow-up of 24.4 months (range 1-104 months). There were 55 instances (in 51 patients) of confirmed recurrent/progressive tumor who we treated with repeat aggressive radiation with either Cs-131 brachytherapy (12 [21.8%]) or SRS (43 [78.2%]). Among patients treated with reirradiation, the median follow-up to local failure was 15.2 months (95% CI 7.3-26.6 months). The 2-year local control rate was 79.5% (95% CI 68.3%-92.5%). CONCLUSION These results support resection of radiosurgery-treated lesions with progression continuing through serial imaging, and this pathology-informed management results in excellent control of both RN and tumor progression after radiosurgery.
Collapse
Affiliation(s)
- Rohini K. Bhatia
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica George
- Department of Biostatistics, University of Southern California, Los Angeles, California, USA
| | - Catherine Siu
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emerson Lee
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brock Baker
- Durango Cancer Center, Durango, Colorado, USA
| | - Christopher M. Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Hobbs
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford Medicine, Stanford, California, USA
| | - Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Petit C, Tallet A. Brain metastases reirradiation. Cancer Radiother 2024; 28:538-546. [PMID: 39406603 DOI: 10.1016/j.canrad.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024]
Abstract
The advances in cancer screening and therapies have allowed the improvement of metastatic patients' survival, including those with brain metastases. This led to a substantial shift in brain metastases patients' management for whom whole-brain radiation therapy, formerly widely used, has given way to a more focused management in which single- or multifractionated stereotactic radiation therapy now plays a predominant role. Although stereotactic radiation therapy offers excellent local control rates (70 to 90%), it does not prevent brain recurrence outside the radiation field, which is all the more frequent the higher the number of initial metastases and the longer the patient's survival. In the case of brain recurrence after irradiation, therapeutic options will depend both on the previous treatment and on the features of the recurrence. This article aims to review the available data on the efficacy and tolerability of various reirradiation schemes in different clinical situations.
Collapse
Affiliation(s)
- Claire Petit
- Département d'oncologie-radiothérapie, institut Paoli-Calmettes, Marseille, France
| | - Agnès Tallet
- Département d'oncologie-radiothérapie, institut Paoli-Calmettes, Marseille, France; UMR1068, Inserm, Centre de recherche en cancérologie de Marseille (CRCM), Marseille, France.
| |
Collapse
|
5
|
Ampil F, Sin A, Toms J, Lee S, Porter C, O'Glee K. Skull base oligometastatic tumors from systemic cancer: Long-term follow-up after gamma knife radiosurgery. Oral Oncol 2024; 149:106661. [PMID: 38134701 DOI: 10.1016/j.oraloncology.2023.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Federico Ampil
- Department of Radiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | - Anthony Sin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jamie Toms
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Sungho Lee
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Carrie Porter
- Section of Tumor Registry, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Kristie O'Glee
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
6
|
Kutuk T, Tolakanahalli R, Chaswal V, Yarlagadda S, Herrera R, Appel H, La Rosa A, Mishra V, Wieczorek DJJ, McDermott MW, Siomin V, Mehta MP, Odia Y, Gutierrez AN, Kotecha R. Surgically targeted radiation therapy (STaRT) for recurrent brain metastases: Initial clinical experience. Brachytherapy 2023; 22:872-881. [PMID: 37722990 DOI: 10.1016/j.brachy.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023]
Abstract
PURPOSE This study evaluates the outcomes of recurrent brain metastasis treated with resection and brachytherapy using a novel Cesium-131 carrier, termed surgically targeted radiation therapy (STaRT), and compares them to the first course of external beam radiotherapy (EBRT). METHODS Consecutive patients who underwent STaRT between August 2020 and June 2022 were included. All patients underwent maximal safe resection with pathologic confirmation of viable disease prior to STaRT to 60 Gy to a 5-mm depth from the surface of the resection cavity. Complications were assessed using CTCAE version 5.0. RESULTS Ten patients with 12 recurrent brain metastases after EBRT (median 15.5 months, range: 4.9-44.7) met the inclusion criteria. The median BED10Gy90% and 95% were 132.2 Gy (113.9-265.1 Gy) and 116.0 Gy (96.8-250.6 Gy), respectively. The median maximum point dose BED10Gy for the target was 1076.0 Gy (range: 120.7-1478.3 Gy). The 6-month and 1-year local control rates were 66.7% and 33.3% for the prior EBRT course; these rates were 100% and 100% for STaRT, respectively (p < 0.001). At a median follow-up of 14.5 months, there was one instance of grade two radiation necrosis. Surgery-attributed complications were observed in two patients including pseudomeningocele and minor headache. CONCLUSIONS STaRT with Cs-131 presents an alternative approach for operable recurrent brain metastases and was associated with superior local control than the first course of EBRT in this series. Our initial clinical experience shows that STaRT is associated with a high local control rate, modest surgical complication rate, and low radiation necrosis risk in the reirradiation setting.
Collapse
Affiliation(s)
- Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Vibha Chaswal
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Sreenija Yarlagadda
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Roberto Herrera
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Haley Appel
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Vivek Mishra
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - D Jay J Wieczorek
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Michael W McDermott
- Department of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL
| | - Vitaly Siomin
- Department of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Yazmin Odia
- Department of Neuro-oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL.
| |
Collapse
|
7
|
Diehl CD, Giordano FA, Grosu AL, Ille S, Kahl KH, Onken J, Rieken S, Sarria GR, Shiban E, Wagner A, Beck J, Brehmer S, Ganslandt O, Hamed M, Meyer B, Münter M, Raabe A, Rohde V, Schaller K, Schilling D, Schneider M, Sperk E, Thomé C, Vajkoczy P, Vatter H, Combs SE. Opportunities and Alternatives of Modern Radiation Oncology and Surgery for the Management of Resectable Brain Metastases. Cancers (Basel) 2023; 15:3670. [PMID: 37509330 PMCID: PMC10377800 DOI: 10.3390/cancers15143670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Postsurgical radiotherapy (RT) has been early proven to prevent local tumor recurrence, initially performed with whole brain RT (WBRT). Subsequent to disadvantageous cognitive sequalae for the patient and the broad distribution of modern linear accelerators, focal irradiation of the tumor has omitted WBRT in most cases. In many studies, the effectiveness of local RT of the resection cavity, either as single-fraction stereotactic radiosurgery (SRS) or hypo-fractionated stereotactic RT (hFSRT), has been demonstrated to be effective and safe. However, whereas prospective high-level incidence is still lacking on which dose and fractionation scheme is the best choice for the patient, further ablative techniques have come into play. Neoadjuvant SRS (N-SRS) prior to resection combines straightforward target delineation with an accelerated post-surgical phase, allowing an earlier start of systemic treatment or rehabilitation as indicated. In addition, low-energy intraoperative RT (IORT) on the surgical bed has been introduced as another alternative to external beam RT, offering sterilization of the cavity surface with steep dose gradients towards the healthy brain. This consensus paper summarizes current local treatment strategies for resectable brain metastases regarding available data and patient-centered decision-making.
Collapse
Affiliation(s)
- Christian D Diehl
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 München, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, University Medical Center, Medical Faculty, 79106 Freiburg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Klaus-Henning Kahl
- Department of Radiation Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Comprehensive Cancer Center Niedersachsen (CCC-N), 37075 Göttingen, Germany
| | - Gustavo R Sarria
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Ehab Shiban
- Department of Neurosurgery, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Arthur Wagner
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Jürgen Beck
- Department of Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Stefanie Brehmer
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Oliver Ganslandt
- Neurosurgical Clinic, Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Marc Münter
- Department of Radiation Oncology, Klinikum Stuttgart Katharinenhospital, 70174 Stuttgart, Germany
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Veit Rohde
- Department of Neurosurgery, Universitätsmedizin Göttingen, 37075 Göttingen, Germany
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, 1211 Geneva, Switzerland
| | - Daniela Schilling
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Elena Sperk
- Mannheim Cancer Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 München, Germany
| |
Collapse
|
8
|
Yan M, Lee M, Myrehaug S, Tseng CL, Detsky J, Chen H, Das S, Yeboah C, Lipsman N, Costa LD, Holden L, Heyn C, Maralani P, Ruschin M, Sahgal A, Soliman H. Hypofractionated stereotactic radiosurgery (HSRS) as a salvage treatment for brain metastases failing prior stereotactic radiosurgery (SRS). J Neurooncol 2023; 162:119-128. [PMID: 36914878 DOI: 10.1007/s11060-023-04265-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023]
Abstract
INTRODUCTION Various treatment options exist to salvage stereotactic radiosurgery (SRS) failures for brain metastases, including repeat SRS and hypofractionated SRS (HSRS). Our objective was to report outcomes specific to salvage HSRS for brain metastases that failed prior HSRS/SRS. METHODS Patients treated with HSRS to salvage local failures (LF) following initial HSRS/SRS, between July 2010 and April 2020, were retrospectively reviewed. The primary outcomes were the rates of LF, radiation necrosis (RN), and symptomatic radiation necrosis (SRN). Univariable (UVA) and multivariable (MVA) analyses using competing risk regression were performed to identify predictive factors for each endpoint. RESULTS 120 Metastases in 91 patients were identified. The median clinical follow up was 13.4 months (range 1.1-111.1), and the median interval between SRS courses was 13.1 months (range 3.0-56.5). 115 metastases were salvaged with 20-35 Gy in 5 fractions and the remaining five with a total dose ranging from 20 to 24 Gy in 3-fractions. 67 targets (56%) were postoperative cavities. The median re-treatment target volume and biological effective dose (BED10) was 9.5 cc and 37.5 Gy, respectively. The 6- and 12- month LF rates were 18.9% and 27.7%, for RN 13% and 15.6%, and for SRN were 6.1% and 7.0%, respectively. MVA identified larger re-irradiation volume (hazard ratio [HR] 1.02, p = 0.04) and shorter interval between radiosurgery courses (HR 0.93, p < 0.001) as predictors of LF. Treatment of an intact target was associated with a higher risk of RN (HR 2.29, p = 0.04). CONCLUSION Salvage HSRS results in high local control rates and toxicity rates that compare favorably to those single fraction SRS re-irradiation experiences reported in the literature.
Collapse
Affiliation(s)
- Michael Yan
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Minha Lee
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Collins Yeboah
- Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Leodante Da Costa
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Lori Holden
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Chinthaka Heyn
- Division of Radiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Pejman Maralani
- Division of Radiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Mark Ruschin
- Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Kuntz L, Le Fèvre C, Jarnet D, Keller A, Meyer P, Thiery A, Cebula H, Noel G, Antoni D. Acute toxicities and cumulative dose to the brain of repeated sessions of stereotactic radiotherapy (SRT) for brain metastases: a retrospective study of 184 patients. Radiat Oncol 2023; 18:7. [PMID: 36627646 PMCID: PMC9830690 DOI: 10.1186/s13014-022-02194-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Stereotactic radiation therapy (SRT) is a focal treatment for brain metastases (BMs); thus, 20 to 40% of patients will require salvage treatment after an initial SRT session, either because of local or distant failure. SRT is not exempt from acute toxicity, and the acute toxicities of repeated SRT are not well known. The objective of this study was to analyze the acute toxicities of repeated courses of SRT and to determine whether repeated SRT could lead to cumulative brain doses equivalent to those of whole-brain radiotherapy (WBRT). MATERIAL AND METHODS Between 2010 and 2020, data from 184 patients treated for 915 BMs via two to six SRT sessions for local or distant BM recurrence without previous or intercurrent WBRT were retrospectively reviewed. Patients were seen via consultations during SRT, and the delivered dose, the use of corticosteroid therapy and neurological symptoms were recorded and rated according to the CTCAEv4. The dosimetric characteristics of 79% of BMs were collected, and summation plans of 76.6% of BMs were created. RESULTS 36% of patients developed acute toxicity during at least one session. No grade three or four toxicity was registered, and grade one or two cephalalgy was the most frequently reported symptom. There was no significant difference in the occurrence of acute toxicity between consecutive SRT sessions. In the multivariate analysis, acute toxicity was associated with the use of corticosteroid therapy before irradiation (OR = 2.6; p = 0.01), BMV grade (high vs. low grade OR = 5.17; p = 0.02), and number of SRT sessions (3 SRT vs. 2 SRT: OR = 2.64; p = 0.01). The median volume equivalent to the WBRT dose (VWBRT) was 47.9 ml. In the multivariate analysis, the VWBRT was significantly associated with the total GTV (p < 0.001) and number of BMs (p < 0.001). Even for patients treated for more than ten cumulated BMs, the median BED to the brain was very low compared to the dose delivered during WBRT. CONCLUSION Repeated SRT for local or distant recurrent BM is well tolerated, without grade three or four toxicity, and does not cause more acute neurological toxicity with repeated SRT sessions. Moreover, even for patients treated for more than ten BMs, the VWBRT is low.
Collapse
Affiliation(s)
- L. Kuntz
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - C. Le Fèvre
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - D. Jarnet
- grid.512000.6Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - A. Keller
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - P. Meyer
- grid.512000.6Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - A. Thiery
- grid.512000.6Medical Information Department, Institut de Cancérologie Strasbourg Europe (ICANS), 3 rue de la Porte de L’Hôpital, 67065 Strasbourg Cedex, France
| | - H. Cebula
- grid.412220.70000 0001 2177 138XDepartment of Neurosurgery, University Hospitals of Strasbourg, 1 Avenue Molière, 67200 Strasbourg, France
| | - G. Noel
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - D. Antoni
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| |
Collapse
|
10
|
Sneed PK, Chan JW, Ma L, Braunstein SE, Theodosopoulos PV, Fogh SE, Nakamura JL, Boreta L, Raleigh DR, Ziemer BP, Morin O, Hervey-Jumper SL, McDermott MW. Adverse radiation effect and freedom from progression following repeat stereotactic radiosurgery for brain metastases. J Neurosurg 2023; 138:104-112. [PMID: 35594891 DOI: 10.3171/2022.4.jns212597] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The authors previously evaluated risk and time course of adverse radiation effects (AREs) following stereotactic radiosurgery (SRS) for brain metastases, excluding lesions treated after prior SRS. In the present analysis they focus specifically on single-fraction salvage SRS to brain metastases previously treated with SRS or hypofractionated SRS (HFSRS), evaluating freedom from progression (FFP) and the risk and time course of AREs. METHODS Brain metastases treated from September 1998 to May 2019 with single-fraction SRS after prior SRS or HFSRS were analyzed. Serial follow-up magnetic resonance imaging (MRI) and surgical pathology reports were reviewed to score local treatment failure and AREs. The Kaplan-Meier method was used to estimate FFP and risk of ARE measured from the date of repeat SRS with censoring at the last brain MRI. RESULTS A total of 229 retreated brain metastases in 124 patients were evaluable. The most common primary cancers were breast, lung, and melanoma. The median interval from prior SRS/HFSRS to repeat SRS was 15.4 months, the median prescription dose was 18 Gy, and the median duration of follow-up imaging was 14.5 months. At 1 year after repeat SRS, FFP was 80% and the risk of symptomatic ARE was 11%. The 1-year risk of imaging changes, including asymptomatic RE and symptomatic ARE, was 30%. Among lesions that demonstrated RE, the median time to onset was 6.7 months (IQR 4.7-9.9 months) and the median time to peak imaging changes was 10.1 months (IQR 5.6-13.6 months). Lesion size by quadratic mean diameter (QMD) showed similar results for QMDs ranging from 0.75 to 2.0 cm (1-year FFP 82%, 1-year risk of symptomatic ARE 11%). For QMD < 0.75 cm, the 1-year FFP was 86% and the 1-year risk of symptomatic ARE was only 2%. Outcomes were worse for QMDs 2.01-3.0 cm (1-year FFP 65%, 1-year risk of symptomatic ARE 24%). The risk of symptomatic ARE was not increased with tyrosine kinase inhibitors or immunotherapy before or after repeat SRS. CONCLUSIONS RE on imaging was common after repeat SRS (30% at 1 year), but the risk of a symptomatic ARE was much less (11% at 1 year). The results of repeat single-fraction SRS were good for brain metastases ≤ 2 cm. The authors recommend an interval ≥ 6 months from prior SRS and a prescription dose ≥ 18 Gy. Alternatives such as HFSRS, laser interstitial thermal therapy, or resection with adjuvant radiation should be considered for recurrent brain metastases > 2 cm.
Collapse
Affiliation(s)
- Penny K Sneed
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Jason W Chan
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Lijun Ma
- 2Department of Radiation Oncology, University of Southern California, Los Angeles
| | - Steve E Braunstein
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Philip V Theodosopoulos
- 3Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Shannon E Fogh
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Jean L Nakamura
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Lauren Boreta
- 1Department of Radiation Oncology, University of California, San Francisco
| | - David R Raleigh
- 1Department of Radiation Oncology, University of California, San Francisco.,3Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Benjamin P Ziemer
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Olivier Morin
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Shawn L Hervey-Jumper
- 3Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Michael W McDermott
- 4Division of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, Florida
| |
Collapse
|
11
|
Long-Term Survival after Linac-Based Stereotactic Radiosurgery and Radiotherapy with a Micro-Multileaf Collimator for Brain Metastasis. Curr Oncol 2022; 29:6068-6076. [PMID: 36135046 PMCID: PMC9497847 DOI: 10.3390/curroncol29090477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background: this study aimed to evaluate the prognostic factors associated with long-term survival after linear accelerator (linac)-based stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (fSRT) with a micro-multileaf collimator for brain metastasis (BM). Methods: This single-center retrospective study included 226 consecutive patients with BM who were treated with linac-based SRS or fSRT with a micro-multileaf collimator between January 2011 and December 2018. Long-term survival (LTS) was defined as survival for more than 2 years after SRS/fSRT. Results: The tumors originated from the lung (n = 189, 83.6%), breast (n = 11, 4.9%), colon (n = 9, 4.0%), stomach (n = 4, 1.8%), kidney (n = 3, 1.3%), esophagus (n = 3, 1.3%), and other regions (n = 7, 3.1%). The median pretreatment Karnofsky performance scale (KPS) score was 90 (range: 40–100). The median follow-up time was 13 (range: 0–120) months. Out of the 226 patients, 72 (31.8%) were categorized in the LTS group. The median survival time was 43 months and 13 months in the LTS group and in the entire cohort, respectively. The 3-year, 4-year, and 5-year survival rate in the LTS group was 59.1%, 49.6%, and 40.7%, respectively. Multivariate regression logistic analysis showed that female sex, a pre-treatment KPS score ≥ 80, and the absence of extracranial metastasis were associated with long-term survival. Conclusions: female sex, a favorable pre-treatment KPS score, and the absence of extracranial metastasis were associated with long-term survival in the current cohort of patients with BM.
Collapse
|
12
|
Sharma M, Milano MT, Cummings M, Naqa IE. Tumor Control Probability following Radiosurgery of Brain Metastases with and without Retreatment. Int J Radiat Oncol Biol Phys 2022; 114:537-544. [PMID: 35863671 DOI: 10.1016/j.ijrobp.2022.06.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE To develop and compare tumor-control-probability (TCP) models for single-fraction stereotactic radiosurgery (SRS) for brain metastasis (BMs) with and without retreatment. METHODS We developed three different schemas to model TCP of BMs treated with LINAC-based SRS. Dose to 99% of each planning-target-volume (PTV D99) and six-month local-control was fit using linear-quadratic-linear (LQ-L) models based on equivalent-dose conversions in 2Gy (EQD2). The M1 schema had separate LQ-L TCP models for initial dose (M1-initial) and retreatment dose (M1-retreat), and the M2 schema had an LQ-L model using the sum of 50% of the initial SRS dose plus the retreatment SRS dose. The M1-initial and M1-retreat schema modeled local control following 1st SRS to 48 lesions (patients=22) and 2nd SRS to 46 lesions (patients=21). The M0 schema included a whole dataset of 349 lesions (patients=136) receiving first SRS (no retreatment and M1-initial). RESULTS LQ-L models fitted the data well (Chi-2=0.059-0.525 and p=0.999-1.000). For M0 and M1-retreat, the fitted models EQD250 and γ50 parameters, were similar. The LQ-L fitted EQD250 was ∼8.0Gy for M0 and M1-retreat, ∼24Gy for M1-initial, and ∼19Gy for M2. The model fitted γ50 was 0.1Gy for M0, M1-retreat, and M2 and 0.5 for M1-initial. For the PTV D99 of 10Gy and 20Gy, the steepest to shallowest dose-response or largest change in TCP, i.e., TCP20Gy - TCP10Gy was observed in M1-initial (0.49) and M2 (0.17). M0 and M1-retreat showed a similar change in TCP of 0.21. CONCLUSION The model fitted parameters predict the recurrent BMs required a higher threshold dose and had a steeper dose-response for 1st SRS vs. 2nd SRS and M0. Alternatively, the recurrent BMs required ∼2Gy higher predicted PTV D99 dose for 1st SRS to achieve the same TCP of 0.75 when compared to 2nd SRS and M0. Further investigations on larger patient cohorts are needed for validating our findings in predictive modeling of recurrent brain metastases.
Collapse
|
13
|
Local recurrence and cerebral progression-free survival after multiple sessions of stereotactic radiotherapy of brain metastases: a retrospective study of 184 patients : Statistical analysis. Strahlenther Onkol 2022; 198:527-536. [PMID: 35294567 DOI: 10.1007/s00066-022-01913-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Forty to sixty percent of patients treated with focal therapy for brain metastasis (BM) will have distant brain recurrence (C-LR), while 10-25% of patients will have local recurrence (LR) within 1 year after stereotactic radiotherapy (SRT). The purpose of this study was to analyze cerebral progression-free survival (C-PFS) and LR of BM among patients treated with repeated courses of radiotherapy in stereotactic conditions. METHODS AND MATERIALS We retrospectively reviewed data from 184 patients treated for 915 BMs with at least two courses of SRT without previous WBRT. Initial patient characteristics, patient characteristics at each SRT, brain metastasis velocity (BMV), delay between SRT, MRI response, LR and C‑LR were analyzed. RESULTS In all, 123 (66.9%), 39 (21.2%), and 22 (12%) patients received 2, 3, or 4 or more SRT sessions, respectively. Ninety percent of BMs were irradiated without prior surgery, and 10% were irradiated after neurosurgery. The MRI response at 3, 6, 12 and 24 months after SRT was stable regardless of the SRT session. At 6, 12 and 24 months, the rates of local control were 96.3, 90.1, and 85.8%, respectively. In multivariate analysis, P‑LR was statistically associated with kidney (HR = 0.08) and lung cancer (HR = 0.3), ECOG 1 (HR = 0.5), and high BMV grade (HR = 5.6). The median C‑PFS after SRT1, SRT2, SRT3 and SRT4 and more were 6.6, 5.1, 6.7, and 7.7 months, respectively. C‑PFS after SRT2 was significantly longer among patients in good general condition (HR = 0.39), patients with high KPS (HR = 0.91), patients with no extracerebral progression (HR = 1.8), and patients with a low BMV grade (low vs. high: HR = 3.8). CONCLUSION Objective MRI response rate after repeated SRT is stable from session to session. Patients who survive longer, such as patients with breast cancer or with low BMV grade, are at risk of local reirradiation. C‑PFS after SRT2 is better in patients in good general condition, without extracerebral progression and with low BMV grade.
Collapse
|
14
|
Salvage Treatment for Progressive Brain Metastases in Breast Cancer. Cancers (Basel) 2022; 14:cancers14041096. [PMID: 35205844 PMCID: PMC8870695 DOI: 10.3390/cancers14041096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Thirty percent of patients with human epidermal growth factor receptor 2-positive breast cancer and triple-negative breast cancer, and 15% of patients with the remaining subtypes of breast cancer will develop brain metastases. Available treatment methods include surgery and radiotherapy. However, some individuals will experience intracranial progression despite prior local treatment. This situation remains a challenge. In the case of progressing lesions amenable to local therapy, the choice of a treatment method must consider performance status, cancer burden, possible toxicity, and previously applied therapy. Stereotactic radiosurgery or fractionated radiotherapy rather than whole-brain radiotherapy should be used only if feasible. If local therapy is unfeasible, selected patients, especially those with human epidermal growth factor receptor 2-positive breast cancer, may benefit from systemic therapy. Abstract Survival of patients with breast cancer has increased in recent years due to the improvement of systemic treatment options. Nevertheless, the occurrence of brain metastases is associated with a poor prognosis. Moreover, most drugs do not penetrate the central nervous system because of the blood–brain barrier. Thus, confirmed intracranial progression after local therapy is especially challenging. The available methods of salvage treatment include surgery, stereotactic radiosurgery (SRS), fractionated stereotactic radiotherapy (FSRT), whole-brain radiotherapy, and systemic therapies. This narrative review discusses possible strategies of salvage treatment for progressive brain metastases in breast cancer. It covers possibilities of repeated local treatment using the same method as applied previously, other methods of local therapy, and options of salvage systemic treatment. Repeated local therapy may provide a significant benefit in intracranial progression-free survival and overall survival. However, it could lead to significant toxicity. Thus, the choice of optimal methods should be carefully discussed within the multidisciplinary tumor board.
Collapse
|
15
|
Stereotactic Laser Ablation (SLA) followed by consolidation stereotactic radiosurgery (cSRS) as treatment for brain metastasis that recurred locally after initial radiosurgery (BMRS): a multi-institutional experience. J Neurooncol 2022; 156:295-306. [PMID: 35001245 DOI: 10.1007/s11060-021-03893-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The optimal treatment paradigm for brain metastasis that recurs locally after initial radiosurgery remains an area of active investigation. Here, we report outcomes for patients with BMRS treated with stereotactic laser ablation (SLA, also known as laser interstitial thermal therapy, LITT) followed by consolidation radiosurgery. METHODS Clinical outcomes of 20 patients with 21 histologically confirmed BMRS treated with SLA followed by consolidation SRS and > 6 months follow-up were collected retrospectively across three participating institutions. RESULTS Consolidation SRS (5 Gy × 5 or 6 Gy × 5) was carried out 16-73 days (median of 26 days) post-SLA in patients with BMRS. There were no new neurological deficits after SLA/cSRS. While 3/21 (14.3%) patients suffered temporary Karnofsky Performance Score (KPS) decline after SLA, no KPS decline was observed after cSRS. There were no 30-day mortalities or wound complications. Two patients required re-admission within 30 days of cSRS (severe headache that resolved with steroid therapy (n = 1) and new onset seizure (n = 1)). With a median follow-up of 228 days (range: 178-1367 days), the local control rate at 6 and 12 months (LC6, LC12) was 100%. All showed diminished FLAIR volume surrounding the SLA/cSRS treated BMRS at the six-month follow-up; none of the patients required steroid for symptoms attributable to these BMRS. These results compare favorably to the available literature for repeat SRS or SLA-only treatment of BMRS. CONCLUSIONS This multi-institutional experience supports further investigations of SLA/cSRS as a treatment strategy for BMRS.
Collapse
|
16
|
Soni YS, Rich BJ, Kwon D, Zhao W, John DL, Seldon C, Meshman J, Benveniste R, Komotar RJ, de la Fuente M, Guillermo Prieto MDP, Azzam G, Mellon EA, Benjamin CG, Diwanji T. Factors associated with the use of salvage whole brain radiation therapy versus salvage stereotactic radiosurgery after initial stereotactic radiosurgery for brain metastases. JOURNAL OF RADIOSURGERY AND SBRT 2022; 8:85-94. [PMID: 36275132 PMCID: PMC9489072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/29/2022] [Indexed: 01/03/2023]
Abstract
Objectives Patients undergoing stereotactic radiosurgery (SRS) for brain metastases require additional radiation for relapse. Our objective is to determine the factors associated with salvage SRS versus whole brain radiation therapy (WBRT) for salvage of first intracranial failure (ICF) after upfront SRS. Method We identified a cohort of 110 patients with brain metastases treated with SRS in the definitive or postoperative setting followed by subsequent salvage WBRT or SRS at least one month after initial SRS. Clinical and demographic characteristics were retrospectively recorded. Results 78 Patients received SRS and 32 patients received WBRT at the time of first ICF. On multivariate analysis (MVA) factors associated with decreased use of salvage SRS were male gender (p=0.044) and local progression (p<0.001). Conclusions Local progression and male gender were the strongest factors associated with selection of salvage WBRT. Possible etiologies of this difference could be provider or patient driven, but warrant further exploration.
Collapse
Affiliation(s)
- Yash S. Soni
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin J. Rich
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deukwoo Kwon
- Department of Public Health Sciences, Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Zhao
- Department of Public Health Sciences, Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Danny L. John
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Crystal Seldon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jessica Meshman
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronald Benveniste
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ricardo J. Komotar
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Macarena de la Fuente
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Gregory Azzam
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric A. Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolina G. Benjamin
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tejan Diwanji
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA, Department of Radiation Oncology, Mid-Atlantic Permanente Medical Group, Halethorpe, MD, USA
| |
Collapse
|
17
|
Matsuda R, Morimoto T, Tamamoto T, Inooka N, Ochi T, Miyasaka T, Hontsu S, Yamaki K, Miura S, Takeshima Y, Tamura K, Yamada S, Nishimura F, Nakagawa I, Motoyama Y, Park YS, Hasegawa M, Nakase H. Salvage Surgical Resection after Linac-Based Stereotactic Radiosurgery for Newly Diagnosed Brain Metastasis. Curr Oncol 2021; 28:5255-5265. [PMID: 34940078 PMCID: PMC8699906 DOI: 10.3390/curroncol28060439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background: This study aimed to assess the clinical outcomes of salvage surgical resection (SSR) after stereotactic radiosurgery and fractionated stereotactic radiotherapy (SRS/fSRT) for newly diagnosed brain metastasis. Methods: Between November 2009 and May 2020, 318 consecutive patients with 1114 brain metastases were treated with SRS/fSRT for newly diagnosed brain metastasis at our hospital. During this study period, 21 of 318 patients (6.6%) and 21 of 1114 brain metastases (1.9%) went on to receive SSR after SRS/fSRT. Three patients underwent multiple surgical resections. Twenty-one consecutive patients underwent twenty-four SSRs. Results: The median time from initial SRS/fSRT to SSR was 14 months (range: 2–96 months). The median follow-up after SSR was 17 months (range: 2–78 months). The range of tumor volume at initial SRS/fSRT was 0.12–21.46 cm3 (median: 1.02 cm3). Histopathological diagnosis after SSR was recurrence in 15 cases, and radiation necrosis (RN) or cyst formation in 6 cases. The time from SRS/fSRT to SSR was shorter in the recurrence than in the RNs and cyst formation, but these differences did not reach statistical significance (p = 0.067). The median survival time from SSR and from initial SRS/fSRT was 17 and 74 months, respectively. The cases with recurrence had a shorter survival time from initial SRS/fSRT than those without recurrence (p = 0.061). Conclusions: The patients treated with SRS/fSRT for brain metastasis need long-term follow-up. SSR is a safe and effective treatment for the recurrence, RN, and cyst formation after SRS/fSRT for brain metastasis.
Collapse
Affiliation(s)
- Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
- Correspondence: ; Tel.: +81-744-22-3051
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Tetsuro Tamamoto
- Department of Radiation Oncology, Nara Medical University, Kashihara 634-8521, Japan; (T.T.); (N.I.); (K.Y.); (S.M.); (M.H.)
- Department of Medical Informatics, Nara Medical University Hospital, Kashihara 634-8522, Japan
| | - Nobuyoshi Inooka
- Department of Radiation Oncology, Nara Medical University, Kashihara 634-8521, Japan; (T.T.); (N.I.); (K.Y.); (S.M.); (M.H.)
| | - Tomoko Ochi
- Department of Radiology, Nara Medical University Hospital, Kashihara 634-8522, Japan; (T.O.); (T.M.)
| | - Toshiteru Miyasaka
- Department of Radiology, Nara Medical University Hospital, Kashihara 634-8522, Japan; (T.O.); (T.M.)
| | - Shigeto Hontsu
- Department of Respiratory Medicine, Nara Medical University Hospital, Kashihara 634-8522, Japan;
| | - Kaori Yamaki
- Department of Radiation Oncology, Nara Medical University, Kashihara 634-8521, Japan; (T.T.); (N.I.); (K.Y.); (S.M.); (M.H.)
| | - Sachiko Miura
- Department of Radiation Oncology, Nara Medical University, Kashihara 634-8521, Japan; (T.T.); (N.I.); (K.Y.); (S.M.); (M.H.)
| | - Yasuhiro Takeshima
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Kentaro Tamura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Yasushi Motoyama
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara 634-8521, Japan; (T.T.); (N.I.); (K.Y.); (S.M.); (M.H.)
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| |
Collapse
|
18
|
Lucia F, Touati R, Crainic N, Dissaux G, Pradier O, Bourbonne V, Schick U. Efficacy and Safety of a Second Course of Stereotactic Radiation Therapy for Locally Recurrent Brain Metastases: A Systematic Review. Cancers (Basel) 2021; 13:4929. [PMID: 34638412 PMCID: PMC8508410 DOI: 10.3390/cancers13194929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Recent advances in cancer treatments have increased overall survival and consequently, local failures (LFs) after stereotactic radiotherapy/radiosurgery (SRS/SRT) have become more frequent. LF following SRS or SRT may be treated with a second course of SRS (SRS2) or SRT (SRT2). However, there is no consensus on whenever to consider reirradiation. A literature search was conducted according to PRISMA guidelines. Analysis included 13 studies: 329 patients (388 metastases) with a SRS2 and 135 patients (161 metastases) with a SRT2. The 1-year local control rate ranged from 46.5% to 88.3%. Factors leading to poorer LC were histology (melanoma) and lack of prior whole-brain radiation therapy, large tumor size and lower dose at SRS2/SRT2, poorer response at first SRS/SRT, poorer performance status, and no controlled extracranial disease. The rate of radionecrosis (RN) ranged from 2% to 36%. Patients who had a large tumor volume, higher dose and higher value of prescription isodose line at SRS2/SRT2, and large overlap between brain volume irradiated at SRS1/SRT1 and SRS2/SRT2 at doses of 18 and 12 Gy had a higher risk of developing RN. Prospective studies involving a larger number of patients are still needed to determine the best management of patients with local recurrence of brain metastases.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Ruben Touati
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Nicolae Crainic
- Neurology Department, University Hospital of Brest, 29200 Brest, France;
| | - Gurvan Dissaux
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Olivier Pradier
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| |
Collapse
|
19
|
Samanci Y, Karakose F, Senyurek S, Peker S. Single-fraction versus hypofractionated gamma knife radiosurgery for small metastatic brain tumors. Clin Exp Metastasis 2021; 38:305-320. [PMID: 33733707 DOI: 10.1007/s10585-021-10086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Stereotactic radiosurgery (SRS) has become a standard of care for the treatment of metastatic brain tumors (METs). Although a better balance of tumor control and toxicity of hypofractionated SRS (hfSRS) compared with single-fraction SRS (sfSRS) was demonstrated in large METs, there is no data comparing two approaches for small METs (< 4 cm3). It was aimed to compare clinical outcomes between sfSRS versus hfSRS Gamma Knife radiosurgery (GKRS) in a series of patients with unresected, small METs. Patients (n = 208) treated with sfGKRS or hfGKRS between June 2017 and May 2020 were retrospectively examined in a single center. The co-primary endpoints of local control (LC) and toxicity were estimated by applying the Kaplan-Meier method. Multivariate analysis using Cox proportional hazards (HR) modeling was used to assess the effect of independent variables on the outcomes. The actuarial LC rate was 99.7% at six months and 98.8% at 18 months in the sfGKRS group, and 99.4% and 94.3% in the hfGKRS group (p = 0.089), respectively. In multivariate analysis, MET volume (p = 0.023, HR 2.064) and biologically effective dose (BED10) (p < 0.0001, HR 0.753) was associated with LC. In total, treatment-related toxicity was observed in 13 (8.7%) patients during a median period of 10 weeks (range 1-31). Radiation necrosis was observed in four patients (1.9%), and all patients were in the sfGKRS group (p = 0.042). Only the maximum dose was associated with toxicity (p = 0.032, HR 1.047). Our current results suggest that hfGKRS is advantageous and beneficial also in patients with unresected, small METs.
Collapse
Affiliation(s)
- Yavuz Samanci
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | - Fatih Karakose
- Department of Radiation Oncology, Koç University Hospital, Istanbul, Turkey
| | - Sukran Senyurek
- Department of Radiation Oncology, Koç University Hospital, Istanbul, Turkey
| | - Selcuk Peker
- Department of Neurosurgery, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
20
|
Holub K, Louvel G. Efficacy of salvage stereotactic radiotherapy (SRT) for locally recurrent brain metastases after initial SRT and characteristics of target population. Clin Transl Oncol 2021; 23:1463-1473. [PMID: 33464481 DOI: 10.1007/s12094-020-02544-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Due to a steadily growing use of stereotactic radiotherapy (SRT) for treatment of brain metastases (BMs), the in-field failure after an initial stereotaxy is an increasingly frequent problem. Repeat stereotactic radiotherapy (re-SRT) shows encouraging results in terms of local control. However, the evidence on prognostic factors limiting the overall survival (OS) of re-treated patients is scarce. Here, we sought to analyze the patients' and treatment characteristics influencing the survival outcomes after re-SRT. METHODS Data of all patients with local failure of initial SRT treated from 2012 to 2019 were retrospectively reviewed and cases treated with salvage SRT were analyzed. We analyzed the impact of patients' and treatment characteristics on overall survival after re-SRT by Kaplan-Meier method and Cox regression models. Local and distant brain control, cause of death, and radionecrosis rate were also assessed. RESULTS Forty-seven patients with 55 BMs treated with re-SRT were evaluated. Median OS after re-SRT was 9.2 months and the overall local control was 83.6%. Nine BMs (16.4%) presented local relapse (LR), 12 (21.8%) radionecrosis, while 21 patients (44.7%) developed new BMs. Only absence of extracranial metastases at BMs diagnosis (HR 0.42, CI 95%; 0.18-0.97), extracranial disease progression (HR 2.39, CI 95%; 1.06-5.38) and distant brain failure (HR 3.94, CI 95%; 1.68-9.24) after re-SRT were significantly associated with patients' survival. Extracranial progression following re-SRT was an independent prognosticator of worse OS. CONCLUSION Re-SRT after LR presented excellent local control with acceptable RN rate and improved patients' survival, limited mainly by extracranial and distant brain progression.
Collapse
Affiliation(s)
- K Holub
- Radiotherapy Department, Gustave Roussy Cancer Campus, Villejuif, France.
| | - G Louvel
- Radiotherapy Department, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
21
|
Kuntz L, Noel G. [Repeated irradiation of brain metastases under stereotactic conditions: A review of the literature]. Cancer Radiother 2021; 25:390-399. [PMID: 33431294 DOI: 10.1016/j.canrad.2020.08.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022]
Abstract
Stereotactic radiotherapy has become a standard in the management of patients with brain metastases; its main interest is to differ whole brain radiotherapy, provider of neurocognitive toxicity and to increase the rate of local control. The repetition of radiotherapy sessions under stereotactic conditions is not codified, neither on the number of technically and clinically possible sessions, nor on the maximum total number or volume of metastases to be treated. The purpose of this review is to analyse the data in the literature concerning repeated irradiations under stereotactic conditions. The second reirradiation in stereotactic condition shows satisfactory results in terms of overall survival, local control, and toxicity. However, we lack data for patients receiving more than two sessions of SRS as well as to define dose constraints to reirradiated healthy tissues. Prospective trials are still needed to validate the management of recurrent brain metastases after initial SRS.
Collapse
Affiliation(s)
- L Kuntz
- Département de radiothérapie, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - G Noel
- Département de radiothérapie, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France.
| |
Collapse
|
22
|
Andruska N, Kennedy WR, Bonestroo L, Anderson R, Huang Y, Robinson CG, Abraham C, Tsien C, Knutson N, Rich KM, Spencer C, Huang J. Dosimetric predictors of symptomatic radiation necrosis after five-fraction radiosurgery for brain metastases. Radiother Oncol 2020; 156:181-187. [PMID: 33310010 DOI: 10.1016/j.radonc.2020.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 12/01/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND To identify factors predictive of developing symptomatic radiation necrosis (sRN) among patients with either intact or resected brain metastases undergoing five-fraction stereotactic radiosurgery (5fSRS). METHODS Multi-institutional retrospective review of 117 brain metastases from 83 patients treated with 5fSRS. The cumulative incidence of sRN and predictors of sRN were calculated using Gray's competing risks and Cox regression. RESULTS The median dose of 5fSRS was 30 Gy (range: 25-40), and 21 lesions (18%) had prior SRS. After a median follow-up of 10.3 months (range: 3-52), the cumulative sRN incidence was 15%, with a median time to sRN of 6.9 months (range: 1.8-31.7). sRN incidence was significantly higher among the lesions treated with prior SRS: hazard ratio (HR): 7.48 [95% confidence interval: 2.57-21.8]. Among lesions without prior SRS, higher volume of uninvolved brain receiving 25 Gy (BrainV25; HR: 1.07 [1.02-1.12]) and 30 Gy (BrainV30; HR: 1.07 [1.01-1.33]) were the most significant factors associated with sRN. Similar results were also observed among the patients with prior SRS. For lesions without prior SRS, BrainV25 > 16 cm3 (HR: 11.7 [1.47-93.3]) and BrainV30 > 10 cm3 (HR: 7.08 [1.52-33.0]) were associated with significantly higher risk of sRN. At two years, the sRN incidence was 21% if violating either dosimetric threshold and 2% if violating neither (p = .007). CONCLUSION BrainV25 and BrainV30 are significant dosimetric predictors of sRN of brain metastases treated with 5fSRS. In the absence of prior SRS, maintaining BrainV25Gy < 16 cm3 and BrainV30Gy < 10 cm3 may minimize sRN risk.
Collapse
Affiliation(s)
- Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA.
| | - William R Kennedy
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Liberty Bonestroo
- Delbert Day Cancer Institute, Phelps County Regional Medical Center, Rolla, USA
| | - Rebecca Anderson
- Delbert Day Cancer Institute, Phelps County Regional Medical Center, Rolla, USA
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Christopher Abraham
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Christina Tsien
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Nels Knutson
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Keith M Rich
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, USA
| | - Christopher Spencer
- Delbert Day Cancer Institute, Phelps County Regional Medical Center, Rolla, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA.
| |
Collapse
|
23
|
de Franca SA, Tavares WM, Salinet ASM, Teixeira MJ, Paiva WS. Laser interstitial thermal therapy as an adjunct therapy in brain tumors: A meta-analysis and comparison with stereotactic radiotherapy. Surg Neurol Int 2020; 11:360. [PMID: 33194293 PMCID: PMC7656052 DOI: 10.25259/sni_152_2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Minimally invasive procedures are gaining widespread acceptance in difficult-to-access brain tumor treatment. Stereotactic radiosurgery (SRS) is the preferred choice, however, laser interstitial thermal therapy (LITT) has emerged as a tumor cytoreduction technique. The present meta-analysis compared current SRS therapy with LITT in brain tumors. METHODS A search was performed in Lilacs, PubMed, and Cochrane database. Patient's demographics, tumor location, therapy used, Karnofsky performance status score before treatment, and patient's outcome (median overall survival, progression-free survival, and adverse events) data were extracted from studies. The risk of bias was assessed by Cochrane collaboration tool. RESULTS Twenty-five studies were included in this meta-analysis. LITT and SRS MOS in brain metastasis patients were 12.8 months' versus 9.8 months (ranges 9.3-16.3 and 8.3-9.8; P = 0.02), respectively. In a combined comparison of adverse effects among LITT versus SRS in brain metastasis, we found 15% reduction in absolute risk difference (-0.16; 95% confidence interval P < 0.0001). CONCLUSION We could not state that LITT treatment is an optimal alternative therapy for difficult-to-access brain tumors due to the lack of systematic data that were reported in our pooled studies. However, our results identified a positive effect in lowering the absolute risk of adverse events compared with SRS therapy. Therefore, randomized trials are encouraged to ascertain LITT role, as upfront or postoperative/post-SRS therapy for brain tumor treatment.
Collapse
Affiliation(s)
| | - Wagner Malago Tavares
- Department of Research, Instituto Paulista De Saude Para Alta Complexidade, Brazil
- Institute of Neurology, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
24
|
Milano MT, Grimm J, Niemierko A, Soltys SG, Moiseenko V, Redmond KJ, Yorke E, Sahgal A, Xue J, Mahadevan A, Muacevic A, Marks LB, Kleinberg LR. Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain. Int J Radiat Oncol Biol Phys 2020; 110:68-86. [PMID: 32921513 DOI: 10.1016/j.ijrobp.2020.08.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE As part of the American Association of Physicists in Medicine Working Group on Stereotactic Body Radiotherapy investigating normal tissue complication probability (NTCP) after hypofractionated radiation therapy, data from published reports (PubMed indexed 1995-2018) were pooled to identify dosimetric and clinical predictors of radiation-induced brain toxicity after single-fraction stereotactic radiosurgery (SRS) or fractionated stereotactic radiosurgery (fSRS). METHODS AND MATERIALS Eligible studies provided NTCPs for the endpoints of radionecrosis, edema, or symptoms after cranial SRS/fSRS and quantitative dose-volume metrics. Studies of patients with only glioma, meningioma, vestibular schwannoma, or brainstem targets were excluded. The data summary and analyses focused on arteriovenous malformations (AVM) and brain metastases. RESULTS Data from 51 reports are summarized. There was wide variability in reported rates of radionecrosis. Available data for SRS/fSRS for brain metastases were more amenable to NTCP modeling than AVM data. In the setting of brain metastases, SRS/fSRS-associated radionecrosis can be difficult to differentiate from tumor progression. For single-fraction SRS to brain metastases, tissue volumes (including target volumes) receiving 12 Gy (V12) of 5 cm3, 10 cm3, or >15 cm3 were associated with risks of symptomatic radionecrosis of approximately 10%, 15%, and 20%, respectively. SRS for AVM was associated with modestly lower rates of symptomatic radionecrosis for equivalent V12. For brain metastases, brain plus target volume V20 (3-fractions) or V24 (5-fractions) <20 cm3 was associated with <10% risk of any necrosis or edema, and <4% risk of radionecrosis requiring resection. CONCLUSIONS The risk of radionecrosis after SRS and fSRS can be modeled as a function of dose and volume treated. The use of fSRS appears to reduce risks of radionecrosis for larger treatment volumes relative to SRS. More standardized dosimetric and toxicity reporting is needed to facilitate future pooled analyses that can refine predictive models of brain toxicity risks.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York.
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York City, New York
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Jinyu Xue
- Department of Radiation Oncology, NYU Langone Medical Center, New York City, NY
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | | | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Armstrong S, Hoskin P. Complex Clinical Decision-Making Process of Re-Irradiation. Clin Oncol (R Coll Radiol) 2020; 32:688-703. [PMID: 32893056 DOI: 10.1016/j.clon.2020.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022]
Abstract
As patients live longer with their cancer as a result of more effective treatment, recurrences and second malignancies in a previously irradiated field are an increasing challenge. The technical advances that enable high-dose radiation to limited volumes, excluding critical normal tissues, have increased the use of re-irradiation for many tumour sites. Minimising the volume, selecting patients with good performance status, negative metastatic screening and longer disease-free intervals are important principles. Despite this there is a narrow therapeutic window, and careful consideration with open discussion, including the patient, of the probable benefit and the implications of potential toxicities will always be essential. In this overview we evaluate the various radiobiological factors that need to be considered for re-irradiation, tissue recovery and dose tolerances in the setting of re-irradiation and summarise the available literature to guide clinicians in their decision-making for re-irradiation to primary and metastatic site/s of disease.
Collapse
Affiliation(s)
| | - P Hoskin
- Mount Vernon Cancer Centre, Northwood, UK
| |
Collapse
|
26
|
Loi M, Caini S, Scoccianti S, Bonomo P, De Vries K, Francolini G, Simontacchi G, Greto D, Desideri I, Meattini I, Nuyttens J, Livi L. Stereotactic reirradiation for local failure of brain metastases following previous radiosurgery: Systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 153:103043. [PMID: 32650217 DOI: 10.1016/j.critrevonc.2020.103043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Local failure (LF) following stereotactic radiosurgery (SRS) of brain metastases (BM) may be treated with a second course of SRS (SRS2), though this procedure may increase the risk of symptomatic radionecrosis (RN). METHODS A literature search was conducted according to PRISMA to identify studies reporting LF, overall survival (OS) and RN rates following SRS2. Meta-analysis was performed to identify predictors of RN. RESULTS Analysis included 11 studies (335 patients,389 metastases). Pooled 1-year LF was 24 %(CI95 % 19-30 %): heterogeneity was acceptable (I2 = 21.4 %). Median pooled OS was 14 months (Confidence Interval 95 %, CI95 % 8.8-22.0 months). Cumulative crude RN rate was 13 % (95 %CI 8 %-19 %), with acceptable heterogeneity (I2 = 40.3 %). Subgroup analysis showed higher RN incidence in studies with median patient age ≥59 years (13 % [95 %CI 8 %-19 %] vs 7 %[95 %CI 3 %-12 %], p = 0.004) and lower incidence following prior Whole Brain Radiotherapy (WBRT, 19 %[95 %CI 13 %-25 %] vs 7%[95 %CI 3 %-13 %], p = 0.004). CONCLUSIONS SRS2 is an effective strategy for in-site recurrence of BM previously treated with SRS.
Collapse
Affiliation(s)
- Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy.
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | | | - Pierluigi Bonomo
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Kim De Vries
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Daniela Greto
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Isacco Desideri
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Icro Meattini
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Joost Nuyttens
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Lorenzo Livi
- Radiotherapy Department, University of Florence, Florence, Italy
| |
Collapse
|
27
|
Mitsuya K, Nakasu Y, Hayashi N, Deguchi S, Oishi T, Sugino T, Yasui K, Ogawa H, Onoe T, Asakura H, Harada H. Retrospective analysis of salvage surgery for local progression of brain metastasis previously treated with stereotactic irradiation: diagnostic contribution, functional outcome, and prognostic factors. BMC Cancer 2020; 20:331. [PMID: 32303195 PMCID: PMC7165413 DOI: 10.1186/s12885-020-06800-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/27/2020] [Indexed: 11/20/2022] Open
Abstract
Background Stereotactic irradiation (STI) is a primary treatment for patients with newly diagnosed brain metastases. Some of these patients experience local progression, which is difficult to differentiate from radiation necrosis, and difficult to treat. So far, just a few studies have clarified the prognosis and effectiveness of salvage surgery after STI. We evaluated the diagnostic value and improvement of functional outcomes after salvage surgery. Based on these results, we reconsidered surgical indication for patients with local progression after STI. Methods We evaluated patients with brain metastases treated with salvage surgery for local progression from October 2002 to July 2019. These patients had undergone salvage surgery based on magnetic resonance imaging findings and/or clinical evidence of post-STI local progression and stable systemic disease. We employed two prospective strategies according to the eloquency of the lesions. Lesions in non-eloquent areas had been resected completely with a safety margin, utilizing a fence-post method; while lesions in eloquent areas had been treated with minimal resection and postoperative STI. Kaplan-Meier curves were used for the assessment of overall survival. Prognostic factors for survival were analyzed. Results Fifty-four salvage surgeries had been performed on 48 patients. The median age of patients was 63.5 years (range 36–79). The median interval from STI to surgery was 12 months. The median overall survival was 20.2 months from salvage surgery and 37.5 months from initial STI. Primary cancers were lung 31, breast 9, and others 8. Local recurrence developed in 13 of 54 lesions (24%). Leptomeningeal dissemination occurred after surgery in 3 patients (5.6%). Primary breast cancer (breast vs. lung: HR: 0.17), (breast vs. others: HR: 0.08) and RPA class 1–2 (RPA 1 vs. 3, HR:0.13), (RPA 2 vs 3, HR:0.4) were identified as good prognostic factors for overall survival (OS) in multivariate analyses. The peripheral neutrophil-to-lymphocyte ratio (NLR) of ≤3.65 predicted significantly longer OS (median 25.5 months) than an NLR > 3.65 (median 8 months). Conclusion We insist that salvage surgery leads to rapid improvement of neurological function and clarity of histological diagnosis. Salvage surgery is recommended for large lesions especially with surrounding edema either in eloquent or non-eloquent areas.
Collapse
Affiliation(s)
- Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center, 1007, Shimo-nagakubo, Naga-izumi, Shizuoka, 411-8777, Japan.
| | - Yoko Nakasu
- Division of Neurosurgery, Shizuoka Cancer Center, 1007, Shimo-nagakubo, Naga-izumi, Shizuoka, 411-8777, Japan
| | - Nakamasa Hayashi
- Division of Neurosurgery, Shizuoka Cancer Center, 1007, Shimo-nagakubo, Naga-izumi, Shizuoka, 411-8777, Japan
| | - Shoichi Deguchi
- Division of Neurosurgery, Shizuoka Cancer Center, 1007, Shimo-nagakubo, Naga-izumi, Shizuoka, 411-8777, Japan
| | - Takuma Oishi
- Division of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takashi Sugino
- Division of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kazuaki Yasui
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hirofumi Ogawa
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Tsuyoshi Onoe
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hirofumi Asakura
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hideyuki Harada
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
28
|
Berghoff AS, Breckwoldt MO, Riedemann L, Karimian-Jazi K, Loew S, Schlieter F, Furtner J, Cinci M, Thomas M, Strowitzki MJ, Marmé F, Michel LL, Schmidt T, Jäger D, Bendszus M, Preusser M, Wick W, Winkler F. Bevacizumab-based treatment as salvage therapy in patients with recurrent symptomatic brain metastases. Neurooncol Adv 2020; 2:vdaa038. [PMID: 32642693 PMCID: PMC7212911 DOI: 10.1093/noajnl/vdaa038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Salvage treatment for recurrent brain metastases (BM) of solid cancers is challenging due to the high symptomatic burden and the limited local treatment options. Methods Patients with recurrent BM with no option for further local therapies were retrospectively identified from BM databases. Bevacizumab-based treatment was initiated as a salvage treatment. Radiological imaging before and after bevacizumab-based treatment was reevaluated for treatment response using the Response Assessment in Neuro-Oncology (RANO) BM criteria. Results Twenty-two patients (36.4% male) with recurrent BM from breast cancer (40.9%), colorectal cancer (31.8%), or lung cancer (27.3%) were identified. Previous BM-directed therapies were radiosurgery in 16/22 (72.7%) patients, whole-brain radiotherapy in 8/22 (36.4%), and neurosurgical resection in 11/22 (50.0%). Time since BM diagnosis to initiation of bevacizumab treatment was 16.5 months. Of 22 patients 14 (63.6%) received concurrent systemic therapies. Neurological symptom improvement could be achieved in 14/22 (63.6%) and stabilization in 6/22 (27.3%) patients, resulting in a clinical benefit in 20/22 (90.9%) patients. Steroids could be reduced or stopped in 15/22 (68.2%) patients. Rate of improvement on T1-weighted imaging was 15/19 (78.9%; median reduction: -26.0% ± 32.9) and 19/20 (95%; median reduction: -36.2% ± 22.2) on T2-weighted FLAIR imaging. According to RANO-BM best response was partial response in 7/19 (36.8%), stable disease in 9/19 (47.3%), and progressive disease in 3/19 (15.7%) patients. Median CNS-specific progression-free survival was 8 months and median overall survival after initiation of bevacizumab treatment was 17 months. Conclusions Bevacizumab-based treatment had clinically relevant intracranial activity in the vast majority of patients suffering from recurrent, symptomatic BM. The data supports a prospective clinical trial of bevacizumab as a salvage treatment in BM.
Collapse
Affiliation(s)
- Anna Sophie Berghoff
- Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Lars Riedemann
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Sarah Loew
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Franziska Schlieter
- Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Julia Furtner
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marc Cinci
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Thomas
- Department of Thoracic Oncology, University Hospital Heidelberg and Translational Lung Research Center Heidelberg, Heidelberg, Germany
| | - Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Frederik Marmé
- National Center for Tumor Disease, Gynecologic Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Laura L Michel
- National Center for Tumor Disease, Gynecologic Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Preusser
- Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wick
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Gamma Knife radiosurgery: Scenarios and support for re-irradiation. Phys Med 2019; 68:75-82. [PMID: 31760329 DOI: 10.1016/j.ejmp.2019.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/16/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022] Open
Abstract
Stereotactic radiosurgery (SRS) involves the focal delivery of large, cytotoxic doses of radiation to small targets within the brain, often located in close proximity to radiosensitive normal tissue structures and requiring very low procedural uncertainties to perform safely. Historically, neurosurgeons considered SRS as a one-time, single session procedure. However therapeutic advances and a better understanding of the clinical response to SRS have caused a renewal of interest in a variety of re-irradiation scenarios; including re-irradiation of the same target after prior SRS, SRS treatments after prior broad-field radiation, hypofractionated treatments, and volume-staged treatments. Re-irradiation may in some cases require even greater effort towards minimizing treatment uncertainties as compared to one-time-only treatments. Gamma Knife radiosurgery (GKRS) has evolved over time in ways that directly supports many re-irradiation scenarios while helping to minimize overall procedural uncertainty.
Collapse
|
30
|
Guan Y, Wang C, Zhu H, Li J, Xu W, Sun L, Pan L, Dai J, Wang Y, Wang E, Wang X. Hypofractionated Radiosurgery Plus Bevacizumab for Locally Recurrent Brain Metastasis with Previously High-Dose Irradiation. World Neurosurg 2019; 133:e252-e258. [PMID: 31505283 DOI: 10.1016/j.wneu.2019.08.233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Selection of appropriate treatment for patients with recurrent brain metastasis (BM) remains uncertain. Recent studies have demonstrated a significant response rate and acceptable toxicity using fractionated stereotactic radiosurgery (FSRS) in patients with locally recurrent large BM. The aim of this study was to evaluate efficacy and toxicity of FSRS with bevacizumab as a new salvage treatment for locally recurrent BM with previous high-dose irradiation. METHODS Patients with recurrent BM previously irradiated were enrolled. Salvage FSRS dose was 9.5-29 Gy (2-5 fractions) with 62%-75% isodose line by CyberKnife according to the brain tumor volume, site, and previous dose. Bevacizumab was prescribed for 4 cycles (5 mg/kg, every 3 weeks). The primary objective was to identify the overall survival after salvage treatment. Secondary objectives included clinical response (Karnofsky performance scale), imaging response (magnetic resonance imaging) and treatment-related adverse events. RESULTS From December 2009 to October 2016, 24 patients were enrolled. The 1-year overall survival after salvage stereotactic radiosurgery was 87.5%. Twenty-three (96%) patients had a positive imaging response with a T2 volume reduction range of 6-22 cm3 (median 14 cm3, P = 0.032, paired t test). Significant clinical improvement was achieved (best Karnofsky performance scale score, P < 0.05, paired t test). Grade 1/2 fatigue was observed in 8 (33%) patients. Grade 3 fatigue and headache occurred in 1 patient. CONCLUSIONS FSRS with adjuvant bevacizumab treatment showed favorable clinical and radiologic control as a salvage treatment regimen. The diagnoses of radiation necrosis and local recurrence after salvage FSRS warrant further study.
Collapse
Affiliation(s)
- Yun Guan
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China
| | - Chaozhuang Wang
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China
| | - Huaguang Zhu
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China
| | - Jing Li
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China
| | - Wenqian Xu
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China
| | - Lei Sun
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China
| | - Li Pan
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China
| | - Jiazhong Dai
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China
| | - Yang Wang
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China
| | - Enmin Wang
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China
| | - Xin Wang
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, and Neurosurgical Institute, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Dincoglan F, Sager O, Demiral S, Gamsiz H, Uysal B, Onal E, Ekmen A, Dirican B, Beyzadeoglu M. Fractionated stereotactic radiosurgery for locally recurrent brain metastases after failed stereotactic radiosurgery. Indian J Cancer 2019; 56:151-156. [PMID: 31062735 DOI: 10.4103/ijc.ijc_786_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS AND BACKGROUND There is scant data on the utility of repeated radiosurgery for management of locally recurrent brain metastases after upfront stereotactic radiosurgery (SRS). Most studies have used single-fraction SRS for repeated radiosurgery, and the use of fractionated stereotactic radiosurgery (f-SRS) in this setting has been poorly addressed. In this study, we assessed the utility of f-SRS for the management of locally recurrent brain metastases after failed upfront single-fraction SRS and report our single-center experience. METHODS AND STUDY DESIGN A total of 30 patients receiving f-SRS for locally recurrent brain metastases after upfront single-fraction SRS at our department between September 2011 and September 2017 were retrospectively evaluated for local control (LC), toxicity, and overall survival outcomes. RESULTS Median age and Karnofsky performance status were 57 (range: 38-78 years) and 80 (range: 70-100) at repeated radiosurgery (SRS2). The median time interval between the two radiosurgery applications was 13.5 months (range: 3.7-49 months). LC after SRS2 was 83.3%. Radionecrosis developed in 4 of the 30 lesions after SRS2, and total rate of radionecrosis was 13.3%. Statistical analysis revealed that the volume of planning target volume (PTV) at SRS2 was significantly associated with radionecrosis (P = 0.014). The volume of PTV was >13 cm3 at SRS2 in all patients with radionecrosis. CONCLUSION A repeated course of radiosurgery in the form of f-SRS may be a viable therapeutic option for the management of locally recurrent brain metastases after failed upfront SRS with high LC rates and an acceptable toxicity profile despite the need for further supporting evidence.
Collapse
Affiliation(s)
- Ferrat Dincoglan
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Omer Sager
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Selcuk Demiral
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Hakan Gamsiz
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Bora Uysal
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Elif Onal
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Ayca Ekmen
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Bahar Dirican
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Murat Beyzadeoglu
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| |
Collapse
|
32
|
Susko M, Yu Y, Ma L, Nakamura J, Fogh S, Raleigh DR, Golden E, Theodosopoulos PV, McDermott MW, Sneed PK, Braunstein SE. Preoperative Dural Contact and Recurrence Risk After Surgical Cavity Stereotactic Radiosurgery for Brain Metastases: New Evidence in Support of Consensus Guidelines. Adv Radiat Oncol 2019; 4:458-465. [PMID: 31360800 PMCID: PMC6639748 DOI: 10.1016/j.adro.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 11/19/2022] Open
Abstract
Purpose The incidence of brain metastases is increasing as a result of more routine diagnostic imaging and improved extracranial systemic treatment strategies. As noted in recent consensus guidelines, postoperative stereotactic radiosurgery (SRS) to the resection cavity has lower rates of local control than whole brain radiation therapy but improved cognitive outcomes. Further analyses are needed to improve local control and minimize toxicity. Methods and materials Patients receiving SRS to a resection cavity between 2006 and 2016 were retrospectively analyzed. Presurgical variables, including tumor location, diameter, dural/meningeal contact, and histology, were collected, as were SRS treatment parameters. Patients had routine follow-up with magnetic resonance imaging, and those noted to have local failure were further assessed for the recurrence location, distance from the target volume, and dosimetric characteristics. Results Overall, 82 patients and 85 resection cavities underwent postoperative SRS during the study period. Of these, 58 patients with 60 resection cavities with available follow-up magnetic resonance imaging scans were included in this analysis. With a median follow-up of 19.8 months, local recurrence occurred in 12 of the resection cavities for a 15% 1-year and 18% 2-year local recurrence rate. Pretreatment tumor volume contacted the dura/meninges in 100% of cavities with recurrence versus 67% of controlled cavities (P = .025). A total of 5 infield, 5 marginal, and 4 out-of-field recurrences were found, with a median distance to the centroid from the target volume of 3 mm. The addition of a 10-mm dural margin increased the target volume overlap with the recurrence contours for 10 of the 14 recurrences. Conclusions Dural contact was associated with an increased rate of recurrence for patients who received SRS to a surgical cavity, and the median distance of marginal recurrences from the target volume was 3 mm. These results provide evidence in support of recent consensus guidelines suggesting that additional dural margin on SRS volumes may benefit local control.
Collapse
Affiliation(s)
- Matthew Susko
- Department of Radiation Oncology, San Francisco, California
- Corresponding author. University of California – San Francisco, Department of Radiation Oncology, 1600 Divisadero Street, Basement Level, San Francisco, CA 94115.
| | - Yao Yu
- Department of Radiation Oncology, San Francisco, California
| | - Lijun Ma
- Department of Radiation Oncology, San Francisco, California
| | - Jean Nakamura
- Department of Radiation Oncology, San Francisco, California
| | - Shannon Fogh
- Department of Radiation Oncology, San Francisco, California
| | | | - Encouse Golden
- Department of Radiation Oncology, San Francisco, California
| | | | | | - Penny K. Sneed
- Department of Radiation Oncology, San Francisco, California
| | | |
Collapse
|
33
|
Chidambaram S, Pannullo SC, Schwartz TH, Wernicke AG. Reirradiation of Recurrent Brain Metastases: Where Do We Stand? World Neurosurg 2019; 125:156-163. [PMID: 30738931 DOI: 10.1016/j.wneu.2019.01.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
Abstract
Brain metastases occur in a large portion of patients with cancer. Although advances in radiotherapy have helped to improve survival, they have also raised questions regarding the best modality for retreatment in the context of recurrent disease. The spectrum of treatment options for recurrent intracranial metastatic disease after previous radiotherapy includes salvage stereotactic radiosurgery, whole brain radiotherapy, and brachytherapy. We have comprehensively reviewed the existing data on the efficacy and toxicity of the various reirradiation treatment modalities. We examined the key clinical considerations that guide patient selection, such as dose, tumor size, interval to retreatment, and local control and survival rates.
Collapse
Affiliation(s)
- Swathi Chidambaram
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, New York, USA
| | - Susan C Pannullo
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, New York, USA
| | - Theodore H Schwartz
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, New York, USA
| | - A Gabriella Wernicke
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, New York, USA; Department of Radiation Oncology, Weill Medical College of Cornell University, New York, New York, USA.
| |
Collapse
|
34
|
Nieder C, Yobuta R, Mannsåker B. Second Re-irradiation of Brain Metastases: A Review of Studies Involving Stereotactic Radiosurgery. Cureus 2018; 10:e3712. [PMID: 30788201 PMCID: PMC6373883 DOI: 10.7759/cureus.3712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Due to advances in the systemic and local treatment, e.g., targeted therapy, immune checkpoint inhibitors, and stereotactic radiotherapy, an increasing proportion of patients with brain metastases now survive for several years. However, long-term survival is not synonymous to permanent local control in the brain. Both local and distant brain relapse sometimes necessitate additional radiotherapy to prevent death from neurologic causes. Prescribing more than two courses of radiotherapy to the same target volume or, in this case, brain metastasis, is a controversial approach. The present review summarizes the results of clinical studies, that included patients treated with whole-brain radiotherapy (WBRT) and two courses of stereotactic radiotherapy to the same, locally recurrent metastasis, and with two courses of WBRT and an additional stereotactic radiotherapy.
Collapse
|
35
|
Balermpas P, Stera S, Müller von der Grün J, Loutfi-Krauss B, Forster MT, Wagner M, Keller C, Rödel C, Seifert V, Blanck O, Wolff R. Repeated in-field radiosurgery for locally recurrent brain metastases: Feasibility, results and survival in a heavily treated patient cohort. PLoS One 2018; 13:e0198692. [PMID: 29874299 PMCID: PMC5991396 DOI: 10.1371/journal.pone.0198692] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
Purpose Stereotactic radiosurgery (SRS) is an established primary treatment for newly diagnosed brain metastases with high local control rates. However, data about local re-irradiation in case of local failure after SRS (re-SRS) are rare. We evaluated the feasibility, efficacy and patient selection characteristics in treating locally recurrent metastases with a second course of SRS. Methods We retrospectively evaluated patients with brain metastases treated with re-SRS for local tumor progression between 2011 and 2017. Patient and treatment characteristics as well as rates of tumor control, survival and toxicity were analyzed. Results Overall, 32 locally recurrent brain metastases in 31 patients were irradiated with re-SRS. Median age at re-SRS was 64.9 years. The primary histology was breast cancer and non-small-cellular lung cancer (NSCLC) in respectively 10 cases (31.3%), in 5 cases malignant melanoma (15.6%). In the first SRS-course 19 metastases (59.4%) and in the re-SRS-course 29 metastases (90.6%) were treated with CyberKnife® and the others with Gamma Knife. Median planning target volume (PTV) for re-SRS was 2.5 cm3 (range, 0.1–37.5 cm3) and median dose prescribed to the PTV was 19 Gy (range, 12–28 Gy) in 1–5 fractions to the median 69% isodose (range, 53–80%). The 1-year overall survival rate was 61.7% and the 1-year local control rate was 79.5%. The overall rate of radiological radio-necrosis was 16.1% and four patients (12.9%) experienced grade ≥ 3 toxicities. Conclusions A second course of SRS for locally recurrent brain metastases after prior local SRS appears to be feasible with acceptable toxicity and can be considered as salvage treatment option for selected patients with high performance status. Furthermore, this is the first study utilizing robotic radiosurgery for this indication, as an additional option for frameless fractionated treatment.
Collapse
Affiliation(s)
- Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
- Saphir Radiosurgery Center, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) partner site: Frankfurt am Main, Germany
- * E-mail:
| | - Susanne Stera
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Jens Müller von der Grün
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Britta Loutfi-Krauss
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Marie-Thérèse Forster
- Department of Neurosurgery, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Marlies Wagner
- Institute for Neuroradiology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Christian Keller
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
- Saphir Radiosurgery Center, Frankfurt, Germany
| | - Claus Rödel
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) partner site: Frankfurt am Main, Germany
| | - Volker Seifert
- Department of Neurosurgery, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Oliver Blanck
- Saphir Radiosurgery Center, Frankfurt, Germany
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Robert Wolff
- Saphir Radiosurgery Center, Frankfurt, Germany
- Department of Neurosurgery, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|