1
|
Mishra M, Ahmed R, Das DK, Pramanik DD, Dash SK, Pramanik A. Recent Advancements in the Application of Circulating Tumor DNA as Biomarkers for Early Detection of Cancers. ACS Biomater Sci Eng 2024; 10:4740-4756. [PMID: 38950521 PMCID: PMC11322919 DOI: 10.1021/acsbiomaterials.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Early detection of cancer is vital for increasing patient survivability chances. The three major techniques used to diagnose cancers are instrumental examination, tissue biopsy, and tumor biomarker detection. Circulating tumor DNA (ctDNA) has gained much attention in recent years due to advantages over traditional technology, such as high sensitivity, high specificity, and noninvasive nature. Through the mechanism of apoptosis, necrosis, and circulating exosome release in tumor cells, ctDNA can spread throughout the circulatory system and carry modifications such as methylations, mutations, gene rearrangements, and microsatellite instability. Traditional gene-detection technology struggles to achieve real-time, low-cost, and portable ctDNA measurement, whereas electrochemical biosensors offer low cost, high specificity alongside sensitivity, and portability for the detection of ctDNA. Therefore, this review focuses on describing the recent advancements in ctDNA biomarkers for various cancer types and biosensor developments for real-time, noninvasive, and rapid ctDNA detection. Further in the review, ctDNA sensors are also discussed in regards to their selections of probes for receptors based on the electrode surface recognition elements.
Collapse
Affiliation(s)
- Mahima Mishra
- Amity Institute
of Biotechnology, Amity University, Noida 201301, India
| | - Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda-732103, West Bengal, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, 281406 Uttar Pradesh, India
| | | | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda-732103, West Bengal, India
| | - Arindam Pramanik
- Amity Institute
of Biotechnology, Amity University, Noida 201301, India
- School of Medicine, University of Leeds, Leeds LS53RL, United Kingdom
| |
Collapse
|
2
|
Bednarska K, Thillaiyampalam G, Mujaj S, Nourse J, Gunawardana J, Sabdia MB, Law SC, Pilaar A, Cui Q, de Long LM, Vari F, Gandhi MK, Cristino AS. The IRE1α Endonuclease Plays a Dual Role in Regulating the XBP1/miRNA-34a Axis and PD-1 Expression within Natural Killer Cells in Hodgkin Lymphoma. Acta Haematol 2024; 147:676-691. [PMID: 38479365 DOI: 10.1159/000536044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/26/2023] [Indexed: 12/05/2024]
Abstract
INTRODUCTION Hodgkin lymphoma (HL) is deficient in major histocompatibility complex class I, rendering it susceptible to antitumoral immunity by natural killer (NK) cells. Despite the functional impairment of PD-1+ NK cells in HL, the underlying mechanisms of NK cell dysfunction remain unclear. METHODS This study involved 14 HL patients and SNK10/KHYG-1 cell lines to assess NK cell activation against cancer cells. Activation was measured through transcript (PCR) and protein expression (flow cytometry). Regulatory mechanisms associated with IRE1α activation were validated through knockdown and luciferase reporter assays. RESULTS Our findings reveal a novel role for IRE1α-endonuclease in fine-tuning NK cell effector functions by orchestrating the XBP1s/microRNA-34a-5p/PD-1 axis. When NK cells encounter cancer cells, IRE1α endonuclease activates the decay of microRNA-34a-5p, resulting in increased expression of XBP1s and PD-1. IRE1α-endonuclease activation enhances NK cell functions while promoting PD-1 expression. In turn, PD-1 is directly regulated by microRNA-34a-5p, which binds to the 3'UTR of PD-1 transcript to repress PD-1 protein on the NK cell surface. Importantly, IRE1α-pathway activation is impaired in NK cells from HL patients. CONCLUSION The IRE1α endonuclease emerges as a key player, simultaneously regulating the XBP1s/microRNA-34a-5p/PD-1 axis in NK cells, a process disrupted in HL. Targeting the IRE1α-pathway holds promise as a therapeutic strategy to optimize NK cell functions in Hodgkin lymphoma treatments.
Collapse
Affiliation(s)
- Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Gayathri Thillaiyampalam
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Sally Mujaj
- Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jamie Nourse
- Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jay Gunawardana
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Muhammed B Sabdia
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Soi C Law
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Anna Pilaar
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Qingyan Cui
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Lilia M de Long
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Frank Vari
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Maher K Gandhi
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Alexandre S Cristino
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Albuquerque ADO, da Silva Junior HC, Sartori GR, Martins da Silva JH. Computationally-obtained structural insights into the molecular interactions between Pidilizumab and binding partners DLL1 and PD-1. J Biomol Struct Dyn 2021; 40:6450-6462. [PMID: 33559526 DOI: 10.1080/07391102.2021.1885492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pidilizumab is a monoclonal antibody tested against several types of malignancies, such as lymphoma and metastatic melanoma, showing promising results. In 2016, the FDA put Pidilizumab's clinical studies on partial hold due to emerging evidence pointing to the antibody target uncertainty. Although initial studies indicated an interaction with the PD-1 checkpoint receptor, recent updates assert that Pidilizumab binds primarily to Notch ligand DLL1. However, a detailed description of which interactions coordinate antibody-antigen complex formation is lacking. Therefore, this study uses computational tools to identify molecular interactions between Pidilizumab and its reported targets PD-1 and DLL1. A docking methodology was validated and applied to determine the binding modes between modeled Pidilizumab scFvs and the two antigens. We used Molecular Dynamics (MD) simulations to verify the complexes' stability and submitted the resulting trajectory files to MM/PBSA and Principal Component Analysis. A set of different prediction tools determined scFv interface hot-spots. Whereas docking and MD simulations revealed that the antibody fragments do not interact straightforwardly with PD-1, ten scFv hot-spots, including Met93 and Leu112, mediated the interaction with the DLL1 C2 domain. The interaction triggered a conformational selection-like effect on DLL1, allowing new hydrogen bonds on the β3-β4 interface loop. The unprecedented structural data on Pidilizumab's interactions provided novel evidence that its legitimate target is the DLL1 protein and offered structural insight on how these molecules interact, shedding light on the pathways that could be affected by the use of this essential immunobiological.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Geraldo Rodrigues Sartori
- Grupo para Modelagem, Simulação e Evolução, in sílico, de Biomoléculas, Fiocruz-Ceará, Eusébio, Brazil
| | | |
Collapse
|
4
|
Menter T, Tzankov A, Dirnhofer S. The tumor microenvironment of lymphomas: Insights into the potential role and modes of actions of checkpoint inhibitors. Hematol Oncol 2020; 39:3-10. [PMID: 33105031 DOI: 10.1002/hon.2821] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME) - a term comprising non-neoplastic cells and extracellular matrix as well as various cytokines, chemokines, growth factors, and other substances in the vicinity of tumor cells - is an integrative part of most tumors including lymphomas. Interactions between lymphoma cells and the TME are vital for survival and proliferation of the former. In addition, lymphoma cells often reprogram the TME to protect them from defense mechanisms of the host's immune system. In this review, we will introduce the role of the tumor microenvironment (TME) for lymphoma cells looking at direct cell-cell interactions as well as cytokine-related communications. The immunomodulative/immunosuppressive role of the TME is more and more coming into the focus of potential new targeted therapies, and thus a special attention will be given to the interactions of immune checkpoints such as programed cell death protein 1 and L1 (PD-1/PD-L1), T-cell immunoglobulin and mucin-domain containing protein-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), and cytotoxic T-lymphocyte-associated protein-4 (CTLA4) with the TME, as well as their expression by both lymphoma cells and cells of the TME. Aspects of the TME will be discussed for indolent and aggressive B-cell lymphomas, Hodgkin lymphomas, and T-cell lymphomas. In addition, the potential influence of other immunomodulators such as lenalidomide will be briefly touched. The complex role of the TME is in the focus of new therapeutic options. In order to exploit its full therapeutic potential, however, a thorough understanding of TME biology and interaction between lymphoma cells and the TME, as well as the host's immune system and the TME is necessary.
Collapse
Affiliation(s)
- Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Abstract
Hodgkin lymphoma (HL) is a unique type of hematopoietic cancer that has few tumor cells but a massive infiltration of immune cells. Findings on how the cancerous Hodgkin and Reed-Sternberg (HRS) cells survive and evade immune surveillance have facilitated the development of novel immunotherapies for HL. Trogocytosis is a fast process of intercellular transfer of membrane patches, which can significantly affect immune responses. In this review, we summarize the current knowledge of how trogocytosis contributes to the suppression of immune responses in HL. We focus on the ectopic expression of CD137 on HRS cells, the cause of its expression, and its implication on developing novel therapies for HL. Further, we review data demonstrating that similar mechanisms apply to CD30, PD-L1 and CTLA-4.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
6
|
Menter T, Tzankov A. Lymphomas and Their Microenvironment: A Multifaceted Relationship. Pathobiology 2019; 86:225-236. [PMID: 31574515 DOI: 10.1159/000502912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/24/2019] [Indexed: 11/19/2022] Open
Abstract
It has become evident that the microenvironment - lymphocytes, macrophages, fibroblasts as well as the extracellular matrix, cytokines, chemokines, and a plethora of other cells, structures and substances residing in the vicinity of tumor cells - plays an important part in the maintenance of cancer growth and survival. This is also relevant in lymphomas. In this review, we give an outline on the importance of the microenvironment for tumors in general and lymphomas in particular, by highlighting certain basic principles of tumor-microenvironment interaction. The relationship of lymphomas and their microenvironment is multifaceted: lymphoma cells need growth factors and cytokines derived from microenvironmental cells for their sustenance and growth. On the contrary, many lymphomas silence or at least deregulate the immune system to escape recognition and subsequent elimination by immune cells, while giving advantage to suppressive microenvironmental compounds such as M2 polarized macrophages, regulatory T-cells, mast cells, and immunosuppressive fibroblasts. We also give a detailed insight across different lymphoma types to show the variety of tumor-microenvironment interactions. Due to its tremendous importance, the microenvironment has also become a new target for oncologic therapy. The most important finding concerning lymphomas with a focus on immunomodulatory substances is also, therefore, highlighted.
Collapse
Affiliation(s)
- Thomas Menter
- Institute of Medical Genetics and Pathology, University of Basel Hospital, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University of Basel Hospital, Basel, Switzerland,
| |
Collapse
|
7
|
Zeng Q, Gupta A, Xin L, Poon M, Schwarz H. Plasma Factors for the Differentiation of Hodgkin's Lymphoma and Diffused Large B Cell Lymphoma and for Monitoring Remission. J Hematol 2019; 8:47-54. [PMID: 32300443 PMCID: PMC7153682 DOI: 10.14740/jh499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Hodgkin lymphoma (HL) is one of the most frequent cancers occurring at a young age. Although diagnosis of HL is not difficult, a minimally invasive method to diagnose HL, and a radiation-free method to confirm the remission status are highly desired. Methods In this study, we employed cutting-edge Luminex technology to evaluate 67 soluble plasma proteins for their suitability for diagnosis and for confirming remission of classical HL (cHL). Results Soluble cluster of differentiation (CD)30 and CC motif chemokine ligand (CCL)22 were identified to be capable of differentiating cHL patients from healthy donors and from patients with diffuse large B cell lymphoma (DLBCL), a disease that shares many characteristics with cHL. Soluble tumor necrosis factor receptor (TNFR)2 was found to be lower in the remission than in the initial diagnosis cohort of cHL patients, and also to be lower in plasmas at remission than in plasmas at initial diagnosis from the same patients. In DLBCL plasmas, concentrations of interleukin (IL)-2, soluble IL-2 receptor and IL-31 changed in patients upon entering remission. Conclusions Measurement of these factors may: 1) provide a minimally-invasive method to diagnose and differentiate HL and DLBCL, and 2) make it possible to monitor the remission status of these patients without use of radiation-based imaging.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Co-first authors
| | - Arunima Gupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Co-first authors
| | - Liu Xin
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Michelle Poon
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore.,Co-senior authors
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Co-senior authors
| |
Collapse
|
8
|
Abstract
The Hodgkin lymphomas are a family of unique lymphoma subtypes, in which the nature of the neoplastic cell was enigmatic for many years. Much of the mystery has been solved, with all forms now considered to be of B-cell origin, in most cases of germinal centre derivation. Today we recognize Hodgkin lymphoma as an eponym that encompasses multiple entities. One of the unifying themes is the major contribution from the tumour microenvironment. Both the character of the neoplastic cells and the nature of the immune environment are critical to accurate diagnosis. Moreover, an understanding of the molecular alterations that characterize both the neoplastic cells and their microenvironment have led to therapeutic advances, targeting both neoplastic and reactive components. Other conditions may foster a similar inflammatory milieu and lead to lymphoproliferations that mimic the Hodgkin lymphomas. In this review we provide an update on the diagnostic features of the various subtypes and include additional information relevant for prognostic evaluation and investigation of potential therapeutic targets. Additionally, we also discuss those conditions that often cause confusion in diagnosis and need to be distinguished from the Hodgkin lymphomas.
Collapse
Affiliation(s)
- Hao-Wei Wang
- From the Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jayalakshmi P Balakrishna
- From the Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Stefania Pittaluga
- From the Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Elaine S Jaffe
- From the Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
9
|
Cirillo M, Reinke S, Klapper W, Borchmann S. The translational science of hodgkin lymphoma. Br J Haematol 2018; 184:30-44. [DOI: 10.1111/bjh.15658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/20/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Melita Cirillo
- Department of Haematology; Royal Perth Hospital; Perth Australia
- Department I of Internal Medicine; German Hodgkin Study Group (GHSG); Cologne Germany
| | - Sarah Reinke
- Department of Pathology; Hematopathology Section; University Hospital Schleswig-Holstein, Campus Kiel; Kiel Germany
| | - Wolfram Klapper
- Department of Pathology; Hematopathology Section; University Hospital Schleswig-Holstein, Campus Kiel; Kiel Germany
| | - Sven Borchmann
- Department I of Internal Medicine; German Hodgkin Study Group (GHSG); Cologne Germany
- Else Kröner Forschungskolleg Clonal Evolution in Cancer; University Hospital of Cologne; Cologne Germany
- Centre for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| |
Collapse
|
10
|
Gordiienko I, Shlapatska L, Kovalevska L, Sidorenko SP. SLAMF1/CD150 in hematologic malignancies: Silent marker or active player? Clin Immunol 2018; 204:14-22. [PMID: 30616923 DOI: 10.1016/j.clim.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
SLAMF1/CD150 receptor is a founder of signaling lymphocyte activation molecule (SLAM) family of cell-surface receptors. It is widely expressed on cells within hematopoietic system. In hematologic malignancies CD150 cell surface expression is restricted to cutaneous T-cell lymphomas, few types of B-cell non-Hodgkin's lymphoma, near half of cases of chronic lymphocytic leukemia, Hodgkin's lymphoma, and multiple myeloma. Differential expression among various types of hematological malignancies allows considering CD150 as diagnostical and potential prognostic marker. Moreover, CD150 may be a target for antibody-based or measles virus oncolytic therapy. Due to CD150 signaling properties it is involved in regulation of malignant cell fate decision and tumor microenvironment in Hodgkin's lymphoma and chronic lymphocytic leukemia. This review summarizes evidence for the important role of CD150 in pathogenesis of hematologic malignancies.
Collapse
Affiliation(s)
- Inna Gordiienko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Larysa Shlapatska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Larysa Kovalevska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Svetlana P Sidorenko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|