1
|
Maiti A, Mondal S, Choudhury S, Bandopadhyay A, Mukherjee S, Sikdar N. Oncometabolites in pancreatic cancer: Strategies and its implications. World J Exp Med 2024; 14:96005. [PMID: 39713078 PMCID: PMC11551704 DOI: 10.5493/wjem.v14.i4.96005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 10/31/2024] Open
Abstract
Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor. To survive, grow and proliferate in such tough TME, pancreatic tumor and stromal cells transform their metabolism. Transformed glucose, glutamine, fat, nucleotide metabolism and inter-metabolite communication between tumor and TME in synergism, impart therapy resistance, and immunosuppression in PanCa. Thus, a finer knowledge of altered metabolism would uncover its metabolic susceptibilities. These unique metabolic targets may help to device novel diagnostic/prognostic markers and therapeutic strategies for better management of PanCa. In this review, we sum up reshaped metabolic pathways in PanCa to formulate detection and remedial strategies of this devastating disease.
Collapse
Affiliation(s)
- Arunima Maiti
- Suraksha Diagnostics Pvt Ltd, Newtown, Rajarhat, Kolkata 700156, West Bengal, India
| | - Susmita Mondal
- Department of Zoology, Diamond Harbour Women’s University, Diamond Harbour 743368, West Bengal, India
| | - Sounetra Choudhury
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | - Sanghamitra Mukherjee
- Department of Pathology, RG Kar Medical College and Hospital, Kolkata 700004, West Bengal, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
- Scientist G, Estuarine and Coastal Studies Foundation, Howrah 711101, West Bengal, India
| |
Collapse
|
2
|
Pavlicev M, DiFrisco J, Love AC, Wagner GP. Metabolic complementation between cells drives the evolution of tissues and organs. Biol Lett 2024; 20:20240490. [PMID: 39561800 PMCID: PMC11583983 DOI: 10.1098/rsbl.2024.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024] Open
Abstract
Although evolutionary transitions of individuality have been extensively theorized, little attention has been paid to the origin of levels of organization within organisms. How and why do specialized cells become organized into specialized tissues or organs? What spurs a transition in organizational level in cases where the function is already present in constituent cell types? We propose a hypothesis for this kind of evolutionary transition based on two features of cellular metabolism: metabolic constraints on functional performance and the capacity for metabolic complementation between parenchymal and supporting cells. These features suggest a scenario whereby pre-existing specialized cell types are integrated into tissues when changes to the internal or external environment favour offloading metabolic burdens from a primary specialized cell type onto supporting cells. We illustrate this process of 'supra-functionalization' using the nervous system and pancreas.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Complexity Science Hub, Vienna, Austria
- Konrad Lorenz Institute of Evolution and Cognition Research, Klosterneuburg, Austria
| | - J DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, London, UK
| | - Alan C Love
- Department of Philosophy & Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| | - Günter P Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Konrad Lorenz Institute of Evolution and Cognition Research, Klosterneuburg, Austria
- Yale University, New Haven, CT, USA
- Texas A&M, Hagler Institute for Advanced Study, College Station, TX, USA
| |
Collapse
|
3
|
Murata D, Ito F, Tang G, Iwata W, Yeung N, West JJ, Ewald AJ, Wang X, Iijima M, Sesaki H. mCAUSE: Prioritizing mitochondrial targets that alleviate pancreatic cancer cell phenotypes. iScience 2024; 27:110880. [PMID: 39310760 PMCID: PMC11416656 DOI: 10.1016/j.isci.2024.110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Substantial changes in energy metabolism are a hallmark of pancreatic cancer. To adapt to hypoxic and nutrient-deprived microenvironments, pancreatic cancer cells remodel their bioenergetics from oxidative phosphorylation to glycolysis. This bioenergetic shift makes mitochondria an Achilles' heel. Since mitochondrial function remains essential for pancreatic cancer cells, further depleting mitochondrial energy production is an appealing treatment target. However, identifying effective mitochondrial targets for treatment is challenging. Here, we developed an approach, mitochondria-targeted cancer analysis using survival and expression (mCAUSE), to prioritize target proteins from the entire mitochondrial proteome. Selected proteins were further tested for their impact on pancreatic cancer cell phenotypes. We discovered that targeting a dynamin-related GTPase, OPA1, which controls mitochondrial fusion and cristae, effectively suppresses pancreatic cancer activities. Remarkably, when combined with a mutation-specific KRAS inhibitor, OPA1 inhibition showed a synergistic effect. Our findings offer a therapeutic strategy against pancreatic cancer by simultaneously targeting mitochondria dynamics and KRAS signaling.
Collapse
Affiliation(s)
- Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fumiya Ito
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gongyu Tang
- Department of Pharmacology and Regenerative Medicine, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| | - Wakiko Iwata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nelson Yeung
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junior J. West
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J. Ewald
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Zarei M, Hajihassani O, Hue JJ, Loftus AW, Graor HJ, Nakazzi F, Naji P, Boutros CS, Uppin V, Vaziri-Gohar A, Shalaby AS, Asara JM, Rothermel LD, Brody JR, Winter JM. IDH1 Inhibition Potentiates Chemotherapy Efficacy in Pancreatic Cancer. Cancer Res 2024; 84:3072-3085. [PMID: 38843355 PMCID: PMC11403292 DOI: 10.1158/0008-5472.can-23-1895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/15/2024] [Accepted: 06/03/2024] [Indexed: 09/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a 5-year overall survival rate of just 13%, and development of chemotherapy resistance is nearly universal. PDAC cells overexpress wild-type isocitrate dehydrogenase 1 (IDH1) that can enable them to overcome metabolic stress, suggesting it could represent a therapeutic target in PDAC. Here, we found that anti-IDH1 therapy enhanced the efficacy of conventional chemotherapeutics. Chemotherapy treatment induced reactive oxygen species (ROS) and increased tricarboxylic acid cycle activity in PDAC cells, along with the induction of wild-type IDH1 expression as a key resistance factor. IDH1 facilitated PDAC survival following chemotherapy treatment by supporting mitochondrial function and antioxidant defense to neutralize ROS through the generation of α-ketoglutarate and NADPH, respectively. Pharmacologic inhibition of wild-type IDH1 with ivosidenib synergized with conventional chemotherapeutics in vitro and potentiated the efficacy of subtherapeutic doses of these drugs in vivo in murine PDAC models. This promising treatment approach is translatable through available and safe oral inhibitors and provides the basis of an open and accruing clinical trial testing this combination (NCT05209074). Significance: Targeting IDH1 improves sensitivity to chemotherapy by suppressing mitochondrial function and inducing oxidative stress, supporting the potential of the combination as an effective strategy for treating pancreatic cancer.
Collapse
Affiliation(s)
- Mehrdad Zarei
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| | - Omid Hajihassani
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| | - Jonathan J. Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| | - Alexander W. Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| | - Hallie J. Graor
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| | - Faith Nakazzi
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| | - Parnian Naji
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| | - Christina S. Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| | - Vinayak Uppin
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| | - Ali Vaziri-Gohar
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois.
| | - Akram S. Shalaby
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| | - John M. Asara
- Division of Signal Transduction and Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| | - Luke D. Rothermel
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| | - Jonathan R. Brody
- Department of Surgery, Oregon Health & Science University, Portland, Oregon.
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon.
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.
| | - Jordan M. Winter
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
5
|
Konaté MM, Krushkal J, Li MC, Chen L, Kotliarov Y, Palmisano A, Pauly R, Xie Q, Williams PM, McShane LM, Zhao Y. Insights into gemcitabine resistance in pancreatic cancer: association with metabolic reprogramming and TP53 pathogenicity in patient derived xenografts. J Transl Med 2024; 22:733. [PMID: 39103840 DOI: 10.1186/s12967-024-05528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND With poor prognosis and high mortality, pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies. Standard of care therapies for PDAC have included gemcitabine for the past three decades, although resistance often develops within weeks of chemotherapy initiation through an array of possible mechanisms. METHODS We reanalyzed publicly available RNA-seq gene expression profiles of 28 PDAC patient-derived xenograft (PDX) models before and after a 21-day gemcitabine treatment using our validated analysis pipeline to identify molecular markers of intrinsic and acquired resistance. RESULTS Using normalized RNA-seq quantification measurements, we first identified oxidative phosphorylation and interferon alpha pathways as the two most enriched cancer hallmark gene sets in the baseline gene expression profile associated with intrinsic gemcitabine resistance and sensitivity, respectively. Furthermore, we discovered strong correlations between drug-induced expression changes in glycolysis and oxidative phosphorylation genes and response to gemcitabine, which suggests that these pathways may be associated with acquired gemcitabine resistance mechanisms. Thus, we developed prediction models using baseline gene expression profiles in those pathways and validated them in another dataset of 12 PDAC models from Novartis. We also developed prediction models based on drug-induced expression changes in genes from the Molecular Signatures Database (MSigDB)'s curated 50 cancer hallmark gene sets. Finally, pathogenic TP53 mutations correlated with treatment resistance. CONCLUSION Our results demonstrate that concurrent upregulation of both glycolysis and oxidative phosphorylation pathways occurs in vivo in PDAC PDXs following gemcitabine treatment and that pathogenic TP53 status had association with gemcitabine resistance in these models. Our findings may elucidate the molecular basis for gemcitabine resistance and provide insights for effective drug combination in PDAC chemotherapy.
Collapse
Affiliation(s)
- Mariam M Konaté
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Ming-Chung Li
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Li Chen
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21704, USA
| | - Yuri Kotliarov
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Alida Palmisano
- General Dynamics Information Technology (GDIT), Falls Church, VA, 22042, USA
| | - Rini Pauly
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21704, USA
| | - Qian Xie
- General Dynamics Information Technology (GDIT), Falls Church, VA, 22042, USA
| | - P Mickey Williams
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21704, USA
| | - Lisa M McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA.
| |
Collapse
|
6
|
Gordon JW, Chen HY, Nickles T, Lee PM, Bok R, Ohliger MA, Okamoto K, Ko AH, Larson PEZ, Wang ZJ. Hyperpolarized 13C Metabolic MRI of Patients with Pancreatic Ductal Adenocarcinoma. J Magn Reson Imaging 2024; 60:741-749. [PMID: 38041836 PMCID: PMC11144260 DOI: 10.1002/jmri.29162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related death in the United States. However, early response assessment using the current approach of measuring changes in tumor size on computed tomography (CT) or MRI is challenging. PURPOSE To investigate the feasibility of hyperpolarized (HP) [1-13C]pyruvate MRI to quantify metabolism in the normal appearing pancreas and PDA, and to assess changes in PDA metabolism following systemic chemotherapy. STUDY TYPE Prospective. SUBJECTS Six patients (65.0 ± 7.6 years, 2 females) with locally advanced or metastatic PDA enrolled prior to starting a new line of systemic chemotherapy. FIELD STRENGTH/SEQUENCE 3-T, T1-weighted gradient echo, metabolite-selective 13C echoplanar imaging. ASSESSMENT Time-resolved HP [1-13C]pyruvate data were acquired before (N = 6) and 4-weeks after (N = 3) treatment initiation. Pyruvate metabolism, as quantified by pharmacokinetic modeling and metabolite area-under-the-curve ratios, was assessed in manually segmented PDA and normal appearing pancreas ROIs (N = 5). The change in tumor metabolism before and 4-weeks after treatment initiation was assessed in primary PDA (N = 2) and liver metastases (N = 1), and was compared to objective tumor response defined by response evaluation criteria in solid tumors (RECIST) on subsequent CTs. STATISTICAL TESTS Descriptive tests (mean ± standard deviation), model fit error for pharmacokinetic rate constants. RESULTS Primary PDA showed reduced alanine-to-lactate ratios when compared to normal pancreas, due to increased lactate-to-pyruvate or reduced alanine-to-pyruvate ratios. Of the three patients who received HP [1-13C]pyruvate MRI before and 4-weeks after treatment initiation, one patient had a primary tumor with early metabolic response (increase in alanine-to-lactate) and subsequent partial response according to RECIST, one patient had a primary tumor with relatively stable metabolism and subsequent stable disease by RECIST, and one patient had metastatic PDA with increase in lactate-to-pyruvate of the liver metastases and corresponding progressive disease according to RECIST. DATA CONCLUSION Altered pyruvate metabolism with increased lactate or reduced alanine was observed in the primary tumor. Early metabolic response assessed at 4-weeks after treatment initiation correlated with subsequent objective tumor response assessed using RECIST. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Tanner Nickles
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Philip M Lee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Kimberly Okamoto
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Andrew H Ko
- Department of Medicine, University of California, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| |
Collapse
|
7
|
Zhou S, Ze X, Feng D, Liu L, Shi Y, Yu M, Huang L, Wang Y, Men H, Wu J, Yuan Z, Zhou M, Xu J, Li X, Yao H. Identification of 6-Fluorine-Substituted Coumarin Analogues as POLRMT Inhibitors with High Potency and Safety for Treatment of Pancreatic Cancer. J Med Chem 2024. [PMID: 39049433 DOI: 10.1021/acs.jmedchem.4c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Increasing evidence has demonstrated that oxidative phosphorylation (OXPHOS) is closely associated with the progression of pancreatic cancer (PC). Given its central role in mitochondrial transcription, the human mitochondrial RNA polymerase (POLRMT) is a promising target for developing PC treatments. Herein, structure-activity relationship exploration led to the identification of compound S7, which was the first reported POLRMT inhibitor possessing single-digit nanomolar potency of inhibiting PC cells proliferation. Mechanistic studies showed that compound S7 exerted antiproliferative effects without affecting the cell cycle, apoptosis, mitochondrial membrane potential (MMP), or intracellular reactive oxygen species (ROS) levels specifically in MIA PaCa-2 cells. Notably, compound S7 inhibited tumor growth in MIA PaCa-2 xenograft tumor model with a tumor growth inhibition (TGI) rate of 64.52% demonstrating significant improvement compared to the positive control (44.80%). In conclusion, this work enriched SARs of POLRMT inhibitors, and compound S7 deserved further investigations of drug-likeness as a candidate for PC treatment.
Collapse
Affiliation(s)
- Shengnan Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Xiaotong Ze
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Dazhi Feng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Lihua Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Yuning Shi
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Minghui Yu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Lijuan Huang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Yunyue Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Hanlu Men
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Zhenwei Yuan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Mengze Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Xinnan Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| |
Collapse
|
8
|
Hajihassani O, Zarei M, Roichman A, Loftus A, Boutros CS, Hue J, Naji P, Boyer J, Tahan S, Gallagher P, Beegan W, Choi J, Lei S, Kim C, Rathore M, Nakazzi F, Shah I, Lebo K, Cheng H, Mudigonda A, Alibeckoff S, Ji K, Graor H, Miyagi M, Vaziri-Gohar A, Brunengraber H, Wang R, Lund PJ, Rothermel LD, Rabinowitz JD, Winter JM. A Ketogenic Diet Sensitizes Pancreatic Cancer to Inhibition of Glutamine Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604377. [PMID: 39211182 PMCID: PMC11361133 DOI: 10.1101/2024.07.19.604377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pancreatic cancer is the third leading cause of cancer death in the United States, and while conventional chemotherapy remains the standard treatment, responses are poor. Safe and alternative therapeutic strategies are urgently needed 1 . A ketogenic diet has been shown to have anti-tumor effects across diverse cancer types but will unlikely have a significant effect alone. However, the diet shifts metabolism in tumors to create new vulnerabilities that can be targeted (1). Modulators of glutamine metabolism have shown promise in pre-clinical models but have failed to have a marked impact against cancer in the clinic. We show that a ketogenic diet increases TCA and glutamine-associated metabolites in murine pancreatic cancer models and under metabolic conditions that simulate a ketogenic diet in vitro. The metabolic shift leads to increased reliance on glutamine-mediated anaplerosis to compensate for low glucose abundance associated with a ketogenic diet. As a result, glutamine metabolism inhibitors, such as DON and CB839 in combination with a ketogenic diet had robust anti-cancer effects. These findings provide rationale to study the use of a ketogenic diet with glutamine targeted therapies in a clinical context.
Collapse
|
9
|
Nickles TM, Kim Y, Lee PM, Chen HY, Ohliger M, Bok RA, Wang ZJ, Larson PEZ, Vigneron DB, Gordon JW. Hyperpolarized 13 C metabolic imaging of the human abdomen with spatiotemporal denoising. Magn Reson Med 2024; 91:2153-2161. [PMID: 38193310 PMCID: PMC10950515 DOI: 10.1002/mrm.29985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Improving the quality and maintaining the fidelity of large coverage abdominal hyperpolarized (HP) 13 C MRI studies with a patch based global-local higher-order singular value decomposition (GL-HOVSD) spatiotemporal denoising approach. METHODS Denoising performance was first evaluated using the simulated [1-13 C]pyruvate dynamics at different noise levels to determine optimal kglobal and klocal parameters. The GL-HOSVD spatiotemporal denoising method with the optimized parameters was then applied to two HP [1-13 C]pyruvate EPI abdominal human cohorts (n = 7 healthy volunteers and n = 8 pancreatic cancer patients). RESULTS The parameterization of kglobal = 0.2 and klocal = 0.9 denoises abdominal HP data while retaining image fidelity when evaluated by RMSE. The kPX (conversion rate of pyruvate-to-metabolite, X = lactate or alanine) difference was shown to be <20% with respect to ground-truth metabolic conversion rates when there is adequate SNR (SNRAUC > 5) for downstream metabolites. In both human cohorts, there was a greater than nine-fold gain in peak [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine apparent SNRAUC . The improvement in metabolite SNR enabled a more robust quantification of kPL and kPA . After denoising, we observed a 2.1 ± 0.4 and 4.8 ± 2.5-fold increase in the number of voxels reliably fit across abdominal FOVs for kPL and kPA quantification maps. CONCLUSION Spatiotemporal denoising greatly improves visualization of low SNR metabolites particularly [1-13 C]alanine and quantification of [1-13 C]pyruvate metabolism in large FOV HP 13 C MRI studies of the human abdomen.
Collapse
Affiliation(s)
- Tanner M Nickles
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Philip M Lee
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael Ohliger
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Zhen J Wang
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| |
Collapse
|
10
|
Saba E, Farhat M, Daoud A, Khashan A, Forkush E, Menahem NH, Makkawi H, Pandi K, Angabo S, Kawasaki H, Plaschkes I, Parnas O, Zamir G, Atlan K, Elkin M, Katz L, Nussbaum G. Oral bacteria accelerate pancreatic cancer development in mice. Gut 2024; 73:770-786. [PMID: 38233197 DOI: 10.1136/gutjnl-2023-330941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Epidemiological studies highlight an association between pancreatic ductal adenocarcinoma (PDAC) and oral carriage of the anaerobic bacterium Porphyromonas gingivalis, a species highly linked to periodontal disease. We analysed the potential for P. gingivalis to promote pancreatic cancer development in an animal model and probed underlying mechanisms. DESIGN We tracked P. gingivalis bacterial translocation from the oral cavity to the pancreas following administration to mice. To dissect the role of P. gingivalis in PDAC development, we administered bacteria to a genetically engineered mouse PDAC model consisting of inducible acinar cell expression of mutant Kras (Kras +/LSL-G12D; Ptf1a-CreER, iKC mice). These mice were used to study the cooperative effects of Kras mutation and P. gingivalis on the progression of pancreatic intraepithelial neoplasia (PanIN) to PDAC. The direct effects of P. gingivalis on acinar cells and PDAC cell lines were studied in vitro. RESULTS P. gingivalis migrated from the oral cavity to the pancreas in mice and can be detected in human PanIN lesions. Repetitive P. gingivalis administration to wild-type mice induced pancreatic acinar-to-ductal metaplasia (ADM), and altered the composition of the intrapancreatic microbiome. In iKC mice, P. gingivalis accelerated PanIN to PDAC progression. In vitro, P. gingivalis infection induced acinar cell ADM markers SOX9 and CK19, and intracellular bacteria protected PDAC cells from reactive oxygen species-mediated cell death resulting from nutrient stress. CONCLUSION Taken together, our findings demonstrate a causal role for P. gingivalis in pancreatic cancer development in mice.
Collapse
Affiliation(s)
- Elias Saba
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Maria Farhat
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Alaa Daoud
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Arin Khashan
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Esther Forkush
- Gastroenterology, Hadassah Medical Center, Jerusalem, Israel
| | - Noam Hallel Menahem
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hasnaa Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Karthikeyan Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Sarah Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hiromichi Kawasaki
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
- Central Research Institute, Wakunaga Pharmaceutical Co Ltd, Koda-cho, Akitakata-shi, Hiroshima, Japan
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Parnas
- Immunology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Zamir
- Experimental Surgery, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Michael Elkin
- Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Katz
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
11
|
Cui Y, Sun Y, Li D, Zhang Y, Zhang Y, Cao D, Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front Cell Dev Biol 2023; 11:1275543. [PMID: 38020920 PMCID: PMC10646288 DOI: 10.3389/fcell.2023.1275543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence and progression of tumors are inseparable from glucose metabolism. With the development of tumors, the volume increases gradually and the nutritional supply of tumors cannot be fully guaranteed. The tumor microenvironment changes and glucose deficiency becomes the common stress environment of tumors. Here, we discuss the mutual influences between glucose deprivation and other features of the tumor microenvironment, such as hypoxia, immune escape, low pH, and oxidative stress. In the face of a series of stress responses brought by glucose deficiency, different types of tumors have different coping mechanisms. We summarize the tumor studies on glucose deficiency in the last decade and review the genes and pathways that determine the fate of tumors under harsh conditions. It turns out that most of these genes help tumor cells survive in glucose-deprivation conditions. The development of related inhibitors may bring new opportunities for the treatment of tumors.
Collapse
Affiliation(s)
- Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Lopez-Blazquez C, Lacalle-Gonzalez C, Sanz-Criado L, Ochieng’ Otieno M, Garcia-Foncillas J, Martinez-Useros J. Iron-Dependent Cell Death: A New Treatment Approach against Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:14979. [PMID: 37834426 PMCID: PMC10573128 DOI: 10.3390/ijms241914979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating tumor type where a very high proportion of people diagnosed end up dying from cancer. Surgical resection is an option for only about 20% of patients, where the 5-year survival increase ranges from 10 to 25%. In addition to surgical resection, there are adjuvant chemotherapy schemes, such as FOLFIRINOX (a mix of Irinotecan, oxaliplatin, 5-Fluorouraci and leucovorin) or gemcitabine-based treatment. These last two drugs have been compared in the NAPOLI-3 clinical trial, and the NALIRIFOX arm was found to have a higher overall survival (OS) (11.1 months vs. 9.2 months). Despite these exciting improvements, PDAC still has no effective treatment. An interesting approach would be to drive ferroptosis in PDAC cells. A non-apoptotic reactive oxygen species (ROS)-dependent cell death, ferroptosis was first described by Dixon et al. in 2012. ROS are constantly produced in the tumor cell due to high cell metabolism, which is even higher when exposed to chemotherapy. Tumor cells have detoxifying mechanisms, such as Mn-SOD or the GSH-GPX system. However, when a threshold of ROS is exceeded in the tumor cell, the cell's antioxidant systems are overwhelmed, resulting in lipid peroxidation and, ultimately, ferroptosis. In this review, we point out ferroptosis as an approach to consider in PDAC and propose that altering the cellular ROS balance by combining oxidizing agents or with inhibitors of the main cellular detoxifiers triggers ferroptosis in PDAC.
Collapse
Affiliation(s)
- Carlos Lopez-Blazquez
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
| | - Carlos Lacalle-Gonzalez
- Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain;
| | - Lara Sanz-Criado
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
| | - Michael Ochieng’ Otieno
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
| | - Jesus Garcia-Foncillas
- Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain;
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| |
Collapse
|
13
|
Vaziri-Gohar A, Hue JJ, Abbas A, Graor HJ, Hajihassani O, Zarei M, Titomihelakis G, Feczko J, Rathore M, Chelstowska S, Loftus AW, Wang R, Zarei M, Goudarzi M, Zhang R, Willard B, Zhang L, Kresak A, Willis JE, Wang GM, Tatsuoka C, Salvino JM, Bederman I, Brunengraber H, Lyssiotis CA, Brody JR, Winter JM. Increased glucose availability sensitizes pancreatic cancer to chemotherapy. Nat Commun 2023; 14:3823. [PMID: 37380658 PMCID: PMC10307839 DOI: 10.1038/s41467-023-38921-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Ata Abbas
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - George Titomihelakis
- Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - John Feczko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Moeez Rathore
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Sylwia Chelstowska
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander W Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Rui Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mahsa Zarei
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Maryam Goudarzi
- Proteomics and Metabolomics Core, Cleveland Clinic, Cleveland, OH, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Cleveland Clinic, Cleveland, OH, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Adam Kresak
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University and Department of Pathology Cleveland Medical Center, Cleveland, OH, USA
| | - Joseph E Willis
- Department of Pathology, Case Western Reserve University and Department of Pathology Cleveland Medical Center, Cleveland, OH, USA
| | - Gi-Ming Wang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis Tatsuoka
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Henri Brunengraber
- Department of Nutrition and Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jonathan R Brody
- Brenden Colson Center for Pancreatic Care; Departments of Surgery and Cell, Developmental & Cancer Biology; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jordan M Winter
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
14
|
Zerbato B, Gobbi M, Ludwig T, Brancato V, Pessina A, Brambilla L, Wegner A, Chiaradonna F. PGM3 inhibition shows cooperative effects with erastin inducing pancreatic cancer cell death via activation of the unfolded protein response. Front Oncol 2023; 13:1125855. [PMID: 37260977 PMCID: PMC10227458 DOI: 10.3389/fonc.2023.1125855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor patient prognosis. Remarkably, PDAC is one of the most aggressive and deadly tumor types and is notorious for its resistance to all types of treatment. PDAC resistance is frequently associated with a wide metabolic rewiring and in particular of the glycolytic branch named Hexosamine Biosynthetic Pathway (HBP). Methods Transcriptional and bioinformatics analysis were performed to obtain information about the effect of the HBP inhibition in two cell models of PDAC. Cell count, western blot, HPLC and metabolomics analyses were used to determine the impact of the combined treatment between an HBP's Phosphoglucomutase 3 (PGM3) enzyme inhibitor, named FR054, and erastin (ERA), a recognized ferroptosis inducer, on PDAC cell growth and survival. Results Here we show that the combined treatment applied to different PDAC cell lines induces a significant decrease in cell proliferation and a concurrent enhancement of cell death. Furthermore, we show that this combined treatment induces Unfolded Protein Response (UPR), NFE2 Like BZIP Transcription Factor 2 (NRF2) activation, a change in cellular redox state, a greater sensitivity to oxidative stress, a major dependence on glutamine metabolism, and finally ferroptosis cell death. Conclusion Our study discloses that HBP inhibition enhances, via UPR activation, the ERA effect and therefore might be a novel anticancer mechanism to be exploited as PDAC therapy.
Collapse
Affiliation(s)
- Barbara Zerbato
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Maximilian Gobbi
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Tobias Ludwig
- Pathometabolism, Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Virginia Brancato
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan, Italy
| | - Alex Pessina
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Luca Brambilla
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Andre Wegner
- Pathometabolism, Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Ferdinando Chiaradonna
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
15
|
Murthy D, Attri KS. PTGES Expression Is Associated with Metabolic and Immune Reprogramming in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24087304. [PMID: 37108468 PMCID: PMC10138618 DOI: 10.3390/ijms24087304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic reprogramming is an established hallmark of multiple cancers, including pancreatic cancer. Dysregulated metabolism is utilized by cancer cells for tumor progression, metastasis, immune microenvironment remodeling, and therapeutic resistance. Prostaglandin metabolites have been shown to be critical for inflammation and tumorigenesis. While the functional role of prostaglandin E2 metabolite has been extensively studied, there is a limited understanding of the PTGES enzyme in pancreatic cancer. Here, we investigated the relationship between expression of prostaglandin E synthase (PTGES) isoforms and the pathogenesis and regulation of pancreatic cancer. Our analysis identified higher expression of PTGES in pancreatic tumors compared to normal pancreatic tissues, suggesting an oncogenic function. Only PTGES1 expression was significantly correlated with worse prognosis of pancreatic cancer patients. Further, utilizing cancer genome atlas data, PTGES was found to be positively correlated with epithelial-mesenchymal transition, metabolic pathways, mucin oncogenic proteins, and immune pathways in cancer cells. PTGES expression was also correlated with higher mutational burden in key driver genes, such as TP53 and KRAS. Furthermore, our analysis indicated that the oncogenic pathway controlled by PTGES1 could be regulated via DNA methylation-dependent epigenetic mechanisms. Notably, the glycolysis pathway was positively correlated with PTGES and may fuel cancer cell growth. PTGES expression was also associated with downregulation of the MHC pathway and negatively correlated with CD8+ T cell activation markers. In summary, our study established an association of PTGES expression with pancreatic cancer metabolism and the immune microenvironment.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Syamprasad NP, Jain S, Rajdev B, Prasad N, Kallipalli R, Naidu VGM. Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochem Pharmacol 2023; 211:115528. [PMID: 37011733 DOI: 10.1016/j.bcp.2023.115528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Ravindra Kallipalli
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India.
| |
Collapse
|
17
|
Zarei M, Hajihassani O, Hue JJ, Graor HJ, Rothermel LD, Winter JM. Targeting wild-type IDH1 enhances chemosensitivity in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534596. [PMID: 37034685 PMCID: PMC10081181 DOI: 10.1101/2023.03.29.534596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pancreatic cancer (PC) is one of the most aggressive types of cancer, with a five-year overall survival rate of 11% among all-comers. Current systemic therapeutic options are limited to cytotoxic chemotherapies which have limited clinical efficacy and are often associated with development of drug resistance. Analysis of The Cancer Genome Atlas showed that wild-type isocitrate dehydrogenase (wtIDH1) is overexpressed in pancreatic tumors. In this study, we focus on the potential roles of wtIDH1 in pancreatic cancer chemoresistance. We found that treatment of pancreatic cancer cells with chemotherapy induced expression of wtIDH1, and this serves as a key resistance factor. The enzyme is protective to cancer cells under chemotherapy-induced oxidative stress by producing NADPH and alpha-ketoglutarate to maintain redox balance and mitochondrial function. An FDA-approved mutant IDH1 inhibitor, ivosidenib (AG-120), is actually a potent wtDH1 inhibitor under a nutrient-deprived microenvironment, reflective of the pancreatic cancer microenvironment. Suppression of wtIDH1 impairs redox balance, results in increased ROS levels, and enhances chemotherapy induced apoptosis in pancreatic cancer vis ROS damage in vitro. In vivo experiments further revealed that inhibiting wtIDH1 enhances chemotherapy anti-tumor effects in patient-derived xenografts and murine models of pancreatic cancer. Pharmacologic wtIDH1 inhibition with ivosidenib represents an attractive option for combination therapies with cytotoxic chemotherapy for patients with pancreatic cancer. Based on these data, we have initiated phase Ib trial combining ivosidenib and multi-agent chemotherapy in patients with pancreatic cancer (NCT05209074).
Collapse
Affiliation(s)
- Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Luke D Rothermel
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Jordan M Winter
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
18
|
Hosseini K, Beirami SM, Forouhandeh H, Vahed SZ, Eyvazi S, Ramazani F, Tarhriz V, Ardalan M. The role of circadian gene timeless in gastrointestinal cancers. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Liao WT, Chu PY, Su CC, Wu CC, Li CJ. Mitochondrial AAA protease gene associated with immune infiltration is a prognostic biomarker in human ovarian cancer. Pathol Res Pract 2022; 240:154215. [DOI: 10.1016/j.prp.2022.154215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
20
|
Moss DY, McCann C, Kerr EM. Rerouting the drug response: Overcoming metabolic adaptation in KRAS-mutant cancers. Sci Signal 2022; 15:eabj3490. [PMID: 36256706 DOI: 10.1126/scisignal.abj3490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations in guanosine triphosphatase KRAS are common in lung, colorectal, and pancreatic cancers. The constitutive activity of mutant KRAS and its downstream signaling pathways induces metabolic rewiring in tumor cells that can promote resistance to existing therapeutics. In this review, we discuss the metabolic pathways that are altered in response to treatment and those that can, in turn, alter treatment efficacy, as well as the role of metabolism in the tumor microenvironment (TME) in dictating the therapeutic response in KRAS-driven cancers. We highlight metabolic targets that may provide clinical opportunities to overcome therapeutic resistance and improve survival in patients with these aggressive cancers.
Collapse
Affiliation(s)
- Deborah Y Moss
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Christopher McCann
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| |
Collapse
|
21
|
Metabolic Pathways as a Novel Landscape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153799. [PMID: 35954462 PMCID: PMC9367608 DOI: 10.3390/cancers14153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolism plays a fundamental role in both human physiology and pathology, including pancreatic ductal adenocarcinoma (PDAC) and other tumors. Anabolic and catabolic processes do not only have energetic implications but are tightly associated with other cellular activities, such as DNA duplication, redox reactions, and cell homeostasis. PDAC displays a marked metabolic phenotype and the observed reduction in tumor growth induced by calorie restriction with in vivo models supports the crucial role of metabolism in this cancer type. The aggressiveness of PDAC might, therefore, be reduced by interventions on bioenergetic circuits. In this review, we describe the main metabolic mechanisms involved in PDAC growth and the biological features that may favor its onset and progression within an immunometabolic context. We also discuss the need to bridge the gap between basic research and clinical practice in order to offer alternative therapeutic approaches for PDAC patients in the more immediate future.
Collapse
|
22
|
Hue JJ, Katayama ES, Markt SC, Elshami M, Saltzman J, Bajor D, Hosmer A, Mok S, Dumot J, Ammori JB, Rothermel LD, Hardacre JM, Winter JM, Ocuin LM. A nationwide analysis of pancreatic cancer trial enrollment reveals disparities and participation problems. Surgery 2022; 172:257-264. [PMID: 34839935 DOI: 10.1016/j.surg.2021.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Our research group recently surveyed the clinical trial landscape in pancreatic adenocarcinoma and identified 430 active trials. These represent an opportunity to expand treatment options for patients with pancreatic adenocarcinoma. Our primary objective was to detail clinical trial participation among patients with pancreatic adenocarcinoma. Our secondary objective was to evaluate survival. METHODS We queried the National Cancer Database (2004-2016) for patients with pancreatic adenocarcinoma. Patients were stratified by trial participation: clinical trial or non-trial. Multivariable logistic regression was used to identify variables associated with trial participation. The Kaplan-Meier method and multivariable Cox hazards regression were used to analyze survival. RESULTS In total, 261,483 patients were included: 1,110 (0.4%) were enrolled in a clinical trial. A total of 57 Black patients participated in a clinical trial (0.19% of Black patients). This was lower compared to White patients (n = 955, 0.49% of White patients, P < .001). After adjusting for demographic and clinical factors, Black patients were less likely to be enrolled in a clinical trial (odds ratio = 0.387, P < .001). Patients treated at nonacademic medical centers were less likely to be in a clinical trial. Trial participation was associated with an increased median survival relative to non-trial patients (stage IV: 9.0 vs 3.8 months, P < .001), and this association remained on multivariable regression (hazard ratio = 0.779, P < .001). CONCLUSION Fewer than 1% of patients with pancreatic adenocarcinoma participated in a clinical trial. There are racial and sociodemographic disparities in clinical trial enrollment. An association was observed between clinical trial participants and prolonged survival.
Collapse
Affiliation(s)
- Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, OH
| | | | - Sarah C Markt
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Mohamedraed Elshami
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, OH
| | - Joel Saltzman
- Department of Medicine, Division of Medical Oncology, University Hospitals Cleveland Medical Center, OH
| | - David Bajor
- Department of Medicine, Division of Medical Oncology, University Hospitals Cleveland Medical Center, OH
| | - Amy Hosmer
- Department of Medicine, Division of Gastroenterology, University Hospitals Cleveland Medical Center, OH
| | - Shaffer Mok
- Department of Medicine, Division of Gastroenterology, University Hospitals Cleveland Medical Center, OH
| | - John Dumot
- Department of Medicine, Division of Gastroenterology, University Hospitals Cleveland Medical Center, OH
| | - John B Ammori
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, OH
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, OH
| | - Jeffrey M Hardacre
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, OH
| | - Jordan M Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, OH
| | - Lee M Ocuin
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, OH.
| |
Collapse
|
23
|
Vaziri-Gohar A, Cassel J, Mohammed FS, Zarei M, Hue JJ, Hajihassani O, Graor HJ, Srikanth YVV, Karim SA, Abbas A, Prendergast E, Chen V, Katayama ES, Dukleska K, Khokhar I, Andren A, Zhang L, Wu C, Erokwu B, Flask CA, Zarei M, Wang R, Rothermel LD, Romani AMP, Bowers J, Getts R, Tatsuoka C, Morton JP, Bederman I, Brunengraber H, Lyssiotis CA, Salvino JM, Brody JR, Winter JM. Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors. NATURE CANCER 2022; 3:852-865. [PMID: 35681100 PMCID: PMC9325670 DOI: 10.1038/s43018-022-00393-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
Nutrient-deprived conditions in the tumor microenvironment (TME) restrain cancer cell viability due to increased free radicals and reduced energy production. In pancreatic cancer cells a cytosolic metabolic enzyme, wild-type isocitrate dehydrogenase 1 (wtIDH1), enables adaptation to these conditions. Under nutrient starvation, wtIDH1 oxidizes isocitrate to generate α-ketoglutarate (αKG) for anaplerosis and NADPH to support antioxidant defense. In this study, we show that allosteric inhibitors of mutant IDH1 (mIDH1) are potent wtIDH1 inhibitors under conditions present in the TME. We demonstrate that low magnesium levels facilitate allosteric inhibition of wtIDH1, which is lethal to cancer cells when nutrients are limited. Furthermore, the Food & Drug Administration (FDA)-approved mIDH1 inhibitor ivosidenib (AG-120) dramatically inhibited tumor growth in preclinical models of pancreatic cancer, highlighting this approach as a potential therapeutic strategy against wild-type IDH1 cancers.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Joel Cassel
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Farheen S Mohammed
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan J Hue
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Ata Abbas
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Vanessa Chen
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Erryk S Katayama
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Katerina Dukleska
- Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Imran Khokhar
- Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Chunying Wu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Bernadette Erokwu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Chris A Flask
- Deptartments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Mahsa Zarei
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Rui Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Andrea M P Romani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Henri Brunengraber
- Department of Nutrition and Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Jonathan R Brody
- Brenden Colson Center for Pancreatic Care; Departments of Surgery and Cell, Developmental & Cancer Biology; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jordan M Winter
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
24
|
Cong H, Gao J, Wang Q, Du M, Li H, Li Q, Li J, Liang Y, Zhao D, Yang H, Gan Y, Tu H. Increased Expression of Mitochondrial UQCRC1 in Pancreatic Cancer Impairs Antitumor Immunity of Natural Killer Cells via Elevating Extracellular ATP. Front Oncol 2022; 12:872017. [PMID: 35769718 PMCID: PMC9234308 DOI: 10.3389/fonc.2022.872017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies characterized by a highly immunosuppressive tumor microenvironment (TME). Previously, we have reported that ubiquinol-cytochrome c reductase core protein I (UQCRC1), a key component of mitochondrial complex III, is generally upregulated in PC and produces extracellular ATP (eATP) to promote PC progression. Here, we sought to investigate whether the oncogenic property of UQCRC1 is generated through its effects on natural killer (NK) cells in the TME. We found that UQCRC1 overexpression in PC cells inhibited cytotoxicity of NK cells, as well as the infiltration of NK cells toward PC, whereas knockdown of UQCRC1 enhanced the cytotoxicity and chemotaxis of NK cells. Adoptive NK cell therapy in the subcutaneous mouse model and CIBERSORTx analysis with human PC specimens confirmed UQCRC1 elicited immunosuppressive effects on NK cells. Such UQCRC1-induced impairment of NK cells was mediated by eATP and its metabolite adenosine via P2Y11R and A2AR, respectively. Mechanistically, we found the UQCRC1/eATP axis reduced the expression of chemokine CCL5 in cancer cells and altered the balance of activating receptor DNAM-1 and inhibitory receptor CD96 on NK-92MI cells, resulting in decreased chemotaxis and exhausted phenotype of NK-92MI cells. Taken together, our study provides the evidence to support a novel mechanism by which energy metabolism change in cancer cells remodels the TME and impedes NK cell surveillance. It also suggests that targeting UQCRC1 may be a potential combined strategy for PC immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yu Gan
- *Correspondence: Hong Tu, ; Yu Gan,
| | - Hong Tu
- *Correspondence: Hong Tu, ; Yu Gan,
| |
Collapse
|
25
|
Gouirand V, Gicquel T, Lien EC, Jaune‐Pons E, Da Costa Q, Finetti P, Metay E, Duluc C, Mayers JR, Audebert S, Camoin L, Borge L, Rubis M, Leca J, Nigri J, Bertucci F, Dusetti N, Lucio Iovanna J, Tomasini R, Bidaut G, Guillaumond F, Vander Heiden MG, Vasseur S. Ketogenic HMG-CoA lyase and its product β-hydroxybutyrate promote pancreatic cancer progression. EMBO J 2022; 41:e110466. [PMID: 35307861 PMCID: PMC9058543 DOI: 10.15252/embj.2021110466] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that β-hydroxybutyrate (βOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while βOHB stimulates metastatic dissemination to the liver. These findings suggest that βOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.
Collapse
|
26
|
Deprogramming metabolism in pancreatic cancer with a bi-functional GPR55 inhibitor and biased β2 adrenergic agonist. Sci Rep 2022; 12:3618. [PMID: 35256673 PMCID: PMC8901637 DOI: 10.1038/s41598-022-07600-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
Metabolic reprogramming contributes to oncogenesis, tumor growth, and treatment resistance in pancreatic ductal adenocarcinoma (PDAC). Here we report the effects of (R,S′)-4′-methoxy-1-naphthylfenoterol (MNF), a GPR55 antagonist and biased β2-adrenergic receptor (β2-AR) agonist on cellular signaling implicated in proliferation and metabolism in PDAC cells. The relative contribution of GPR55 and β2-AR in (R,S′)-MNF signaling was explored further in PANC-1 cells. Moreover, the effect of (R,S′)-MNF on tumor growth was determined in a PANC-1 mouse xenograft model. PANC-1 cells treated with (R,S′)-MNF showed marked attenuation in GPR55 signal transduction and function combined with increased β2-AR/Gαs/adenylyl cyclase/PKA signaling, both of which contributing to lower MEK/ERK, PI3K/AKT and YAP/TAZ signaling. (R,S′)-MNF administration significantly reduced PANC-1 tumor growth and circulating l-lactate concentrations. Global metabolic profiling of (R,S′)-MNF-treated tumor tissues revealed decreased glycolytic metabolism, with a shift towards normoxic processes, attenuated glutamate metabolism, and increased levels of ophthalmic acid and its precursor, 2-aminobutyric acid, indicative of elevated oxidative stress. Transcriptomics and immunoblot analyses indicated the downregulation of gene and protein expression of HIF-1α and c-Myc, key initiators of metabolic reprogramming in PDAC. (R,S′)-MNF treatment decreased HIF-1α and c-Myc expression, attenuated glycolysis, shifted fatty acid metabolism towards β-oxidation, and suppressed de novo pyrimidine biosynthesis in PANC-1 tumors. The results indicate a potential benefit of combined GPR55 antagonism and biased β2-AR agonism in PDAC therapy associated with the deprogramming of altered cellular metabolism.
Collapse
|
27
|
A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2339584. [PMID: 35178152 PMCID: PMC8847026 DOI: 10.1155/2022/2339584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer metabolism is an extensively studied field since the discovery of the Warburg effect about 100 years ago and continues to be increasingly intriguing and enigmatic so far. It has become clear that glycolysis is not the only abnormally activated metabolic pathway in the cancer cells, but the same is true for the fatty acid synthesis (FAS) and mevalonate pathway. In the last decade, a lot of data have been accumulated on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. In this article, we discuss how mFAO can escape normal regulation under certain conditions and be overactivated. Such abnormal activation of mitochondrial β-oxidation can also be combined with mutations in certain enzymes of the Krebs cycle that are common in cancer. If overactivated β-oxidation is combined with other common cancer conditions, such as dysfunctions in the electron transport complexes, and/or hypoxia, this may alter the redox state of the mitochondrial matrix. We propose the idea that the altered mitochondrial redox state and/or inhibited Krebs cycle at certain segments may link mitochondrial β-oxidation to the citrate-malate shuttle instead to the Krebs cycle. We call this abnormal metabolic condition “β-oxidation shuttle”. It is unconventional mFAO, a separate metabolic pathway, unexplored so far as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and ultimately a source of proliferation. It is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathway.
Collapse
|
28
|
Manley SJ, Olou AA, Jack JL, Ruckert MT, Walsh RM, Eades AE, Bye BA, Ambrose J, Messaggio F, Anant S, VanSaun MN. Synthetic adiponectin-receptor agonist, AdipoRon, induces glycolytic dependence in pancreatic cancer cells. Cell Death Dis 2022; 13:114. [PMID: 35121743 PMCID: PMC8817044 DOI: 10.1038/s41419-022-04572-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Obesity creates a localized inflammatory reaction in the adipose, altering secretion of adipocyte-derived factors that contribute to pathologies including cancer. We have previously shown that adiponectin inhibits pancreatic cancer by antagonizing leptin-induced STAT3 activation. Yet, the effects of adiponectin on pancreatic cancer cell metabolism have not been addressed. In these studies, we have uncovered a novel metabolic function for the synthetic adiponectin-receptor agonist, AdipoRon. Treatment of PDAC cells with AdipoRon led to mitochondrial uncoupling and loss of ATP production. Concomitantly, AdipoRon-treated cells increased glucose uptake and utilization. This metabolic switch further correlated with AMPK mediated inhibition of the prolipogenic factor acetyl coenzyme A carboxylase 1 (ACC1), which is known to initiate fatty acid catabolism. Yet, measurements of fatty acid oxidation failed to detect any alteration in response to AdipoRon treatment, suggesting a deficiency for compensation. Additional disruption of glycolytic dependence, using either a glycolysis inhibitor or low-glucose conditions, demonstrated an impairment of growth and survival of all pancreatic cancer cell lines tested. Collectively, these studies provide evidence that pancreatic cancer cells utilize metabolic plasticity to upregulate glycolysis in order to adapt to suppression of oxidative phosphorylation in the presence of AdipoRon.
Collapse
Affiliation(s)
- Sharon J Manley
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Appolinaire A Olou
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jarrid L Jack
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mariana T Ruckert
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - R McKinnon Walsh
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Austin E Eades
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bailey A Bye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Joe Ambrose
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Fanuel Messaggio
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, United States
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael N VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
29
|
Zarei M, Hue JJ, Hajihassani O, Graor HJ, Katayama ES, Loftus AW, Bajor D, Rothermel LD, Vaziri-Gohar A, Winter JM. Clinical development of IDH1 inhibitors for cancer therapy. Cancer Treat Rev 2021; 103:102334. [PMID: 34974243 DOI: 10.1016/j.ctrv.2021.102334] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) has been investigated as a promising therapeutic target in select cancers with a mutated version of the enzyme (mtIDH1). With only one phase III trial published to date and two indications approved for routine clinical use by the FDA, we reviewed the entire clinical trial portfolio to broadly understand mtIDH1 inhibitor activity in patients. We queried PubMed.gov and ClinicalTrials.gov to identify published and ongoing clinical trials related to IDH1 and cancer. Progression-free survival (PFS), overall survival (OS), 2-hydroxyglutarate levels, and adverse events were summarized. To date, ten clinical trials investigating mtIDH1 inhibitors among patients with diverse malignancies (cholangiocarcinoma, acute myeloid leukemia, chondrosarcoma, glioma) have been published. Almost every trial (80%) has investigated ivosidenib. In multiple phase I trials, ivosidenib treatment resulted in promising radiographic and biochemical responses with improved survival outcomes (relative to historic data) among patients with both solid and hematologic mtIDH1 malignancies. Among patients enrolled in a phase III trial with advanced cholangiocarcinoma, ivosidenib resulted in a PFS rate of 32% at 6 months, as compared to 0% with placebo. There was a 5.2 month increase in OS with ivosidenib relative to placebo, after considering crossover. The treatment-specific grade ≥3 adverse event rate of ivosidenib was 2%-26% among all patients, and was just 3.6% among 284 patients who had a solid tumor across four trials. Although <1% of malignancies harbor IDH1 mutations, small molecule mtIDH1 inhibitors, namely ivosidenib, appear to be biologically active and well tolerated in patients with solid and hematologic mtIDH1 malignancies.
Collapse
Affiliation(s)
- Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | | | - Alexander W Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - David Bajor
- Department of Medicine, Division of Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Luke D Rothermel
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Ali Vaziri-Gohar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Jordan M Winter
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.
| |
Collapse
|
30
|
Mitochondrial DNA and MitomiR Variations in Pancreatic Cancer: Potential Diagnostic and Prognostic Biomarkers. Int J Mol Sci 2021; 22:ijms22189692. [PMID: 34575852 PMCID: PMC8470532 DOI: 10.3390/ijms22189692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive disease with poor prognosis. Only about 15-20% of patients diagnosed with pancreatic cancer can undergo surgical resection, while the remaining 80% are diagnosed with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). In these cases, chemotherapy and radiotherapy only confer marginal survival benefit. Recent progress has been made in understanding the pathobiology of pancreatic cancer, with a particular effort in discovering new diagnostic and prognostic biomarkers, novel therapeutic targets, and biomarkers that can predict response to chemo- and/or radiotherapy. Mitochondria have become a focus in pancreatic cancer research due to their roles as powerhouses of the cell, important subcellular biosynthetic factories, and crucial determinants of cell survival and response to chemotherapy. Changes in the mitochondrial genome (mtDNA) have been implicated in chemoresistance and metastatic progression in some cancer types. There is also growing evidence that changes in microRNAs that regulate the expression of mtDNA-encoded mitochondrial proteins (mitomiRs) or nuclear-encoded mitochondrial proteins (mitochondria-related miRs) could serve as diagnostic and prognostic cancer biomarkers. This review discusses the current knowledge on the clinical significance of changes of mtDNA, mitomiRs, and mitochondria-related miRs in pancreatic cancer and their potential role as predictors of cancer risk, as diagnostic and prognostic biomarkers, and as molecular targets for personalized cancer therapy.
Collapse
|
31
|
Schultz CW, McCarthy GA, Nerwal T, Nevler A, DuHadaway JB, McCoy MD, Jiang W, Brown SZ, Goetz A, Jain A, Calvert VS, Vishwakarma V, Wang D, Preet R, Cassel J, Summer R, Shaghaghi H, Pommier Y, Baechler SA, Pishvaian MJ, Golan T, Yeo CJ, Petricoin EF, Prendergast GC, Salvino J, Singh PK, Dixon DA, Brody JR. The FDA-Approved Anthelmintic Pyrvinium Pamoate Inhibits Pancreatic Cancer Cells in Nutrient-Depleted Conditions by Targeting the Mitochondria. Mol Cancer Ther 2021; 20:2166-2176. [PMID: 34413127 DOI: 10.1158/1535-7163.mct-20-0652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal aggressive cancer, in part due to elements of the microenvironment (hypoxia, hypoglycemia) that cause metabolic network alterations. The FDA-approved antihelminthic pyrvinium pamoate (PP) has previously been shown to cause PDAC cell death, although the mechanism has not been fully determined. We demonstrated that PP effectively inhibited PDAC cell viability with nanomolar IC50 values (9-93 nmol/L) against a panel of PDAC, patient-derived, and murine organoid cell lines. In vivo, we demonstrated that PP inhibited PDAC xenograft tumor growth with both intraperitoneal (IP; P < 0.0001) and oral administration (PO; P = 0.0023) of human-grade drug. Metabolomic and phosphoproteomic data identified that PP potently inhibited PDAC mitochondrial pathways including oxidative phosphorylation and fatty acid metabolism. As PP treatment reduced oxidative phosphorylation (P < 0.001), leading to an increase in glycolysis (P < 0.001), PP was 16.2-fold more effective in hypoglycemic conditions similar to those seen in PDAC tumors. RNA sequencing demonstrated that PP caused a decrease in mitochondrial RNA expression, an effect that was not observed with established mitochondrial inhibitors rotenone and oligomycin. Mechanistically, we determined that PP selectively bound mitochondrial G-quadruplexes and inhibited mitochondrial RNA transcription in a G-quadruplex-dependent manner. This subsequently led to a 90% reduction in mitochondrial encoded gene expression. We are preparing to evaluate the efficacy of PP in PDAC in an IRB-approved window-of-opportunity trial (IND:144822).
Collapse
Affiliation(s)
- Christopher W Schultz
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Grace A McCarthy
- Brenden-Colson Center for Pancreatic Care, Departments of Surgery and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Teena Nerwal
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Avinoam Nevler
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - Wei Jiang
- Pathology Department, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samantha Z Brown
- Brenden-Colson Center for Pancreatic Care, Departments of Surgery and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Austin Goetz
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - Dezhen Wang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Joel Cassel
- Wistar Institute, Philadelphia, Pennsylvania
| | - Ross Summer
- Jane and Leonard Korman Respiratory Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hoora Shaghaghi
- Jane and Leonard Korman Respiratory Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yves Pommier
- Developmental Therapeutics Branch, NCI Bethesda, Maryland
| | | | | | - Talia Golan
- Oncology institute, Chaim Sheba Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charles J Yeo
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | - Pankaj K Singh
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Jonathan R Brody
- Brenden-Colson Center for Pancreatic Care, Departments of Surgery and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
32
|
Gampala S, Shah F, Lu X, Moon HR, Babb O, Umesh Ganesh N, Sandusky G, Hulsey E, Armstrong L, Mosely AL, Han B, Ivan M, Yeh JRJ, Kelley MR, Zhang C, Fishel ML. Ref-1 redox activity alters cancer cell metabolism in pancreatic cancer: exploiting this novel finding as a potential target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:251. [PMID: 34376225 PMCID: PMC8353735 DOI: 10.1186/s13046-021-02046-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/18/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the conversion of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB from an oxidized to reduced state leading to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia. METHODS scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The identified Ref-1's role in mitochondrial function was confirmed using mitochondrial function assays, qRT-PCR, western blotting and NADP assay. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo. RESULTS Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In Ref-1 knockdown cells, a higher flux rate of NADP + consuming reactions was observed suggesting the less availability of NADP + and a higher level of oxidative stress in these cells. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat. CONCLUSION Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo.
Collapse
Affiliation(s)
- Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoyu Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Biohealth Informatics, IUPUI, Indianapolis, IN, 46202, USA
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Olivia Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nikkitha Umesh Ganesh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine , Indianapolis, IN, 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA
| | - Emily Hulsey
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine , Indianapolis, IN, 46202, USA
| | - Lee Armstrong
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amber L Mosely
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Mircea Ivan
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Biohealth Informatics, IUPUI, Indianapolis, IN, 46202, USA. .,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA. .,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
33
|
Estaras M, Gonzalez A. Modulation of cell physiology under hypoxia in pancreatic cancer. World J Gastroenterol 2021; 27:4582-4602. [PMID: 34366624 PMCID: PMC8326256 DOI: 10.3748/wjg.v27.i28.4582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
In solid tumors, the development of vasculature is, to some extent, slower than the proliferation of the different types of cells that form the tissue, both cancer and stroma cells. As a consequence, the oxygen availability is compromised and the tissue evolves toward a condition of hypoxia. The presence of hypoxia is variable depending on where the cells are localized, being less extreme at the periphery of the tumor and more severe in areas located deep within the tumor mass. Surprisingly, the cells do not die. Intracellular pathways that are critical for cell fate such as endoplasmic reticulum stress, apoptosis, autophagy, and others are all involved in cellular responses to the low oxygen availability and are orchestrated by hypoxia-inducible factor. Oxidative stress and inflammation are critical conditions that develop under hypoxia. Together with changes in cellular bioenergetics, all contribute to cell survival. Moreover, cell-to-cell interaction is established within the tumor such that cancer cells and the microenvironment maintain a bidirectional communication. Additionally, the release of extracellular vesicles, or exosomes, represents short and long loops that can convey important information regarding invasion and metastasis. As a result, the tumor grows and its malignancy increases. Currently, one of the most lethal tumors is pancreatic cancer. This paper reviews the most recent advances in the knowledge of how cells grow in a pancreatic tumor by adapting to hypoxia. Unmasking the physiological processes that help the tumor increase its size and their regulation will be of major relevance for the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Matias Estaras
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres 10003, Spain
| | - Antonio Gonzalez
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres 10003, Spain
| |
Collapse
|
34
|
Roth HE, Bhinderwala F, Franco R, Zhou Y, Powers R. DNAJA1 Dysregulates Metabolism Promoting an Antiapoptotic Phenotype in Pancreatic Ductal Adenocarcinoma. J Proteome Res 2021; 20:3925-3939. [PMID: 34264680 DOI: 10.1021/acs.jproteome.1c00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cochaperone protein DNAJA1 (HSP40) is downregulated four-fold in pancreatic cancer cells. The impact of DNAJA1 expression on pancreatic ductal adenocarcinoma (PDAC) progression remains unclear. The metabolic impacts of increased DNAJA1 expression were evaluated using a combination of untargeted metabolomics, stable isotope-resolved metabolomics (SIRM), confocal microscopy, flow cytometry, and cell-based assays. Differential Warburg glycolysis, an increase in redox currency, and alterations in amino acid levels were observed in both overexpression cell lines. DNAJA1 overexpression also led to mitochondrial fusion, an increase in the expression of Bcl-2, a modest protection from redox-induced cell death, a loss of structural integrity due to the loss of actin fibers, and an increase in cell invasiveness in BxPC-3. These differences were more pronounced in BxPC-3, which contains a loss-of-function mutation in the tumor-suppressing gene SMAD4. These findings suggest a proto-oncogenic role of DNAJA1 in PDAC progression and suggest DNAJA1 may function synergistically with other proteins with altered activities in pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Heidi E Roth
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905, United States.,Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - You Zhou
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States.,Morrison Microscopy Core Research Facility, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States.,Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
35
|
Sharbeen G, McCarroll JA, Akerman A, Kopecky C, Youkhana J, Kokkinos J, Holst J, Boyer C, Erkan M, Goldstein D, Timpson P, Cox TR, Pereira BA, Chitty JL, Fey SK, Najumudeen AK, Campbell AD, Sansom OJ, Ignacio RMC, Naim S, Liu J, Russia N, Lee J, Chou A, Johns A, Gill AJ, Gonzales-Aloy E, Gebski V, Guan YF, Pajic M, Turner N, Apte MV, Davis TP, Morton JP, Haghighi KS, Kasparian J, McLean BJ, Setargew YF, Phillips PA. Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma Determine Response to SLC7A11 Inhibition. Cancer Res 2021; 81:3461-3479. [PMID: 33980655 DOI: 10.1158/0008-5472.can-20-2496] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblasts (CAF) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression through protumor signaling and the generation of fibrosis, the latter of which creates a physical barrier to drugs. CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumor stroma and its prognostic significance. Here we show that high expression of SLC7A11 in human PDAC tumor stroma, but not tumor cells, is independently prognostic of poorer overall survival. Orthogonal approaches showed that PDAC-derived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis and that SLC7A11 inhibition significantly decreases CAF proliferation, reduces their resistance to oxidative stress, and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, specific ablation of SLC7A11 from the tumor compartment of transgenic mouse PDAC tumors did not affect tumor growth, suggesting the stroma can substantially influence PDAC tumor response to SLC7A11 inhibition. In a mouse orthotopic PDAC model utilizing human PDAC cells and CAFs, stable knockdown of SLC7A11 was required in both cell types to reduce tumor growth, metastatic spread, and intratumoral fibrosis, demonstrating the importance of targeting SLC7A11 in both compartments. Finally, treatment with a nanoparticle gene-silencing drug against SLC7A11, developed by our laboratory, reduced PDAC tumor growth, incidence of metastases, CAF activation, and fibrosis in orthotopic PDAC tumors. Overall, these findings identify an important role of SLC7A11 in PDAC-derived CAFs in supporting tumor growth. SIGNIFICANCE: This study demonstrates that SLC7A11 in PDAC stromal cells is important for the tumor-promoting activity of CAFs and validates a clinically translatable nanomedicine for therapeutic SLC7A11 inhibition in PDAC.
Collapse
Affiliation(s)
- George Sharbeen
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, New South Wales, Australia
| | - Anouschka Akerman
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Chantal Kopecky
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - John Kokkinos
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
| | - Jeff Holst
- School of Medical Science and Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Cyrille Boyer
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
| | - Mert Erkan
- Koc University Research Centre for Translational Medicine and Department of Surgery, Koc University, School of Medicine, Istanbul, Turkey
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
- Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brooke A Pereira
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jessica L Chitty
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Sigrid K Fey
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom
| | | | | | - Owen J Sansom
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom
| | - Rosa Mistica C Ignacio
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Stephanie Naim
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Jie Liu
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Nelson Russia
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Julia Lee
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Angela Chou
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Amber Johns
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Estrella Gonzales-Aloy
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Val Gebski
- NHMRC Clinical Trials Centre, University of Sydney, New South Wales, Australia
| | - Yi Fang Guan
- School of Medical Science and Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
| | - Nigel Turner
- School of Medical Sciences, University of New South Wales Sydney, New South Wales, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, University New South Wales and Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute of Bioengineering & Nanotechnology, University of Queensland, Queensland, Australia
| | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Koroush S Haghighi
- Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, New South Wales, Australia
| | - Jorjina Kasparian
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Benjamin J McLean
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | | | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Wu Y, Zeng H, Yu Q, Huang H, Fervers B, Chen ZS, Lu L. A Circulating Exosome RNA Signature Is a Potential Diagnostic Marker for Pancreatic Cancer, a Systematic Study. Cancers (Basel) 2021; 13:cancers13112565. [PMID: 34073722 PMCID: PMC8197236 DOI: 10.3390/cancers13112565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Most patients with pancreatic cancer are diagnosed at an advanced stage due to the lack of tools with high sensitivity and specificity for early detection. Aberrant gene expression occurs in pancreatic cancer, which can be packaged into nanoparticles (also known as exosomes or nano-sized extracellular vesicles) and then released into blood. In this study, we aimed to evaluate the diagnostic value of a circulating exosome RNA signature in pancreatic cancer. Our findings indicate that the circulating exosome RNA signature is a potential marker for the early detection or diagnosis of pancreatic cancer. Abstract Several exosome proteins, miRNAs and KRAS mutations have been investigated in the hope of carrying out the early detection of pancreatic cancer with high sensitivity and specificity, but they have proven to be insufficient. Exosome RNAs, however, have not been extensively evaluated in the diagnosis of pancreatic cancer. The purpose of this study was to investigate the potential of circulating exosome RNAs in pancreatic cancer detection. By retrieving RNA-seq data from publicly accessed databases, differential expression and random-effects meta-analyses were performed. The results showed that pancreatic cancer had a distinct circulating exosome RNA signature in healthy individuals, and that the top 10 candidate exosome RNAs could distinguish patients from healthy individuals with an area under the curve (AUC) of 1.0. Three (HIST2H2AA3, LUZP6 and HLA-DRA) of the 10 genes in exosomes had similar differential patterns to those in tumor tissues based on RNA-seq data. In the validation dataset, the levels of these three genes in exosomes displayed good performance in distinguishing cancer from both chronic pancreatitis (AUC = 0.815) and healthy controls (AUC = 0.8558), whereas a slight difference existed between chronic pancreatitis and healthy controls (AUC = 0.586). Of the three genes, the level of HIST2H2AA3 was positively associated with KRAS status. However, there was no significant difference in the levels of the three genes across the disease stages (stages I–IV). These findings indicate that circulating exosome RNAs have a potential early detection value in pancreatic cancer, and that a distinct exosome RNA signature exists in distinguishing pancreatic cancer from healthy individuals.
Collapse
Affiliation(s)
- Yixing Wu
- Department of Endocrinology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China;
| | - Hongmei Zeng
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Qing Yu
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Washington, DC 20010, USA;
| | - Huatian Huang
- Department of Imaging, Guizhou Qianxinan People’s Hospital, Xingyi 652400, China;
| | - Beatrice Fervers
- Département Prévention Cancer Environnement, Centre Léon Bérard—Université Lyon 1, 69008 Lyon, France;
- UMR Inserm 1296 “Radiations: Défense, Santé, Environnement”, Centre Léon Bérard, 69008 Lyon, France
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John’s University, New York, NY 11439, USA;
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, New Haven, CT 06520, USA
- Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
- Correspondence:
| |
Collapse
|
37
|
Muyinda IJ, Park JG, Jang EJ, Yoo BC. KRAS, A Prime Mediator in Pancreatic Lipid Synthesis through Extra Mitochondrial Glutamine and Citrate Metabolism. Int J Mol Sci 2021; 22:5070. [PMID: 34064761 PMCID: PMC8150642 DOI: 10.3390/ijms22105070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven pancreatic cancer is very lethal, with a five-year survival rate of <9%, irrespective of therapeutic advances. Different treatment modalities including chemotherapy, radiotherapy, and immunotherapy demonstrated only marginal efficacies because of pancreatic tumor specificities. Surgery at the early stage of the disease remains the only curative option, although only in 20% of patients with early stage disease. Clinical trials targeting the main oncogenic driver, KRAS, have largely been unsuccessful. Recently, global metabolic reprogramming has been identified in patients with pancreatic cancer and oncogenic KRAS mouse models. The newly reprogrammed metabolic pathways and oncometabolites affect the tumorigenic environment. The development of methods modulating metabolic reprogramming in pancreatic cancer cells might constitute a new approach to its therapy. In this review, we describe the major metabolic pathways providing acetyl-CoA and NADPH essential to sustain lipid synthesis and cell proliferation in pancreatic cancer cells.
Collapse
Affiliation(s)
- Isaac James Muyinda
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Uganda Cancer Institute, Mulago-Kampala 3935, Uganda
| | - Jae-Gwang Park
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Eun-Jung Jang
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
| | - Byong-Chul Yoo
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| |
Collapse
|
38
|
Hue JJ, Bingmer K, Sugumar K, Markt SC, Rothermel LD, Hardacre JM, Ammori JB, Winter JM, Ocuin LM. Immunotherapy Is Associated with a Survival Benefit in Patients Receiving Chemotherapy for Metastatic Pancreatic Cancer. J Pancreat Cancer 2021; 7:31-38. [PMID: 33937617 PMCID: PMC8080907 DOI: 10.1089/pancan.2021.0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Immunotherapy (IT) has led to improved survival in several common cancers but success in pancreatic ductal adenocarcinoma (PDAC) has been limited. We analyzed if combination IT-chemotherapy (IT-CT) is associated with improved survival compared with chemotherapy alone (CT) in patients with metastatic PDAC. Methods: The National Cancer Database (2004-2016) was queried for patients who were diagnosed with metastatic PDAC. Patients were categorized by treatment group: CT only and IT-CT. Patients were excluded if they received radiation or a surgical procedure. The primary outcome was overall survival. Results: A total of 59,289 patients were identified, of whom 58,947 (99.4%) received CT and 342 (0.6%) received IT-CT. The IT-CT group was younger, had fewer comorbidities, and was more often treated at an academic center. The utilization of multiagent CT was similar between the groups. Median survival of patients treated with IT-CT was longer than CT alone (7.9 months vs. 6.3 months, p = 0.005). On multivariable analysis, receipt of IT-CT was associated with a survival advantage as compared with CT (hazard ratio = 0.86, 95% confidence intervals 0.76-0.97) when adjusting for demographics and type of CT regimen. Conclusion: In patients with metastatic PDAC, it appears that combination IT-CT may perhaps be associated with a survival advantage compared with CT alone.
Collapse
Affiliation(s)
- Jonathan J Hue
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Katherine Bingmer
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Kavin Sugumar
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sarah C Markt
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Luke D Rothermel
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Jeffrey M Hardacre
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - John B Ammori
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Jordan M Winter
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Lee M Ocuin
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
39
|
Abdel Hadi N, Reyes-Castellanos G, Carrier A. Targeting Redox Metabolism in Pancreatic Cancer. Int J Mol Sci 2021; 22:ijms22041534. [PMID: 33546421 PMCID: PMC7913542 DOI: 10.3390/ijms22041534] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cell metabolism is reprogrammed in cancer cells to meet their high bioenergetics and biosynthetic demands. This metabolic reprogramming is accompanied by alterations in redox metabolism, characterized by accumulation of reactive oxygen species (ROS). Elevated production of ROS, mostly by mitochondrial respiration, is counteracted by higher production of antioxidant defenses (mainly glutathione and antioxidant enzymes). Cancer cells are adapted to a high concentration of ROS, which contributes to tumorigenesis, metastasis formation, resistance to therapy and relapse. Frequent genetic alterations observed in pancreatic ductal adenocarcinoma (PDAC) affect KRAS and p53 proteins, which have a role in ROS production and control, respectively. These observations led to the proposal of the use of antioxidants to prevent PDAC development and relapse. In this review, we focus on the therapeutic strategies to further increase ROS level to induce PDAC cell death. Combining the promotion of ROS production and inhibition of antioxidant capacity is a promising avenue for pancreatic cancer therapy in the clinic.
Collapse
Affiliation(s)
| | | | - Alice Carrier
- Correspondence: ; Tel.: +33-491-828-829; Fax: +33-491-826-083
| |
Collapse
|
40
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
41
|
Alterations in Glucose Metabolism Due to Decreased Expression of Heterogeneous Nuclear Ribonucleoprotein M in Pancreatic Ductal Adenocarcinoma. BIOLOGY 2021; 10:biology10010057. [PMID: 33466816 PMCID: PMC7830884 DOI: 10.3390/biology10010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Pancreatic cancer has one of the worst prognoses when compared to those of other cancer subtypes. One of the reasons is the resistance of this tumor to the hypovascular environment (an environment with low blood flow and low supply of oxygen and nutrients (especially glucose)). However, the detailed mechanism remains elusive. Recently, it has been reported that heterogeneous ribonuclear protein M (HNRNPM) is a splicing factor associated with malignant tumors. Thus, in this study, we investigated the expression and effects of HNRNPM in pancreatic ductal adenocarcinoma (PDA). We revealed that HNRNPM was highly expressed in pancreatic tissues but expression decreased in PDA tissues. Furthermore, we found that knockdown of HNRNPM protein expression under low-glucose conditions altered glucose metabolism and prolonged cell survival by suppressing glucose consumption. These results suggest that reduced expression of HNRNPM in PDAs may be involved in adaptation to a hypovascular environment, and that therapeutic agents for this target may lead to improved prognosis for pancreatic cancer. Abstract The prognosis of pancreatic cancer is considerably worse than that of other cancers, as early detection of pancreatic cancer is difficult and due to its hypovascular environment, which involves low blood flow and a low supply of oxygen and nutrients. Moreover, pancreatic cancer demonstrates a mechanism that allows it to survive in a hypovascular environment. However, the detailed mechanism remains elusive. Recently, it has been reported that heterogeneous ribonuclear protein M (HNRNPM) is a splicing factor associated with malignant tumors. Thus, in this study, we investigated the expression and effects of HNRNPM in pancreatic ductal adenocarcinoma (PDA). We observed that HNRNPM expression, which is highly expressed in pancreatic tissues, was reduced in PDA tissues. Additionally, knockdown of HNRNPM under low-glucose conditions that mimic a hypovascular environment was shown to alter glucose metabolism and prolong cell survival by suppressing glucose consumption. These results suggest that the decreased expression of HNRNPM in PDA may be involved in its adaptation to a hypovascular environment.
Collapse
|
42
|
Xiao F, Li J, Huang K, Li X, Xiong Y, Wu M, Wu L, Kuang W, Lv S, Wu L, Zhu X, Guo H. Macropinocytosis: mechanism and targeted therapy in cancers. Am J Cancer Res 2021; 11:14-30. [PMID: 33520357 PMCID: PMC7840718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023] Open
Abstract
Macropinocytosis is a form of endocytosis which provides an effective way for non-selective uptakes of extracellular proteins, liquids, and particles. The endocytic process is initiated by the activation of the growth factors signaling pathways. After activation of the biochemical signal, the cell starts internalizing extracellular solutes and nutrients into the irregular endocytic vesicles, known as macropinosomes that deliver them into the lysosomes for degradation. Macropinocytosis plays an important role in the nutritional supply of cancer cells. Due to the rapid expansion of cancer cells and the abnormal vascular microenvironment, cancer cells are usually deprived of oxygen and nutrients. Therefore, they must transform their metabolism to survive and grow in this harsh microenvironment. To satisfy their energy needs, cancer cells enhance the activity of macropinocytosis. Therefore, this metabolic adaptation that is used by cancer cells can be exploited to develop new targeted cancer therapies. In this review, we discuss the molecular mechanism that actuates the process of macropinocytosis in a variety of cancers, and the novel anti-cancer therapeutics in targeting macropinocytosis.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Yaping Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Lei Wu
- Department of Emergency, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Wei Kuang
- Department of Emergency, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
43
|
Labib PL, Yaghini E, Davidson BR, MacRobert AJ, Pereira SP. 5-Aminolevulinic acid for fluorescence-guided surgery in pancreatic cancer: Cellular transport and fluorescence quantification studies. Transl Oncol 2021; 14:100886. [PMID: 33059124 PMCID: PMC7566921 DOI: 10.1016/j.tranon.2020.100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022] Open
Abstract
5-Aminolevulinic acid (ALA) is a potential contrast agent for fluorescence-guided surgery in pancreatic ductal adenocarcinoma (PDAC). However, factors influencing ALA uptake in PDAC have not been adequately assessed. We investigated ALA-induced porphyrin fluorescence in PDAC cell lines CFPAC-1 and PANC-1 and pancreatic ductal cell line H6c7 following incubation with 0.25-1.0 mM ALA for 4-48 h. Fluorescence was assessed qualitatively by microscopy and quantitatively by plate reader and flow cytometry. Haem biosynthesis enzymes and transporters were measured by quantitative polymerase chain reaction (qPCR). CFPAC-1 cells exhibited intense fluorescence under microscopy at low concentrations whereas PANC-1 cells and pancreatic ductal cell line H6c7 showed much lower fluorescence. Quantitative fluorescence studies demonstrated fluorescence saturation in the two PDAC cell lines at 0.5 mM ALA, whereas H6c7 cells showed increasing fluorescence with increasing ALA. Based on the PDAC:H6c7 fluorescence ratio studies, lower ALA concentrations provide better contrast between PDAC and benign pancreatic cells. Studies with qPCR showed upregulation of ALA influx transporter PEPT1 in CFPAC-1, whereas PANC-1 upregulated the efflux transporter ABCG2. We conclude that PEPT1 and ABCG2 expression may be key contributory factors for variability in ALA-induced fluorescence in PDAC.
Collapse
Affiliation(s)
- P L Labib
- UCL Institute for Liver & Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - E Yaghini
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - B R Davidson
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - A J MacRobert
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - S P Pereira
- UCL Institute for Liver & Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
44
|
Hue JJ, Sugumar K, Bingmer K, Ammori JB, Winter JM, Hardacre JM. Neoadjuvant chemoradiation may be associated with improved pathologic response in pancreatic cancer. Am J Surg 2020; 221:500-504. [PMID: 33234234 DOI: 10.1016/j.amjsurg.2020.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/12/2020] [Accepted: 11/14/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neoadjuvant therapy is increasingly utilized in the management of pancreatic adenocarcinoma. The type of neoadjuvant therapy and its effect on pathologic response remains understudied. METHODS A retrospective review was performed on patients who underwent neoadjuvant therapy followed by pancreatectomy. Multivariable regressions were used to determine associations between neoadjuvant therapy regimens and pathologic response. RESULTS Seventy-five patients with pathologic responses available for review received FOLFIRINOX (61%) or gemcitabine with nab-paclitaxel (39%). Demographics, histologic differentiation, and utilization of chemoradiation were similar between the groups. Multivariable logistic regression demonstrated that chemoradiation was associated with an increased likelihood of a complete or near-complete pathologic response and a decreased rate of lymphovascular invasion and lymph node positivity. Neither chemotherapy regimen nor number of cycles administered were associated with pathologic response. CONCLUSIONS Neoadjuvant chemoradiation may be associated with complete or near-complete pathologic response regardless of chemotherapy regimen in pancreatic cancer patients.
Collapse
Affiliation(s)
- Jonathan J Hue
- Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Kavin Sugumar
- Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Katherine Bingmer
- Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - John B Ammori
- Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jordan M Winter
- Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jeffrey M Hardacre
- Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
45
|
Masoud R, Reyes-Castellanos G, Lac S, Garcia J, Dou S, Shintu L, Abdel Hadi N, Gicquel T, El Kaoutari A, Diémé B, Tranchida F, Cormareche L, Borge L, Gayet O, Pasquier E, Dusetti N, Iovanna J, Carrier A. Targeting Mitochondrial Complex I Overcomes Chemoresistance in High OXPHOS Pancreatic Cancer. Cell Rep Med 2020; 1:100143. [PMID: 33294863 PMCID: PMC7691450 DOI: 10.1016/j.xcrm.2020.100143] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 08/28/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial respiration (oxidative phosphorylation, OXPHOS) is an emerging target in currently refractory cancers such as pancreatic ductal adenocarcinoma (PDAC). However, the variability of energetic metabolic adaptations between PDAC patients has not been assessed in functional investigations. In this work, we demonstrate that OXPHOS rates are highly heterogeneous between patient tumors, and that high OXPHOS tumors are enriched in mitochondrial respiratory complex I at protein and mRNA levels. Therefore, we treated PDAC cells with phenformin (complex I inhibitor) in combination with standard chemotherapy (gemcitabine), showing that this treatment is synergistic specifically in high OXPHOS cells. Furthermore, phenformin cooperates with gemcitabine in high OXPHOS tumors in two orthotopic mouse models (xenografts and syngeneic allografts). In conclusion, this work proposes a strategy to identify PDAC patients likely to respond to the targeting of mitochondrial energetic metabolism in combination with chemotherapy, and that phenformin should be clinically tested in appropriate PDAC patient subpopulations.
Collapse
Affiliation(s)
- Rawand Masoud
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Gabriela Reyes-Castellanos
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Sophie Lac
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Julie Garcia
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Samir Dou
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Laetitia Shintu
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2, F-13013 Marseille, France
| | - Nadine Abdel Hadi
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Tristan Gicquel
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Abdessamad El Kaoutari
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Binta Diémé
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2, F-13013 Marseille, France
| | - Fabrice Tranchida
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2, F-13013 Marseille, France
| | - Laurie Cormareche
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Laurence Borge
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Odile Gayet
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Eddy Pasquier
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Nelson Dusetti
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Juan Iovanna
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| | - Alice Carrier
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France
| |
Collapse
|
46
|
Zhu Y, Zou R, Sha H, Lu Y, Zhang Y, Wu J, Feng J, Wang D. Lipid metabolism-related proteins of relevant evolutionary and lymphoid interest (PRELI) domain containing family proteins in cancer. Am J Transl Res 2020; 12:6015-6026. [PMID: 33194011 PMCID: PMC7653579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Metabolic reprogramming of tumor cells plays a critical role in the tumor microenvironment, including disorder of lipid metabolism. Recently, lipid metabolism has received increasing attention in cancer research. The proteins of relevant evolutionary and lymphoid interest (PRELI) domain containing family contains 6 proteins. Functionally, the PRELI-like family proteins were mainly involved in mitochondrial lipid transport and correlated with several types of diseases and malignant tumors. Here we review current knowledge of the functions, structures, biological functions and underlying mechanisms of the PRELI-like family proteins in cancer progression, which provide insights into the clinical translational application.
Collapse
Affiliation(s)
- Yue Zhu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Renrui Zou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Huanhuan Sha
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Ya Lu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Yuan Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Jianzhong Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Dongfeng Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Siolas D, Morrissey C, Oberstein PE. The Achilles' Heel of Pancreatic Cancer: Targeting pancreatic cancer's unique immunologic characteristics and metabolic dependencies in clinical trials. JOURNAL OF PANCREATOLOGY 2020; 3:121-131. [PMID: 33133736 PMCID: PMC7595263 DOI: 10.1097/jp9.0000000000000052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate and is notoriously refractory to multiple cancer treatments. In recent years, cancer therapy has expanded beyond traditional cytotoxic chemotherapy to targeted agents and immunotherapy which have been successfully implemented in many cancers. Despite robust pre-clinical research, these novel therapies have only had a small impact on PDAC. However, there have been successes with emerging clinical data supporting a potential role for checkpoint inhibitor therapy and targeted therapy with poly (ADP-ribose) polymerase inhibitors for select subsets of PDAC patients. In this clinical review, we discuss recent pre-clinical evidence for targeting metabolic pathways as well as prevalent intratumoral immune subsets, and focus on clinical trials designed to test novel agents in PDAC. The challenge of translating pre-clinical findings to patients remains substantial and many clinical trials yield negative results, but collaborative efforts and renewed focus on novel clinical trials have led to optimism that we will identify additional options for PDAC patients and change outcomes for this deadly disease.
Collapse
Affiliation(s)
- Despina Siolas
- Department of Medicine, Pancreatic Cancer Center, Perlmutter Comprehensive Cancer Center, NYU Langone Health, New York, NY
| | - Christy Morrissey
- Department of Medicine, Pancreatic Cancer Center, Perlmutter Comprehensive Cancer Center, NYU Langone Health, New York, NY
| | - Paul Eliezer Oberstein
- Department of Medicine, Pancreatic Cancer Center, Perlmutter Comprehensive Cancer Center, NYU Langone Health, New York, NY
| |
Collapse
|
48
|
Gnanasekaran J, Binder Gallimidi A, Saba E, Pandi K, Eli Berchoer L, Hermano E, Angabo S, Makkawi H, Khashan A, Daoud A, Elkin M, Nussbaum G. Intracellular Porphyromonas gingivalis Promotes the Tumorigenic Behavior of Pancreatic Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12082331. [PMID: 32824786 PMCID: PMC7465784 DOI: 10.3390/cancers12082331] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is a member of the dysbiotic oral microbiome associated with oral inflammation and periodontal disease. Intriguingly, epidemiological studies link P. gingivalis to an increased risk of pancreatic cancer. Given that oral bacteria are detected in human pancreatic cancer, and both mouse and human pancreata harbor microbiota, we explored the involvement of P. gingivalis in pancreatic tumorigenesis using cell lines and a xenograft model. Live P. gingivalis induced proliferation of pancreatic cancer cells; however, surprisingly, this effect was independent of Toll-like receptor 2, the innate immune receptor that is engaged in response to P. gingivalis on other cancer and immune cells, and is required for P. gingivalis to induce alveolar bone resorption. Instead, we found that P. gingivalis survives inside pancreatic cancer cells, a trait that can be enhanced in vitro and is increased by hypoxia, a central characteristic of pancreatic cancer. Increased tumor cell proliferation was related to the degree of intracellular persistence, and infection of tumor cells with P. gingivalis led to enhanced growth in vivo. To the best of our knowledge, this study is the first to demonstrate the direct effect of exposure to P. gingivalis on the tumorigenic behavior of pancreatic cancer cell lines. Our findings shed light on potential mechanisms underlying the pancreatic cancer–periodontitis link.
Collapse
Affiliation(s)
- JebaMercy Gnanasekaran
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Adi Binder Gallimidi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
| | - Elias Saba
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Karthikeyan Pandi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Luba Eli Berchoer
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Esther Hermano
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
| | - Sarah Angabo
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Hasna′a Makkawi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Arin Khashan
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Alaa Daoud
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
- Correspondence: (M.E.); (G.N.); Tel.: +972-2-6776782 (M.E.); +972-2-6758581 (G.N.)
| | - Gabriel Nussbaum
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
- Correspondence: (M.E.); (G.N.); Tel.: +972-2-6776782 (M.E.); +972-2-6758581 (G.N.)
| |
Collapse
|
49
|
Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020; 8:biomedicines8080270. [PMID: 32756381 PMCID: PMC7460249 DOI: 10.3390/biomedicines8080270] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet bioenergetics and biosynthetic demands. The first observation of metabolic reprogramming in cancer cells was made a century ago (“Warburg effect” or aerobic glycolysis), leading to the classical view that cancer metabolism relies on a glycolytic phenotype. There is now accumulating evidence that most cancers also rely on mitochondria to satisfy their metabolic needs. Indeed, the current view of cancer metabolism places mitochondria as key actors in all facets of cancer progression. Importantly, mitochondrial metabolism has become a very promising target in cancer therapy, including for refractory cancers such as Pancreatic Ductal AdenoCarcinoma (PDAC). In particular, mitochondrial oxidative phosphorylation (OXPHOS) is an important target in cancer therapy. Other therapeutic strategies include the targeting of glutamine and fatty acids metabolism, as well as the inhibition of the TriCarboxylic Acid (TCA) cycle intermediates. A better knowledge of how pancreatic cancer cells regulate mitochondrial metabolism will allow the identification of metabolic vulnerabilities and thus novel and more efficient therapeutic options for the benefit of each patient.
Collapse
Affiliation(s)
| | | | - Alice Carrier
- Correspondence: ; Tel.: +33-491828829; Fax: +33-491826083
| |
Collapse
|
50
|
Matés JM, Campos-Sandoval JA, de Los Santos-Jiménez J, Márquez J. Glutaminases regulate glutathione and oxidative stress in cancer. Arch Toxicol 2020; 94:2603-2623. [PMID: 32681190 DOI: 10.1007/s00204-020-02838-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Targeted therapies against cancer have improved both survival and quality of life of patients. However, metabolic rewiring evokes cellular mechanisms that reduce therapeutic mightiness. Resistant cells generate more glutathione, elicit nuclear factor erythroid 2-related factor 2 (NRF2) activation, and overexpress many anti-oxidative genes such as superoxide dismutase, catalase, glutathione peroxidase, and thioredoxin reductase, providing stronger antioxidant capacity to survive in a more oxidative environment due to the sharp rise in oxidative metabolism and reactive oxygen species generation. These changes dramatically alter tumour microenvironment and cellular metabolism itself. A rational design of therapeutic combination strategies is needed to flatten cellular homeostasis and accomplish a drop in cancer development. Context-dependent glutaminase isoenzymes show oncogenic and tumour suppressor properties, being mainly associated to MYC and p53, respectively. Glutaminases catalyze glutaminolysis in mitochondria, regulating oxidative phosphorylation, redox status and cell metabolism for tumour growth. In addition, the substrate and product of glutaminase reaction, glutamine and glutamate, respectively, can work as signalling molecules moderating redox and bioenergetic pathways in cancer. Novel synergistic approaches combining glutaminase inhibition and redox-dependent modulation are described in this review. Pharmacological or genetic glutaminase regulation along with oxidative chemotherapy can help to improve the design of combination strategies that escalate the rate of therapeutic success in cancer patients.
Collapse
Affiliation(s)
- José M Matés
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - José A Campos-Sandoval
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan de Los Santos-Jiménez
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|