1
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): A key enzyme in cancer metabolism and therapeutic target. Int Immunopharmacol 2024; 142:113208. [PMID: 39312861 DOI: 10.1016/j.intimp.2024.113208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Emerging research has positioned Nicotinamide N-methyltransferase (NNMT) as a key player in oncology, with its heightened expression frequently observed across diverse cancers. This increased presence is tightly linked to tumor initiation, proliferation, and metastasis. The enzymatic function of NNMT is centered on the methylation of nicotinamide (NAM), utilizing S-adenosylmethionine (SAM) as the methyl donor, which results in the generation of S-adenosyl-L-homocysteine (SAH) and methyl nicotinamide (MNAM). This metabolic process reduces the availability of NAM, necessary for Nicotinamide adenine dinucleotide (NAD+) synthesis, and generates SAH, precursor to homocysteine (Hcy). These alterations are theorized to foster the resilience, expansion, and invasiveness of cancer cells. Furthermore, NNMT is implicated in enhancing cancer malignancy by affecting multiple signaling pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), cancer-associated fibroblasts (CAFs) and 5-Methyladenosine (5-MA), epithelial-mesenchymal transition (EMT), and epigenetic mechanisms. Upregulation of NNMT metabolism plays a key role in the formation and maintenance of the tumour microenvironment. While the use of small molecule inhibitors and RNA interference (RNAi) to target NNMT has shown therapeutic promise, the full extent of NNMT's influence on cancer is not yet fully understood, and clinical evidence is limited. This article systematically describes the relationship between the functional metabolism of NNMT enzymes and the cancer and tumour microenvironments, describing the mechanisms by which NNMT contributes to cancer initiation, proliferation, and metastasis, as well as targeted therapies. Additionally, we discuss the future opportunities and challenges of NNMT in targeted anti-cancer treatments.
Collapse
Affiliation(s)
- Wei-Dong Sun
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Xiao-Juan Zhu
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jing-Jing Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Ya-Zhong Mei
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Wen-Song Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China.
| |
Collapse
|
2
|
Scuoppo C, Cai B, Ofori K, Scholze H, Kumar R, D’Alessandro A, Basso K, Pasqualucci L, Dalla-Favera R. Repurposing NAMPT Inhibitors for Germinal Center B Cell-Like Diffuse Large B-Cell Lymphoma. Blood Cancer Discov 2024; 5:417-427. [PMID: 39105568 PMCID: PMC11528193 DOI: 10.1158/2643-3230.bcd-24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) includes the activated B cell-like (ABC) and germinal center B cell-like (GCB) subtypes, which differ in cell of origin, genetics, and clinical response. By screening the subtype-specific activity of 211 drugs approved or in active clinical development for other diseases, we identified inhibitors of nicotinamide phosphoribosyl transferase (NAMPTi) as active in a subset of GCB-DLBCL in vitro and in vivo. We validated three chemically distinct NAMPTis for their on-target activity based on biochemical and genetic rescue approaches and found the ratio between NAMPT and PARP1 RNA levels was predictive of NAMPTi sensitivity across DLBCL subtypes. Notably, the NAMPT:PARP1 transcript ratio predicts higher antitumor activity in BCL2-translocated GCB-DLBCL. Accordingly, pharmacologic and genetic inhibition of BCL2 was potently synergistic with NAMPT blockade. These data support the inhibition of NAMPT as a therapeutically relevant strategy for BCL2-translocated DLBCLs. Significance: Targeted therapies have emerged for the ABC subtype of DLBCL, but not for the GCB subtype, despite the evidence of a significant subset of high-risk cases. We identify a drug that specifically targets a subset of GCB-DLBCL and provide preclinical evidence for BCL2 translocations as biomarkers for their identification.
Collapse
Affiliation(s)
- Claudio Scuoppo
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Bowen Cai
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Kenneth Ofori
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Hanna Scholze
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Rahul Kumar
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Katia Basso
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
3
|
Marhaba M, Nagendla NK, Anjum S, Ganneru S, Singh V, Pal S, Mudiam MKR, Ansari KM. Liquid chromatography-high-resolution mass spectrometry-based metabolomics revealing the effects of zearalenone and alpha-zearalenol on human endometrial cancer cells. Toxicol Res (Camb) 2024; 13:tfae169. [PMID: 39417035 PMCID: PMC11474235 DOI: 10.1093/toxres/tfae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Human exposure to mycotoxins through food involve a mixture of compounds, which can be harmful to human health. The Fusarium fungal species are known to produce zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, and its metabolite alpha-zearalenol (α-ZEL), both of which possess endocrine-disruptive properties. Given their potential harm to human health through food exposure, investigating the combined effects of ZEN and α-ZEL becomes crucial. Hence, the combined impact of ZEN and α-ZEL study hold significant importance. This in vitro study delves into the critical area, examining their combined impact on the proliferation and metabolic profile of endometrial cancer Ishikawa cells via sulforhodamine, clonogenic, proliferating cell nuclear antigen (PCNA) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) based untargeted metabolomics. Low concentrations of ZEN (25 nm), α-ZEL (10 nm), or a combination of both were observed to significantly enhance cell proliferation of Ishikawa cells, as evidenced by PCNA immunostaining, immunoblotting as well and clonogenic assays. The metabolomics revealed the perturbations in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism and phenylalanine, tyrosine, tryptophan biosynthesis provides valuable insights into potential mechanism by which these mycotoxins may facilitate cell proliferation. However, further investigations are warranted to comprehensively understand the implications of these findings and their possible implications for human health.
Collapse
Affiliation(s)
- Marhaba Marhaba
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Narendra Kumar Nagendla
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Saria Anjum
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Sireesha Ganneru
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Varsha Singh
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Saurabh Pal
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Mohana Krishna Reddy Mudiam
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
- Advanced Research Methodologies, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram 122016, Haryana, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
4
|
Chen L, Xing X, Zhang P, Chen L, Pei H. Homeostatic regulation of NAD(H) and NADP(H) in cells. Genes Dis 2024; 11:101146. [PMID: 38988322 PMCID: PMC11233901 DOI: 10.1016/j.gendis.2023.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 07/12/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/reduced NADP+ (NADPH) are essential metabolites involved in multiple metabolic pathways and cellular processes. NAD+ and NADH redox couple plays a vital role in catabolic redox reactions, while NADPH is crucial for cellular anabolism and antioxidant responses. Maintaining NAD(H) and NADP(H) homeostasis is crucial for normal physiological activity and is tightly regulated through various mechanisms, such as biosynthesis, consumption, recycling, and conversion between NAD(H) and NADP(H). The conversions between NAD(H) and NADP(H) are controlled by NAD kinases (NADKs) and NADP(H) phosphatases [specifically, metazoan SpoT homolog-1 (MESH1) and nocturnin (NOCT)]. NADKs facilitate the synthesis of NADP+ from NAD+, while MESH1 and NOCT convert NADP(H) into NAD(H). In this review, we summarize the physiological roles of NAD(H) and NADP(H) and discuss the regulatory mechanisms governing NAD(H) and NADP(H) homeostasis in three key aspects: the transcriptional and posttranslational regulation of NADKs, the role of MESH1 and NOCT in maintaining NAD(H) and NADP(H) homeostasis, and the influence of the circadian clock on NAD(H) and NADP(H) homeostasis. In conclusion, NADKs, MESH1, and NOCT are integral to various cellular processes, regulating NAD(H) and NADP(H) homeostasis. Dysregulation of these enzymes results in various human diseases, such as cancers and metabolic disorders. Hence, strategies aiming to restore NAD(H) and NADP(H) homeostasis hold promise as novel therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
5
|
He WM, Yang JY, Zhao ZY, Xiao W, Li WH, Zhao YJ. The Fluorinated NAD Precursors Enhance FK866 Cytotoxicity by Activating SARM1 in Glioblastoma Cells. BIOLOGY 2024; 13:649. [PMID: 39336077 PMCID: PMC11429243 DOI: 10.3390/biology13090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Glioblastoma, a formidable brain tumor characterized by dysregulated NAD metabolism, poses a significant therapeutic challenge. The NAMPT inhibitor FK866, which induces NAD depletion, has shown promise in controlling tumor proliferation and modifying the tumor microenvironment. However, the clinical efficacy of FK866 as a single drug therapy for glioma is limited. In this study, we aim to disrupt NAD metabolism using fluorinated NAD precursors and explore their synergistic effect with FK866 in inducing cytotoxicity in glioblastoma cells. The synthesized analogue of nicotinamide riboside (NR), ara-F nicotinamide riboside (F-NR), inhibits nicotinamide ribose kinase (NRK) activity in vitro, reduces cellular NAD levels, and enhances FK866's cytotoxicity in U251 glioblastoma cells, indicating a collaborative impact on cell death. Metabolic analyses reveal that F-NR undergoes conversion to fluorinated nicotinamide mononucleotide (F-NMN) and other metabolites, highlighting the intact NAD metabolic pathway in glioma cells. The activation of SARM1 by F-NMN, a potent NAD-consuming enzyme, is supported by the synergistic effect of CZ-48, a cell-permeable SARM1 activator. Temporal analysis underscores the sequential nature of events, establishing NAD depletion as a precursor to ATP depletion and eventual massive cell death. This study not only elucidates the molecular intricacies of glioblastoma cell death but also proposes a promising strategy to enhance FK866 efficacy through fluorinated NAD precursors, offering potential avenues for innovative therapeutic interventions in the challenging landscape of glioblastoma treatment.
Collapse
Affiliation(s)
- Wei Ming He
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
| | - Jian Yuan Yang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Zhi Ying Zhao
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
| | - Weimin Xiao
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518110, China;
| | - Wan Hua Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Yong Juan Zhao
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| |
Collapse
|
6
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
7
|
Gasparrini M, Giovannuzzi S, Nocentini A, Raffaelli N, Supuran CT. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) in cancer: a patent review. Expert Opin Ther Pat 2024; 34:565-582. [PMID: 38861278 DOI: 10.1080/13543776.2024.2367006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions. AREAS COVERED By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date. EXPERT OPINION Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Nadia Raffaelli
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
8
|
Hain BA, Kimball SR, Waning DL. Preventing loss of sirt1 lowers mitochondrial oxidative stress and preserves C2C12 myotube diameter in an in vitro model of cancer cachexia. Physiol Rep 2024; 12:e16103. [PMID: 38946587 PMCID: PMC11215470 DOI: 10.14814/phy2.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Cancer cachexia is a multifactorial syndrome associated with advanced cancer that contributes to mortality. Cachexia is characterized by loss of body weight and muscle atrophy. Increased skeletal muscle mitochondrial reactive oxygen species (ROS) is a contributing factor to loss of muscle mass in cachectic patients. Mice inoculated with Lewis lung carcinoma (LLC) cells lose weight, muscle mass, and have lower muscle sirtuin-1 (sirt1) expression. Nicotinic acid (NA) is a precursor to nicotinamide dinucleotide (NAD+) which is exhausted in cachectic muscle and is a direct activator of sirt1. Mice lost body and muscle weight and exhibited reduced skeletal muscle sirt1 expression after inoculation with LLC cells. C2C12 myotubes treated with LLC-conditioned media (LCM) had lower myotube diameter. We treated C2C12 myotubes with LCM for 24 h with or without NA for 24 h. C2C12 myotubes treated with NA maintained myotube diameter, sirt1 expression, and had lower mitochondrial superoxide. We then used a sirt1-specific small molecule activator SRT1720 to increase sirt1 activity. C2C12 myotubes treated with SRT1720 maintained myotube diameter, prevented loss of sirt1 expression, and attenuated mitochondrial superoxide production. Our data provides evidence that NA may be beneficial in combating cancer cachexia by maintaining sirt1 expression and decreasing mitochondrial superoxide production.
Collapse
MESH Headings
- Animals
- Cachexia/etiology
- Cachexia/metabolism
- Cachexia/pathology
- Cachexia/prevention & control
- Sirtuin 1/metabolism
- Sirtuin 1/genetics
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Mice
- Oxidative Stress/drug effects
- Mice, Inbred C57BL
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/complications
- Male
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/pathology
- Cell Line
- Niacin/pharmacology
- Mitochondria/metabolism
- Mitochondria/drug effects
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Brian A. Hain
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Penn State Cancer InstitutePenn State College of MedicineHersheyPennsylvaniaUSA
| | - Scot R. Kimball
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - David L. Waning
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Penn State Cancer InstitutePenn State College of MedicineHersheyPennsylvaniaUSA
| |
Collapse
|
9
|
Li Y, Kong X, Chu X, Fu H, Feng X, Zhao C, Deng Y, Ge J. Targeting NAD Metabolism: Rational Design, Synthesis and In Vitro Evaluation of NAMPT/PARP1 Dual-Target Inhibitors as Anti-Breast Cancer Agents. Molecules 2024; 29:2836. [PMID: 38930900 PMCID: PMC11206297 DOI: 10.3390/molecules29122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The malignancy of breast cancer poses a global challenge, with existing treatments often falling short of desired efficacy. Extensive research has underscored the effectiveness of targeting the metabolism of nicotinamide adenine dinucleotide (NAD), a pivotal molecule crucial for cancer cell survival and growth, as a promising anticancer strategy. Within mammalian cells, sustaining optimal NAD concentrations relies on two key enzymes, namely nicotinamide phosphoribosyltransferase (NAMPT) and poly(ADP-ribose) polymer 1 (PARP1). Recent studies have accentuated the potential benefits of combining NAMPT inhibitors and PARP1 inhibitors to enhance therapeutic outcomes, particularly in breast cancer. In this study, we designed and synthesized eleven novel NAMPT/PARP1 dual-target inhibitors. Among them, compound DDY02 exhibited acceptable inhibitory activities against both NAMPT and PARP1, with IC50 values of 0.01 and 0.05 µM, respectively. Moreover, in vitro evaluations revealed that treatment with DDY02 resulted in proliferation inhibition, NAD depletion, DNA damage, apoptosis, and migration inhibition in MDA-MB-468 cells. These results posit DDY02, by targeting NAD metabolism through inhibiting both NAMPT and PARP1, as a promising lead compound for the development of breast cancer therapy.
Collapse
Affiliation(s)
- Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianxiu Kong
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinhong Chu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchi Feng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanru Deng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
10
|
Amaro F, Carvalho M, Bastos MDL, Guedes de Pinho P, Pinto J. Metabolomics Reveals Tyrosine Kinase Inhibitor Resistance-Associated Metabolic Events in Human Metastatic Renal Cancer Cells. Int J Mol Sci 2024; 25:6328. [PMID: 38928035 PMCID: PMC11204329 DOI: 10.3390/ijms25126328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The development of resistance to tyrosine kinase inhibitors (TKIs) is a major cause of treatment failure in metastatic renal cell carcinoma (mRCC). A deeper understanding of the metabolic mechanisms associated with TKI resistance is critical for refining therapeutic strategies. In this study, we established resistance to sunitinib and pazopanib by exposing a parental Caki-1 cell line to increasing concentrations of sunitinib and pazopanib. The intracellular and extracellular metabolome of sunitinib- and pazopanib-resistant mRCC cells were investigated using a nuclear magnetic resonance (NMR)-based metabolomics approach. Data analysis included multivariate and univariate methods, as well as pathway and network analyses. Distinct metabolic signatures in sunitinib- and pazopanib-resistant RCC cells were found for the first time in this study. A common metabolic reprogramming pattern was observed in amino acid, glycerophospholipid, and nicotinate and nicotinamide metabolism. Sunitinib-resistant cells exhibited marked alterations in metabolites involved in antioxidant defence mechanisms, while pazopanib-resistant cells showed alterations in metabolites associated with energy pathways. Sunitinib-resistant RCC cells demonstrated an increased ability to proliferate, whereas pazopanib-resistant cells appeared to restructure their energy metabolism and undergo alterations in pathways associated with cell death. These findings provide potential targets for novel therapeutic strategies to overcome TKI resistance in mRCC through metabolic regulation.
Collapse
Affiliation(s)
- Filipa Amaro
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- RISE-UFP, Health Research Network, Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Matteucci F, Ferrati M, Spinozzi E, Piergentili A, Del Bello F, Giorgioni G, Sorci L, Petrelli R, Cappellacci L. Synthesis, Biological, and Computational Evaluations of Conformationally Restricted NAD-Mimics as Discriminant Inhibitors of Human NMN-Adenylyltransferase Isozymes. Pharmaceuticals (Basel) 2024; 17:739. [PMID: 38931406 PMCID: PMC11207052 DOI: 10.3390/ph17060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) cofactor metabolism plays a significant role in cancer development. Tumor cells have an increased demand for NAD and ATP to support rapid growth and proliferation. Limiting the amount of available NAD by targeting critical NAD biosynthesis enzymes has emerged as a promising anticancer therapeutic approach. In mammals, the enzyme nicotinamide/nicotinic acid adenylyltransferase (NMNAT) catalyzes a crucial downstream reaction for all known NAD synthesis routes. Novel nicotinamide/nicotinic acid adenine dinucleotide (NAD/NaAD) analogues 1-4, containing a methyl group at the ribose 2'-C and 3'-C-position of the adenosine moiety, were synthesized as inhibitors of the three isoforms of human NMN-adenylyltransferase, named hNMNAT-1, hNMNAT-2, and hNMNAT-3. An NMR-based conformational analysis suggests that individual NAD-analogues (1-4) have distinct conformational preferences. Biological evaluation of dinucleotides 1-4 as inhibitors of hNMNAT isoforms revealed structural relationships between different conformations (North-anti and South-syn) and enzyme-inhibitory activity. Among the new series of NAD analogues synthesized and tested, the 2'-C-methyl-NAD analogue 1 (Ki = 15 and 21 µM towards NMN and ATP, respectively) emerged as the most potent and selective inhibitor of hNMNAT-2 reported so far. Finally, we rationalized the in vitro bioactivity and selectivity of methylated NAD analogues with in silico studies, helping to lay the groundwork for rational scaffold optimization.
Collapse
Affiliation(s)
- Federica Matteucci
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.); (A.P.); (F.D.B.); (G.G.); (L.C.)
| | - Marta Ferrati
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.); (A.P.); (F.D.B.); (G.G.); (L.C.)
| | - Eleonora Spinozzi
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.); (A.P.); (F.D.B.); (G.G.); (L.C.)
| | - Alessia Piergentili
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.); (A.P.); (F.D.B.); (G.G.); (L.C.)
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.); (A.P.); (F.D.B.); (G.G.); (L.C.)
| | - Gianfabio Giorgioni
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.); (A.P.); (F.D.B.); (G.G.); (L.C.)
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Polytechnic University of Marche, 60131 Ancona, Italy
| | - Riccardo Petrelli
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.); (A.P.); (F.D.B.); (G.G.); (L.C.)
| | - Loredana Cappellacci
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.); (A.P.); (F.D.B.); (G.G.); (L.C.)
| |
Collapse
|
12
|
Vincent AE, Chen C, Gomes TB, Di Leo V, Laalo T, Pabis K, Capaldi R, Marusich MF, McDonald D, Filby A, Fuller A, Lehmann Urban D, Zierz S, Deschauer M, Turnbull D, Reeve AK, Lawless C. A stagewise response to mitochondrial dysfunction in mitochondrial DNA maintenance disorders. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167131. [PMID: 38521420 DOI: 10.1016/j.bbadis.2024.167131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Mitochondrial DNA (mtDNA) deletions which clonally expand in skeletal muscle of patients with mtDNA maintenance disorders, impair mitochondrial oxidative phosphorylation dysfunction. Previously we have shown that these mtDNA deletions arise and accumulate in perinuclear mitochondria causing localised mitochondrial dysfunction before spreading through the muscle fibre. We believe that mito-nuclear signalling is a key contributor in the accumulation and spread of mtDNA deletions, and that knowledge of how muscle fibres respond to mitochondrial dysfunction is key to our understanding of disease mechanisms. To understand the contribution of mito-nuclear signalling to the spread of mitochondrial dysfunction, we use imaging mass cytometry. We characterise the levels of mitochondrial Oxidative Phosphorylation proteins alongside a mitochondrial mass marker, in a cohort of patients with mtDNA maintenance disorders. Our expanded panel included protein markers of key signalling pathways, allowing us to investigate cellular responses to different combinations of oxidative phosphorylation dysfunction and ragged red fibres. We find combined Complex I and IV deficiency to be most common. Interestingly, in fibres deficient for one or more complexes, the remaining complexes are often upregulated beyond the increase of mitochondrial mass typically observed in ragged red fibres. We further find that oxidative phosphorylation deficient fibres exhibit an increase in the abundance of proteins involved in proteostasis, e.g. HSP60 and LONP1, and regulation of mitochondrial metabolism (including oxidative phosphorylation and proteolysis, e.g. PHB1). Our analysis suggests that the cellular response to mitochondrial dysfunction changes depending on the combination of deficient oxidative phosphorylation complexes in each fibre.
Collapse
Affiliation(s)
- Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK; NIHR Biomedical Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle, UK; John Walton Muscular Dystrophy Research Centre, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| | - Chun Chen
- Wellcome Centre for Mitochondrial Research, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Tiago Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK; NIHR Biomedical Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Tuomas Laalo
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kamil Pabis
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | | | | | - David McDonald
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Andrew Filby
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Andrew Fuller
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | | | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Marcus Deschauer
- Department of Neurology, Technical University Munich, Munich, Germany
| | - Doug Turnbull
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK; NIHR Biomedical Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
13
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
14
|
Vorderbruggen M, Velázquez-Martínez CA, Natarajan A, Karpf AR. PROTACs in Ovarian Cancer: Current Advancements and Future Perspectives. Int J Mol Sci 2024; 25:5067. [PMID: 38791105 PMCID: PMC11121112 DOI: 10.3390/ijms25105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Ovarian cancer is the deadliest gynecologic malignancy. The majority of patients diagnosed with advanced ovarian cancer will relapse, at which point additional therapies can be administered but, for the most part, these are not curative. As such, a need exists for the development of novel therapeutic options for ovarian cancer patients. Research in the field of targeted protein degradation (TPD) through the use of proteolysis-targeting chimeras (PROTACs) has significantly increased in recent years. The ability of PROTACs to target proteins of interest (POI) for degradation, overcoming limitations such as the incomplete inhibition of POI function and the development of resistance seen with other inhibitors, is of particular interest in cancer research, including ovarian cancer research. This review provides a synopsis of PROTACs tested in ovarian cancer models and highlights PROTACs characterized in other types of cancers with potential high utility in ovarian cancer. Finally, we discuss methods that will help to enable the selective delivery of PROTACs to ovarian cancer and improve the pharmacodynamic properties of these agents.
Collapse
Affiliation(s)
- Makenzie Vorderbruggen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (M.V.); (A.N.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | - Amarnath Natarajan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (M.V.); (A.N.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Adam R. Karpf
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (M.V.); (A.N.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| |
Collapse
|
15
|
Cheng J, Zhang J, He S, Li M, Dong G, Sheng C. Photoswitchable PROTACs for Reversible and Spatiotemporal Regulation of NAMPT and NAD . Angew Chem Int Ed Engl 2024; 63:e202315997. [PMID: 38282119 DOI: 10.1002/anie.202315997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme with diverse biological functions in DNA synthesis. Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme involved in NAD+ biosynthesis in mammals. We developed the first chemical tool for optical control of NAMPT and NAD+ in biological systems using photoswitchable proteolysis-targeting chimeras (PS-PROTACs). An NAMPT activator and dimethylpyrazolazobenzene photoswitch were used to design highly efficient PS-PROTACs, enabling up- and down-reversible regulation of NAMPT and NAD+ in a light-dependent manner and reducing the toxicity associated with inhibitor-based PS-PROTACs. PS-PROTAC was activated under 620 nm irradiation, realizing in vivo optical manipulation of antitumor activity, NAMPT, and NAD+ .
Collapse
Affiliation(s)
- Junfei Cheng
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
- Nautical Medicine Experimental Teaching Demonstration Center of Educational Institutions, Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Jing Zhang
- Department of Pathology, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guoqiang Dong
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Chunquan Sheng
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| |
Collapse
|
16
|
Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD + Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci 2024; 25:2092. [PMID: 38396769 PMCID: PMC10889166 DOI: 10.3390/ijms25042092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
17
|
Alizadehasl A, Alavi MS, Boudagh S, Alavi MS, Mohebi S, Aliabadi L, Akbarian M, Ahmadi P, Mannarino MR, Sahebkar A. Lipid-lowering drugs and cancer: an updated perspective. Pharmacol Rep 2024; 76:1-24. [PMID: 38015371 DOI: 10.1007/s43440-023-00553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023]
Abstract
Statins and non-statin medications used for the management of dyslipidemia have been shown to possess antitumor properties. Since the use of these drugs has steadily increased over the past decades, more knowledge is required about their relationship with cancer. Lipid-lowering agents are heterogeneous compounds; therefore, it remains to be revealed whether anticancer potential is a class effect or related to them all. Here, we reviewed the literature on the influence of lipid-lowering medications on various types of cancer during development or metastasis. We also elaborated on the underlying mechanisms associated with the anticancer effects of antihyperlipidemic agents by linking the reported in vivo and in vitro studies.
Collapse
Affiliation(s)
- Azin Alizadehasl
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Alavi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Boudagh
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Mohebi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Aliabadi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Akbarian
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Ahmadi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Tarasiuk O, Molteni L, Malacrida A, Nicolini G. The Role of NMNAT2/SARM1 in Neuropathy Development. BIOLOGY 2024; 13:61. [PMID: 38275737 PMCID: PMC10813049 DOI: 10.3390/biology13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) commonly arises as a side effect of diverse cancer chemotherapy treatments. This condition presents symptoms such as numbness, tingling, and altered sensation in patients, often accompanied by neuropathic pain. Pathologically, CIPN is characterized by an intensive "dying-back" axonopathy, starting at the intra-epidermal sensory innervations and advancing retrogradely. The lack of comprehensive understanding regarding its underlying mechanisms explains the absence of effective treatments for CIPN. Recent investigations into axon degeneration mechanisms have pinpointed nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha and TIR motif-containing 1 protein (SARM1) as pivotal mediators of injury-induced axonal degeneration. In this review, we aim to explore various studies shedding light on the interplay between NMNAT2 and SARM1 proteins and their roles in the progression of CIPN.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (A.M.); (G.N.)
| | | | | | | |
Collapse
|
19
|
Conforti I, Benzi A, Caffa I, Bruzzone S, Nencioni A, Marra A. New Analogues of the Nicotinamide Phosphoribosyltransferase Inhibitor FK866 as Potential Anti-Pancreatic Cancer Agents. Med Chem 2024; 20:694-708. [PMID: 38333979 DOI: 10.2174/0115734064289584240121142405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND During the past two decades, many nicotinamide phosphoribosyltransferase (NAMPT) inhibitors were prepared and tested because this enzyme is overexpressed in pancreatic cancer. Although FK866 is a well-known, strong NAMPT inhibitor, it suffers severe drawbacks. OBJECTIVE Our work aimed to synthesize efficient NAMPT inhibitors featuring better pharmacokinetic properties than the pyridine-containing FK866. To this aim, the new anticancer agents were based on benzene, pyridazine, or benzothiazole moieties as a cap group instead of the pyridine unit found in FK866 and other NAMPT inhibitors. METHODS The new compounds, prepared exploiting standard heterocycle chemistry and coupling reactions (e.g., formation of amides, ureas, and cyanoguanidines, copper-mediated azide-alkyne cycloaddition), have been fully characterized using NMR and HRMS analyses. Their activity has been evaluated using cytotoxicity and intracellular NAD depletion assays in the human pancreatic cancer cell line MiaPaCa-2. RESULTS Among the 14 products obtained, compound 28, bearing a pyridazine unit as the cap group and a thiophene moiety as the tail group, showed 6.7 nanomolar inhibition activity in the intracellular NAD depletion assay and 43 nanomolar inhibition in the MiaPaCa-2 cells cytotoxicity assay, comparable to that observed for FK866. CONCLUSION The positive results observed for some newly synthesized molecules, particularly those carrying a thiophene unit as a tail group, indicate that they could act as in vivo anti-pancreatic cancer agents.
Collapse
Affiliation(s)
- Irene Conforti
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293 Montpellier, France
| | - Andrea Benzi
- Dipartimento di Medicina Sperimentale-DIMES, Scuola di Scienze Mediche e Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Irene Caffa
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Viale Benedetto XV 6, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Santina Bruzzone
- Dipartimento di Medicina Sperimentale-DIMES, Scuola di Scienze Mediche e Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 1, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessio Nencioni
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Viale Benedetto XV 6, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
20
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
21
|
Song J, Zou G, Zhao Z, Zhu Y, Xue J, Ao L, Sun H, Hao H, Zhang B, Xu X. Discovery of proqodine A derivatives with antitumor activity targeting NAD(P)H: quinone oxidoreductase 1 and nicotinamide phosphoribosyltransferase. Chin J Nat Med 2024; 22:75-88. [PMID: 38278561 DOI: 10.1016/s1875-5364(24)60564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Indexed: 01/28/2024]
Abstract
NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.
Collapse
Affiliation(s)
- Jiangzhou Song
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guiqing Zou
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhou Zhao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ya Zhu
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Jiayu Xue
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Lanjia Ao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyong Sun
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Cannon-Albright LA, Stevens J, Teerlink CC, Facelli JC, Allen-Brady K, Welm AL. A Rare Variant in MDH2 (rs111879470) Is Associated with Predisposition to Recurrent Breast Cancer in an Extended High-Risk Pedigree. Cancers (Basel) 2023; 15:5851. [PMID: 38136396 PMCID: PMC10741671 DOI: 10.3390/cancers15245851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
A significant fraction of breast cancer recurs, with lethal outcome, but specific genetic variants responsible have yet to be identified. Five cousin pairs with recurrent breast cancer from pedigrees with a statistical excess of recurrent breast cancer were sequenced to identify rare, shared candidate predisposition variants. The candidates were tested for association with breast cancer risk with UKBiobank data. Additional breast cancer cases were assayed for a subset of candidate variants to test for co-segregation. Three-dimensional protein structure prediction methods were used to investigate how the mutation under consideration is predicted to change structural and electrostatic properties in the mutated protein. One hundred and eighty-one rare candidate predisposition variants were shared in at least one cousin pair from a high-risk pedigree. A rare variant in MDH2 was found to segregate with breast-cancer-affected relatives in one extended pedigree. MDH2 is an estrogen-stimulated gene encoding the protein malate dehydrogenase, which catalyzes the reversible oxidation of malate to oxaloacetate. The molecular simulation results strongly suggest that the mutation changes the NAD+ binding pocket electrostatics of MDH2. This small sequencing study, using a powerful approach based on recurrent breast cancer cases from high-risk pedigrees, identified a set of strong candidate variants for inherited predisposition for breast cancer recurrence, including MDH2, which should be pursued in other resources.
Collapse
Affiliation(s)
- Lisa A. Cannon-Albright
- Genetic Epidemiology Group, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA (C.C.T.); (K.A.-B.)
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA;
| | - Jeff Stevens
- Genetic Epidemiology Group, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA (C.C.T.); (K.A.-B.)
| | - Craig C. Teerlink
- Genetic Epidemiology Group, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA (C.C.T.); (K.A.-B.)
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| | - Julio C. Facelli
- Department of Biomedical Informatics and Utah Clinical and Translational Science Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Kristina Allen-Brady
- Genetic Epidemiology Group, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA (C.C.T.); (K.A.-B.)
| | - Alana L. Welm
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA;
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
23
|
Yousf S, Malla JA, Sardesai DM, Sharma S, Talukdar P, Chugh J. Mapping metabolic perturbations induced by glutathione activatable synthetic ion channels in human breast cancer cells. J Pharm Biomed Anal 2023; 235:115605. [PMID: 37531734 DOI: 10.1016/j.jpba.2023.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Ion channels and transporters play key roles in various biological processes, including cell proliferation and programmed cell death. Recently, we reported that 2,4-dinitrobenzene-sulfonyl-protected N1,N3-dihexy-2-hydroxyisophthalamide (1) forms ion channels upon activation by glutathione (GSH) and results in the induction of apoptosis by depleting the intracellular GSH reservoir in cancer cells. However, the detailed molecular events leading to the induction of apoptosis by these synthetic transport systems in cancer cells still need to be uncovered. Along these lines, we investigated the alterations in cellular metabolites and the associated metabolic pathways by performing untargeted global metabolic profiling of breast cancer cells - MCF-7 - using 1H NMR-based metabolomics. The evaluation of spectral profiles from MCF-7 cells exposed to 1 and their comparison with those corresponding to untreated (control) cells identified 14 significantly perturbed signature metabolites. These metabolites belonged mostly to antioxidant defence, energy metabolism, amino acid biosynthesis, and lipid metabolism pathways and included GSH, o-phosphocholine, malate, and aspartate, to name a few. These results would help us gain deeper insights into the molecular mechanism underlying 1-mediated cytotoxicity of MCF-7 cells and eventually help identify potential novel therapeutic targets for more effective cancer management.
Collapse
Affiliation(s)
- Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Javid A Malla
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Devika M Sardesai
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
24
|
Sridharan PS, Miller E, Pieper AA. Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1616-1628. [PMID: 37651054 PMCID: PMC10684439 DOI: 10.1007/s13311-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading worldwide cause of disability, and there are currently no medicines that prevent, reduce, or reverse acute or chronic neurodegeneration in TBI patients. Here, we review the target-agnostic discovery of nicotinamide adenine dinucleotide (NAD+)/NADH-stabilizing P7C3 compounds through a phenotypic screen in mice and describe how P7C3 compounds have been applied to advance understanding of the pathophysiology and potential treatment of TBI. We summarize how P7C3 compounds have been shown across multiple laboratories to mitigate disease progression safely and effectively in a broad range of preclinical models of disease related to impaired NAD+/NADH metabolism, including acute and chronic TBI, and note the reported safety and neuroprotective efficacy of P7C3 compounds in nonhuman primates. We also describe how P7C3 compounds facilitated the recent first demonstration that chronic neurodegeneration 1 year after TBI in mice, the equivalent of many decades in people, can be reversed to restore normal neuropsychiatric function. We additionally review how P7C3 compounds have facilitated discovery of new pathophysiologic mechanisms of neurodegeneration after TBI. This includes the role of rapid TBI-induced tau acetylation that drives axonal degeneration, and the discovery of brain-derived acetylated tau as the first blood-based biomarker of neurodegeneration after TBI that directly correlates with the abundance of a therapeutic target in the brain. We additionally review the identification of TBI-induced tau acetylation as a potential mechanistic link between TBI and increased risk of Alzheimer's disease. Lastly, we summarize historical accounts of other successful phenotypic-based drug discoveries that advanced medical care without prior recognition of the specific molecular target needed to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA.
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
25
|
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, Samayoa J. Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:611-641. [PMID: 37842241 PMCID: PMC10571065 DOI: 10.20517/cdr.2023.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive resistance to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kyra Laubach
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Tolga Turan
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Rebecca Mathew
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | | | | | - Josue Samayoa
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| |
Collapse
|
26
|
Yoon CS, Nifantiev NE, Yashunsky DV, Kim HK, Han J. Neopetroside-B alleviates doxorubicin-induced cardiotoxicity via mitochondrial protection. Biomed Pharmacother 2023; 165:115232. [PMID: 37523986 DOI: 10.1016/j.biopha.2023.115232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
Doxorubicin, a member of the anthracycline family, is a widely prescribed anticancer chemotherapy drug. Unfortunately, cumulative doses of doxorubicin can cause mitochondrial dysfunction, leading to acute or chronic cardiotoxicity. This study demonstrated that Neopetroside-B (NPS-B) protects cardiomyocytes in the presence of doxorubicin. NPS-B improved mitochondrial function in cardiomyocytes by increasing ATP production and oxygen consumption rates. On the other hand, NPS-B negatively influenced cancer cell lines by increasing reactive oxygen species. We analyzed NPS-B-influenced metabolites (VIP > 1.0; AUC>0.7; p < 0.05) and proteins (FC > 2.0) and constructed metabolite-protein enrichment, which showed that NPS-B affected uracil metabolism and NAD-binding proteins (e.g., aldehyde dehydrogenase and glutathione reductase) in cardiomyocytes. However, for the cancer cells, NPS-B decreased the NAD+/NADH balance, impairing cell viability. In a xenograft mouse model treated with doxorubicin, NPS-B reduced cardiac fibrosis and improved cardiac function. NPS-B may be a beneficial intervention to reducing doxorubicin-induced cardiotoxicity with anticancer effects.
Collapse
Affiliation(s)
- Chang Shin Yoon
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Department of Physiology, College of Medicine, Inje University, Busan 47397, the Republic of Korea
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Department of Physiology, College of Medicine, Inje University, Busan 47397, the Republic of Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Department of Physiology, College of Medicine, Inje University, Busan 47397, the Republic of Korea.
| |
Collapse
|
27
|
Peters JP, Brahms A, Janicaud V, Anikeeva M, Peschke E, Ellermann F, Ferrari A, Hellmold D, Held-Feindt J, Kim NM, Meiser J, Aden K, Herges R, Hövener JB, Pravdivtsev AN. Nitrogen-15 dynamic nuclear polarization of nicotinamide derivatives in biocompatible solutions. SCIENCE ADVANCES 2023; 9:eadd3643. [PMID: 37611105 PMCID: PMC10446501 DOI: 10.1126/sciadv.add3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Dissolution dynamic nuclear polarization (dDNP) increases the sensitivity of magnetic resonance imaging by more than 10,000 times, enabling in vivo metabolic imaging to be performed noninvasively in real time. Here, we are developing a group of dDNP polarized tracers based on nicotinamide (NAM). We synthesized 1-15N-NAM and 1-15N nicotinic acid and hyperpolarized them with dDNP, reaching (13.0 ± 1.9)% 15N polarization. We found that the lifetime of hyperpolarized 1-15N-NAM is strongly field- and pH-dependent, with T1 being as long as 41 s at a pH of 12 and 1 T while as short as a few seconds at neutral pH and fields below 1 T. The remarkably short 1-15N lifetime at low magnetic fields and neutral pH drove us to establish a unique pH neutralization procedure. Using 15N dDNP and an inexpensive rodent imaging probe designed in-house, we acquired a 15N MRI of 1-15N-NAM (previously hyperpolarized for more than an hour) in less than 1 s.
Collapse
Affiliation(s)
- Josh P. Peters
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Vivian Janicaud
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Maria Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Na-mi Kim
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, 1210 Luxembourg, Luxembourg
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
- Department of Internal Medicine I, University Medical Center Kiel, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| |
Collapse
|
28
|
Tang H, Wang L, Wang T, Yang J, Zheng S, Tong J, Jiang S, Zhang X, Zhang K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur J Med Chem 2023; 258:115607. [PMID: 37413882 DOI: 10.1016/j.ejmech.2023.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.
Collapse
Affiliation(s)
- He Tang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Tong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Gao H, Sun L, Ni D, Zhang L, Wang H, Bu W, Li J, Shen Q, Wang Y, Liu Y, Zheng X. Regulating electron transportation by tungsten oxide nanocapacitors for enhanced radiation therapy. J Nanobiotechnology 2023; 21:205. [PMID: 37386437 DOI: 10.1186/s12951-023-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
In the process of radiation therapy (RT), the cytotoxic effects of excited electrons generated from water radiolysis tend to be underestimated due to multiple biochemical factors, particularly the recombination between electrons and hydroxyl radicals (·OH). To take better advantage of radiolytic electrons, we constructed WO3 nanocapacitors that reversibly charge and discharge electrons to regulate electron transportation and utilization. During radiolysis, WO3 nanocapacitors could contain the generated electrons that block electron-·OH recombination and contribute to the yield of ·OH at a high level. These contained electrons could be discharged from WO3 nanocapacitors after radiolysis, resulting in the consumption of cytosolic NAD+ and impairment of NAD+-dependent DNA repair. Overall, this strategy of nanocapacitor-based radiosensitization improves the radiotherapeutic effects by increasing the utilization of radiolytic electrons and ·OH, warranting further validation in multiple tumour models and preclinical experiments.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Li Sun
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Libo Zhang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenbo Bu
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jinjin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qianwen Shen
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Ya Wang
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yanyan Liu
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
30
|
Panizza E, Regalado BD, Wang F, Nakano I, Vacanti NM, Cerione RA, Antonyak MA. Proteomic analysis reveals microvesicles containing NAMPT as mediators of radioresistance in glioma. Life Sci Alliance 2023; 6:e202201680. [PMID: 37037593 PMCID: PMC10087103 DOI: 10.26508/lsa.202201680] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Tumor-initiating cells contained within the aggressive brain tumor glioma (glioma stem cells, GSCs) promote radioresistance and disease recurrence. However, mechanisms of resistance are not well understood. Herein, we show that the proteome-level regulation occurring upon radiation treatment of several patient-derived GSC lines predicts their resistance status, whereas glioma transcriptional subtypes do not. We identify a mechanism of radioresistance mediated by the transfer of the metabolic enzyme NAMPT to radiosensitive cells through microvesicles (NAMPT-high MVs) shed by resistant GSCs. NAMPT-high MVs rescue the proliferation of radiosensitive GSCs and fibroblasts upon irradiation, and upon treatment with a radiomimetic drug or low serum, and increase intracellular NAD(H) levels. Finally, we show that the presence of NAMPT within the MVs and its enzymatic activity in recipient cells are necessary to mediate these effects. Collectively, we demonstrate that the proteome of GSCs provides unique information as it predicts the ability of glioma to resist radiation treatment. Furthermore, we establish NAMPT transfer via MVs as a mechanism for rescuing the proliferation of radiosensitive cells upon irradiation.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | | - Fangyu Wang
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Medical Institute Hokuto Hospital, Hokkaido, Japan
| | | | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Benedetti E, Liu EM, Tang C, Kuo F, Buyukozkan M, Park T, Park J, Correa F, Hakimi AA, Intlekofer AM, Krumsiek J, Reznik E. A multimodal atlas of tumour metabolism reveals the architecture of gene-metabolite covariation. Nat Metab 2023; 5:1029-1044. [PMID: 37337120 PMCID: PMC10290959 DOI: 10.1038/s42255-023-00817-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023]
Abstract
Tumour metabolism is controlled by coordinated changes in metabolite abundance and gene expression, but simultaneous quantification of metabolites and transcripts in primary tissue is rare. To overcome this limitation and to study gene-metabolite covariation in cancer, we assemble the Cancer Atlas of Metabolic Profiles of metabolomic and transcriptomic data from 988 tumour and control specimens spanning 11 cancer types in published and newly generated datasets. Meta-analysis of the Cancer Atlas of Metabolic Profiles reveals two classes of gene-metabolite covariation that transcend cancer types. The first corresponds to gene-metabolite pairs engaged in direct enzyme-substrate interactions, identifying putative genes controlling metabolite pool sizes. A second class of gene-metabolite covariation represents a small number of hub metabolites, including quinolinate and nicotinamide adenine dinucleotide, which correlate to many genes specifically expressed in immune cell populations. These results provide evidence that gene-metabolite covariation in cellularly heterogeneous tissue arises, in part, from both mechanistic interactions between genes and metabolites, and from remodelling of the bulk metabolome in specific immune microenvironments.
Collapse
Affiliation(s)
- Elisa Benedetti
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eric Minwei Liu
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cerise Tang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mustafa Buyukozkan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Tricia Park
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinsung Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fabian Correa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew M Intlekofer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Ed Reznik
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
32
|
Wang K, Lu H, Wang X, Liu Q, Hu J, Liu Y, Jin M, Kong D. Simultaneous suppression of PKM2 and PHGDH elicits synergistic anti-cancer effect in NSCLC. Front Pharmacol 2023; 14:1200538. [PMID: 37284309 PMCID: PMC10239820 DOI: 10.3389/fphar.2023.1200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Metabolic reprogramming is a hallmark of human cancer. Cancer cells exhibit enhanced glycolysis, which allows glycolytic intermediates to be diverted into several other biosynthetic pathways, such as serine synthesis. Here, we explored the anti-cancer effects of the pyruvate kinase (PK) M2 inhibitor PKM2-IN-1 alone or in combination with the phosphoglycerate dehydrogenase (PHGDH) inhibitor NCT-503 in human NSCLC A549 cells in vitro and in vivo. PKM2-IN-1 inhibited proliferation and induced cell cycle arrest and apoptosis, with increased glycolytic intermediate 3-phosphoglycerate (3-PG) level and PHGDH expression. The combination of PKM2-IN-1 and NCT-503 further suppressed cancer cell proliferation and induced G2/M phase arrest, accompanied by the reduction of ATP, activation of AMPK and inhibition of its downstream mTOR and p70S6K, upregulation of p53 and p21, as well as downregulation of cyclin B1 and cdc2. In addition, combined treatment triggered ROS-dependent apoptosis by affecting the intrinsic Bcl-2/caspase-3/PARP pathway. Moreover, the combination suppressed glucose transporter type 1 (GLUT1) expression. In vivo, co-administration of PKM2-IN-1 and NCT-503 significantly inhibited A549 tumor growth. Taken together, PKM2-IN-1 in combination with NCT-503 exhibited remarkable anti-cancer effects through induction of G2/M cell cycle arrest and apoptosis, in which the metabolic stress induced ATP reduction and ROS augmented DNA damage might be involved. These results suggest that the combination of PKM2-IN-1 and NCT-503 might be a potential strategy for the therapy of lung cancer.
Collapse
Affiliation(s)
- Kaixuan Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hao Lu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xinmiao Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Qingxia Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Jinxia Hu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
- Institute of Otolaryngology of Tianjin, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| |
Collapse
|
33
|
Conforti I, Benzi A, Caffa I, Bruzzone S, Nencioni A, Marra A. Iminosugar-Based Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors as Potential Anti-Pancreatic Cancer Agents. Pharmaceutics 2023; 15:pharmaceutics15051472. [PMID: 37242714 DOI: 10.3390/pharmaceutics15051472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The nicotinamide phosphoribosyltransferase (NAMPT) is considered a very promising therapeutic target because it is overexpressed in pancreatic cancer. Although many inhibitors have been prepared and tested, clinical trials have shown that NAMPT inhibition may result in severe haematological toxicity. Therefore, the development of conceptually new inhibitors is an important and challenging task. We synthesized ten β-d-iminoribofuranosides bearing various heterocycle-based chains carbon-linked to the anomeric position starting from non-carbohydrate derivatives. They were then submitted to NAMPT inhibition assays, as well as to pancreatic tumor cells viability and intracellular NAD+ depletion evaluation. The biological activity of the compounds was compared to that of the corresponding analogues lacking the carbohydrate unit to assess, for the first time, the contribution of the iminosugar moiety to the properties of these potential antitumor agents.
Collapse
Affiliation(s)
- Irene Conforti
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Andrea Benzi
- Dipartimento di Medicina Sperimentale-DIMES, Scuola di Scienze Mediche e Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Irene Caffa
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Viale Benedetto XV 6, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Santina Bruzzone
- Dipartimento di Medicina Sperimentale-DIMES, Scuola di Scienze Mediche e Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 1, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessio Nencioni
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Viale Benedetto XV 6, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
34
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
35
|
Nicotinamide Adenine Dinucleotide Precursor Suppresses Hepatocellular Cancer Progression in Mice. Nutrients 2023; 15:nu15061447. [PMID: 36986177 PMCID: PMC10055624 DOI: 10.3390/nu15061447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Targeting Nicotinamide adenine dinucleotide (NAD) metabolism has emerged as a promising anti-cancer strategy; we aimed to explore the health benefits of boosting NAD levels with nicotinamide riboside (NR) on hepatocellular carcinoma (HCC). We established three in vivo tumor models, including subcutaneous transplantation tumor model in both Balb/c nude mice (xenograft), C57BL/6J mice (allograft), and hematogenous metastatic neoplasm in nude mice. NR (400 mg/kg bw) was supplied daily in gavage. In-situ tumor growth or noninvasive bioluminescence were measured to evaluate the effect of NR on the HCC process. HepG2 cells were treated with transforming growth factor-β (TGF-β) in the absence/presence of NR in vitro. We found that NR supplementation alleviated malignancy-induced weight loss and metastasis to lung in nude mice in both subcutaneous xenograft and hematogenous metastasis models. NR supplementation decreased metastasis to the bone and liver in the hematogenous metastasis model. NR supplementation also significantly decreased the size of allografted tumors and extended the survival time in C57BL/6J mice. In vitro experiments showed that NR intervention inhibited the migration and invasion of HepG2 cells triggered by TGF-β. In summary, our results supply evidence that boosting NAD levels by supplementing NR alleviates HCC progression and metastasis, which may serve as an effective treatment for the suppression of HCC progression.
Collapse
|
36
|
Pant K, Richard S, Peixoto E, Yin J, Seelig DM, Carotenuto P, Salati M, Franco B, Roberts LR, Gradilone SA. The NAMPT Inhibitor FK866 in Combination with Cisplatin Reduces Cholangiocarcinoma Cells Growth. Cells 2023; 12:cells12050775. [PMID: 36899911 PMCID: PMC10001024 DOI: 10.3390/cells12050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
It is well established that Cholangiocarcioma (CCA) drug resistance plays a crucial role in the spread and survival of cancer cells. The major enzyme in the nicotinamide-adenine dinucleotide (NAD+)-mediated pathways, nicotinamide phosphoribosyltransferase (NAMPT), is essential for cancer cell survival and metastasis. Previous research has shown that the targeted NAMPT inhibitor FK866 reduces cancer cell viability and triggers cancer cell death; however, whether FK866 affects CCA cell survival has not been addressed before. We show herein that NAMPT is expressed in CCA cells, and FK866 suppresses the capacity of CCA cells to grow in a dose-dependent manner. Furthermore, by preventing NAMPT activity, FK866 significantly reduced the amount of NAD+ and adenosine 5'-triphosphate (ATP) in HuCCT1, KMCH, and EGI cells. The present study's findings further show that FK866 causes changes in mitochondrial metabolism in CCA cells. Additionally, FK866 enhances the anticancer effects of cisplatin in vitro. Taken together, the results of the current study suggest that the NAMPT/NAD+ pathway may be a possible therapeutic target for CCA, and FK866 may be a useful medication targeting CCA in combination with cisplatin.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Davis M. Seelig
- Comparative Pathology Shared Resource, Masonic Cancer Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Pietro Carotenuto
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Massimiliano Salati
- Medical Oncology Unit, University Hospital of Modena, 41125 Modena, Italy
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 411250 Modena, Italy
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale, School for Advanced Studies, 80131 Naples, Italy
| | - Lewis R. Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
37
|
E. coli Secretome Metabolically Modulates MDA-MB-231 Breast Cancer Cells' Energy Metabolism. Int J Mol Sci 2023; 24:ijms24044219. [PMID: 36835626 PMCID: PMC9964955 DOI: 10.3390/ijms24044219] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer (BC) is commonly diagnosed in women. BC cells are associated with altered metabolism, which is essential to support their energetic requirements, cellular proliferation, and continuous survival. The altered metabolism of BC cells is a result of the genetic abnormalities of BC cells. Risk factors can also enhance it, including age, lifestyle, hormone disturbances, etc. Other unknown BC-promoting risk factors are under scientific investigation. One of these investigated factors is the microbiome. However, whether the breast microbiome found in the BC tissue microenvironment can impact BC cells has not been studied. We hypothesized that E. coli, part of a normal breast microbiome with more presence in BC tissue, secretes metabolic molecules that could alter BC cells' metabolism to maintain their survival. Thus, we directly examined the impact of the E. coli secretome on the metabolism of BC cells in vitro. MDA-MB-231 cells, an in vitro model of aggressive triple-negative BC cells, were treated with the E. coli secretome at different time points, followed by untargeted metabolomics analyses via liquid chromatography-mass spectrometry to identify metabolic alterations in the treated BC cell lines. MDA-MB-231 cells that were not treated were used as controls. Moreover, metabolomic analyses were performed on the E. coli secretome to profile the most significant bacterial metabolites affecting the metabolism of the treated BC cell lines. The metabolomics results revealed about 15 metabolites that potentially have indirect roles in cancer metabolism that were secreted from E. coli in the culture media of MDA-MB-231 cells. The cells treated with the E. coli secretome showed 105 dysregulated cellular metabolites compared to controls. The dysregulated cellular metabolites were involved in the metabolism of fructose and mannose, sphingolipids, amino acids, fatty acids, amino sugar, nucleotide sugar, and pyrimidine, which are vital pathways required for the pathogenesis of BC. Our findings are the first to show that the E. coli secretome modulates the BC cells' energy metabolism, highlighting insights into the possibility of altered metabolic events in BC tissue in the actual BC tissue microenvironment that are potentially induced by the local bacteria. Our study provides metabolic data that could be as a basis for future studies searching for the underlying mechanisms mediated by bacteria and their secretome to alter the metabolism of BC cells.
Collapse
|
38
|
Nicotine rebalances NAD + homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity. Nat Commun 2023; 14:900. [PMID: 36797299 PMCID: PMC9935903 DOI: 10.1038/s41467-023-36543-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Imbalances in NAD+ homeostasis have been linked to aging and various diseases. Nicotine, a metabolite of the NAD+ metabolic pathway, has been found to possess anti-inflammatory and neuroprotective properties, yet the underlying molecular mechanisms remained unknown. Here we find that, independent of nicotinic acetylcholine receptors, low-dose nicotine can restore the age-related decline of NAMPT activity through SIRT1 binding and subsequent deacetylation of NAMPT, thus increasing NAD+ synthesis. 18F-FDG PET imaging revealed that nicotine is also capable of efficiently inhibiting glucose hypermetabolism in aging male mice. Additionally, nicotine ameliorated cellular energy metabolism disorders and deferred age-related deterioration and cognitive decline by stimulating neurogenesis, inhibiting neuroinflammation, and protecting organs from oxidative stress and telomere shortening. Collectively, these findings provide evidence for a mechanism by which low-dose nicotine can activate NAD+ salvage pathways and improve age-related symptoms.
Collapse
|
39
|
Anticancer Activities of Novel Nicotinamide Phosphoribosyltransferase Inhibitors in Hematological Malignancies. Molecules 2023; 28:molecules28041897. [PMID: 36838885 PMCID: PMC9967653 DOI: 10.3390/molecules28041897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Targeting cancer cells that are highly dependent on the nicotinamide adenine dinucleotide (NAD+) metabolite is a promising therapeutic strategy. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme catalyzing NAD+ production. Despite the high efficacy of several developed NAMPT inhibitors (i.e., FK866 (APO866)) in preclinical studies, their clinical activity was proven to be limited. Here, we report the synthesis of new NAMPT Inhibitors, JJ08, FEI191 and FEI199, which exhibit a broad anticancer activity in vitro. Results show that these compounds are potent NAMPT inhibitors that deplete NAD+ and NADP(H) after 24 h of drug treatment, followed by an increase in reactive oxygen species (ROS) accumulation. The latter event leads to ATP loss and mitochondrial depolarization with induction of apoptosis and necrosis. Supplementation with exogenous NAD+ precursors or catalase (ROS scavenger) abrogates the cell death induced by the new compounds. Finally, in vivo administration of the new NAMPT inhibitors in a mouse xenograft model of human Burkitt lymphoma delays tumor growth and significantly prolongs mouse survival. The most promising results are collected with JJ08, which completely eradicates tumor growth. Collectively, our findings demonstrate the efficient anticancer activity of the new NAMPT inhibitor JJ08 and highlight a strong interest for further evaluation of this compound in hematological malignancies.
Collapse
|
40
|
Fluorescent and theranostic probes for imaging nicotinamide phosphoribosyl transferase (NAMPT). Eur J Med Chem 2023; 248:115080. [PMID: 36608458 DOI: 10.1016/j.ejmech.2022.115080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) has been regarded as an attractive target for cancer therapy. However, there is a lack of chemical tools for real-time visualization and detection of NAMPT. Herein, the first fluorescent and theranostic probes were designed for imaging NAMPT, which had dual functions of diagnosis and treatment. The designed probes possessed good affinity and environmental sensitivity to NAMPT with a turn-on mechanism and were successfully applied in fluorescence detecting and imaging of NAMPT at the level of living cells and tissue sections. They also effectively inhibited tumor cell proliferation and arrested cell cycle at the G2 phase. These fluorescent probes enabled detection and visualization of NAMPT, representing effective chemical tools for the pathological diagnosis and treatment of cancer.
Collapse
|
41
|
CD38-Induced Metabolic Dysfunction Primes Multiple Myeloma Cells for NAD +-Lowering Agents. Antioxidants (Basel) 2023; 12:antiox12020494. [PMID: 36830052 PMCID: PMC9952390 DOI: 10.3390/antiox12020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Cancer cells fuel growth and energy demands by increasing their NAD+ biosynthesis dependency, which therefore represents an exploitable vulnerability for anti-cancer strategies. CD38 is a NAD+-degrading enzyme that has become crucial for anti-MM therapies since anti-CD38 monoclonal antibodies represent the backbone for treatment of newly diagnosed and relapsed multiple myeloma patients. Nevertheless, further steps are needed to enable a full exploitation of these strategies, including deeper insights of the mechanisms by which CD38 promotes tumorigenesis and its metabolic additions that could be selectively targeted by therapeutic strategies. Here, we present evidence that CD38 upregulation produces a pervasive intracellular-NAD+ depletion, which impairs mitochondrial fitness and enhances oxidative stress; as result, genetic or pharmacologic approaches that aim to modify CD38 surface-level prime MM cells to NAD+-lowering agents. The molecular mechanism underlying this event is an alteration in mitochondrial dynamics, which decreases mitochondria efficiency and triggers energetic remodeling. Overall, we found that CD38 handling represents an innovative strategy to improve the outcomes of NAD+-lowering agents and provides the rationale for testing these very promising agents in clinical studies involving MM patients.
Collapse
|
42
|
Pospíšilová M, Kalábová H, Kuncová G. Distinguishing Healthy and Carcinoma Cell Cultures Using Fluorescence Spectra Decomposition with a Genetic-Algorithm-Based Code. BIOSENSORS 2023; 13:256. [PMID: 36832022 PMCID: PMC9954475 DOI: 10.3390/bios13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In this paper, we analysed the steady state fluorescence spectra of cell suspensions containing healthy and carcinoma fibroblast mouse cells, using a genetic-algorithm-spectra-decomposition software (GASpeD). In contrast to other deconvolution algorithms, such as polynomial or linear unmixing software, GASpeD takes into account light scatter. In cell suspensions, light scatter plays an important role as it depends on the number of cells, their size, shape, and coagulation. The measured fluorescence spectra were normalized, smoothed and deconvoluted into four peaks and background. The wavelengths of intensities' maxima of lipopigments (LR), FAD, and free/bound NAD(P)H (AF/AB) of the deconvoluted spectra matched published data. In deconvoluted spectra at pH = 7, the fluorescence intensities of the AF/AB ratio in healthy cells was always higher in comparison to carcinoma cells. In addition, the AF/AB ratio in healthy and carcinoma cells were influenced differently by changes in pH. In mixtures of healthy and carcinoma cells, AF/AB decreases when more than 13% of carcinoma cells are present. Expensive instrumentation is not required, and the software is user friendly. Due to these attributes, we hope that this study will be a first step in the development of new cancer biosensors and treatments with the use of optical fibers.
Collapse
Affiliation(s)
- Marie Pospíšilová
- Faculty of Biomedical Engineering, Czech Technical University, nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Hana Kalábová
- Faculty of Biomedical Engineering, Czech Technical University, nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Gabriela Kuncová
- Institute of Chemical Process Fundamentals of the ASCR, Rozvojova 135, 165 00 Prague, Czech Republic
- Faculty of Environment, University of Jan Evangelista Purkyne, Pasteurova 3632/15, 400 96 Usti nad Labem, Czech Republic
| |
Collapse
|
43
|
Feuz MB, Meyer-Ficca ML, Meyer RG. Beyond Pellagra-Research Models and Strategies Addressing the Enduring Clinical Relevance of NAD Deficiency in Aging and Disease. Cells 2023; 12:500. [PMID: 36766842 PMCID: PMC9913999 DOI: 10.3390/cells12030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Research into the functions of nicotinamide adenine dinucleotide (NAD) has intensified in recent years due to the insight that abnormally low levels of NAD are involved in many human pathologies including metabolic disorders, neurodegeneration, reproductive dysfunction, cancer, and aging. Consequently, the development and validation of novel NAD-boosting strategies has been of central interest, along with the development of models that accurately represent the complexity of human NAD dynamics and deficiency levels. In this review, we discuss pioneering research and show how modern researchers have long since moved past believing that pellagra is the overt and most dramatic clinical presentation of NAD deficiency. The current research is centered on common human health conditions associated with moderate, but clinically relevant, NAD deficiency. In vitro and in vivo research models that have been developed specifically to study NAD deficiency are reviewed here, along with emerging strategies to increase the intracellular NAD concentrations.
Collapse
Affiliation(s)
- Morgan B. Feuz
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- College of Veterinary Medicine, Utah State University, Logan, UT 84322, USA
| | - Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- College of Veterinary Medicine, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
44
|
Matsumoto S, Biniecka P, Bellotti A, Duchosal MA, Nahimana A. Nicotinaldehyde, a Novel Precursor of NAD Biosynthesis, Abrogates the Anti-Cancer Activity of an NAD-Lowering Agent in Leukemia. Cancers (Basel) 2023; 15:cancers15030787. [PMID: 36765744 PMCID: PMC9913462 DOI: 10.3390/cancers15030787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Targeting NAD depletion in cancer cells has emerged as an attractive therapeutic strategy for cancer treatment, based on the higher reliance of malignant vs. healthy cells on NAD to sustain their aberrant proliferation and altered metabolism. NAD depletion is exquisitely observed when NAMPT, a key enzyme for the biosynthesis of NAD, is inhibited. Growing evidence suggests that alternative NAD sources present in a tumor environment can bypass NAMPT and render its inhibition ineffective. Here, we report the identification of nicotinaldehyde as a novel precursor that can be used for NAD biosynthesis by human leukemia cells. Nicotinaldehyde supplementation replenishes the intracellular NAD level in leukemia cells treated with NAMPT inhibitor APO866 and prevents APO866-induced oxidative stress, mitochondrial dysfunction and ATP depletion. We show here that NAD biosynthesis from nicotinaldehyde depends on NAPRT and occurs via the Preiss-Handler pathway. The availability of nicotinaldehyde in a tumor environment fully blunts the antitumor activity of APO866 in vitro and in vivo. This is the first study to report the role of nicotinaldehyde in the NAD-targeted anti-cancer treatment, highlighting the importance of the tumor metabolic environment in modulating the efficacy of NAD-lowering cancer therapy.
Collapse
Affiliation(s)
- Saki Matsumoto
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Paulina Biniecka
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Axel Bellotti
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Michel A Duchosal
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
- Service of Hematology, Department of Oncology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| |
Collapse
|
45
|
Baldassarri C, Giorgioni G, Piergentili A, Quaglia W, Fontana S, Mammoli V, Minazzato G, Marangoni E, Gasparrini M, Sorci L, Raffaelli N, Cappellacci L, Petrelli R, Del Bello F. Properly Substituted Benzimidazoles as a New Promising Class of Nicotinate Phosphoribosyltransferase (NAPRT) Modulators. Pharmaceuticals (Basel) 2023; 16:189. [PMID: 37259338 PMCID: PMC9967085 DOI: 10.3390/ph16020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 09/10/2024] Open
Abstract
The prevention of nicotinamide adenine dinucleotide (NAD) biosynthesis is considered an attractive therapeutic approach against cancer, considering that tumor cells are characterized by an increased need for NAD to fuel their reprogrammed metabolism. On the other hand, the decline of NAD is a hallmark of some pathological conditions, including neurodegeneration and metabolic diseases, and boosting NAD biosynthesis has proven to be of therapeutic relevance. Therefore, targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD biosynthesis from nicotinamide (NAM) and nicotinic acid (NA), respectively, is considered a promising strategy to modulate intracellular NAD pool. While potent NAMPT inhibitors and activators have been developed, the search for NAPRT modulators is still in its infancy. In this work, we report on the identification of a new class of NAPRT modulators bearing the 1,2-dimethylbenzimidazole scaffold properly substituted in position 5. In particular, compounds 24, 31, and 32 emerged as the first NAPRT activators reported so far, while 18 behaved as a noncompetitive inhibitor toward NA (Ki = 338 µM) and a mixed inhibitor toward phosphoribosyl pyrophosphate (PRPP) (Ki = 134 µM). From in vitro pharmacokinetic studies, compound 18 showed an overall good ADME profile. To rationalize the obtained results, docking studies were performed on the NAPRT structure. Moreover, a preliminary pharmacophore model was built to shed light on the shift from inhibitors to activators.
Collapse
Affiliation(s)
- Cecilia Baldassarri
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Alessandro Piergentili
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Wilma Quaglia
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Stefano Fontana
- Center for Drug Discovery and Development-DMPK, Aptuit, an Evotec Company, Via A. Fleming 4, 37135 Verona, Italy
| | - Valerio Mammoli
- Center for Drug Discovery and Development-DMPK, Aptuit, an Evotec Company, Via A. Fleming 4, 37135 Verona, Italy
| | - Gabriele Minazzato
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Elisa Marangoni
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Nadia Raffaelli
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Loredana Cappellacci
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Riccardo Petrelli
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
46
|
Bi K, Cheng J, He S, Fang Y, Huang M, Sheng C, Dong G. Discovery of Highly Potent Nicotinamide Phosphoribosyltransferase Degraders for Efficient Treatment of Ovarian Cancer. J Med Chem 2023; 66:1048-1062. [PMID: 36563407 DOI: 10.1021/acs.jmedchem.2c01990] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is identified as a promising target for cancer therapy. However, known NAMPT inhibitors are characterized by weak clinical efficacy and dose-dependent toxicity. There is an urgent need to develop new NAMPT intervention strategies. Using the proteolysis-targeting chimera (PROTAC) technology, we designed and synthesized a series of new von Hippel-Lindau (VHL)-recruiting NAMPT-targeting PROTACs. A highly potent NAMPT degrader (B3) was successfully identified, which displayed excellent degradation activity (DC50 < 0.17 nM, Dmax > 90%) and antiproliferative potency against A2780 cells (IC50 = 1.5 nM). PROTAC B3 induced NAMPT depletion in a concentration- and time-dependent manner through the ubiquitin-proteasome system. Particularly, PROTAC B3 achieved good plasma exposure levels via intravenous injection, gained potent tumor growth inhibition (TGI = 88.1%, 2 μM/kg) in the xenograft model, and demonstrated good biosafety without undesired toxicities. This study provides a highly potent VHL-recruiting NAMPT degrader for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Kaijian Bi
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Junfei Cheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yuxin Fang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
47
|
Singhal SK, Al-Marsoummi S, Vomhof-DeKrey EE, Lauckner B, Beyer T, Basson MD. Schlafen 12 Slows TNBC Tumor Growth, Induces Luminal Markers, and Predicts Favorable Survival. Cancers (Basel) 2023; 15:402. [PMID: 36672349 PMCID: PMC9856841 DOI: 10.3390/cancers15020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
The Schlafen 12 (SLFN12) protein regulates triple-negative breast cancer (TNBC) growth, differentiation, and proliferation. SLFN12 mRNA expression strongly correlates with TNBC patient survival. We sought to explore SLFN12 overexpression effects on in vivo human TNBC tumor xenograft growth and performed RNA-seq on xenografts to investigate related SLFN12 pathways. Stable SLFN12 overexpression reduced tumorigenesis, increased tumor latency, and reduced tumor volume. RNA-seq showed that SLFN12 overexpressing xenografts had higher luminal markers levels, suggesting that TNBC cells switched from an undifferentiated basal phenotype to a more differentiated, less aggressive luminal phenotype. SLFN12-overexpressing xenografts increased less aggressive BC markers, HER2 receptors ERBB2 and EGFR expression, which are not detectable by immunostaining in TNBC. Two cancer progression pathways, the NAD signaling pathway and the superpathway of cholesterol biosynthesis, were downregulated with SLFN12 overexpression. RNA-seq identified gene signatures associated with SLFN12 overexpression. Higher gene signature levels indicated good survival when tested on four independent BC datasets. These signatures behaved differently in African Americans than in Caucasian Americans, indicating a possible biological difference between these races that could contribute to the worse survival observed in African Americans with BC. These results suggest an increased SLFN12 expression modulates TNBC aggressiveness through a gene signature that could offer new treatment targets.
Collapse
Affiliation(s)
- Sandeep K. Singhal
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sarmad Al-Marsoummi
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Emilie E. Vomhof-DeKrey
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Bo Lauckner
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Trysten Beyer
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Marc D. Basson
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
48
|
Franczak M, Toenshoff I, Jansen G, Smolenski RT, Giovannetti E, Peters GJ. The Influence of Mitochondrial Energy and 1C Metabolism on the Efficacy of Anticancer Drugs: Exploring Potential Mechanisms of Resistance. Curr Med Chem 2023; 30:1209-1231. [PMID: 35366764 DOI: 10.2174/0929867329666220401110418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Mitochondria are the main energy factory in living cells. To rapidly proliferate and metastasize, neoplastic cells increase their energy requirements. Thus, mitochondria become one of the most important organelles for them. Indeed, much research shows the interplay between cancer chemoresistance and altered mitochondrial function. In this review, we focus on the differences in energy metabolism between cancer and normal cells to better understand their resistance and how to develop drugs targeting energy metabolism and nucleotide synthesis. One of the differences between cancer and normal cells is the higher nicotinamide adenine dinucleotide (NAD+) level, a cofactor for the tricarboxylic acid cycle (TCA), which enhances their proliferation and helps cancer cells survive under hypoxic conditions. An important change is a metabolic switch called the Warburg effect. This effect is based on the change of energy harvesting from oxygen-dependent transformation to oxidative phosphorylation (OXPHOS), adapting them to the tumor environment. Another mechanism is the high expression of one-carbon (1C) metabolism enzymes. Again, this allows cancer cells to increase proliferation by producing precursors for the synthesis of nucleotides and amino acids. We reviewed drugs in clinical practice and development targeting NAD+, OXPHOS, and 1C metabolism. Combining novel drugs with conventional antineoplastic agents may prove to be a promising new way of anticancer treatment.
Collapse
Affiliation(s)
- Marika Franczak
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Isabel Toenshoff
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Vrije Universiteit Amsterdam, The Netherlands.,Amsterdam University College, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Vrije Universiteit Amsterdam, The Netherlands.,Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
49
|
El Sayed SM. Biochemical Origin of the Warburg Effect in Light of 15 Years of Research Experience: A Novel Evidence-Based View (An Expert Opinion Article). Onco Targets Ther 2023; 16:143-155. [PMID: 36911533 PMCID: PMC9997657 DOI: 10.2147/ott.s397593] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Cancer cells strongly upregulate glucose uptake and glycolysis to produce vital biomolecules for cancer cell survival, proliferation, and metastasis as ATP, lipids, proteins, nucleotides, and lactate. The Warburg effect is tumours' unique glucose oxidation to give lactate (not pyruvate) even in the presence of oxygen. Nicotinamide adenine dinucleotide (NAD/NADH.H) is used in glycolysis via glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). Both catalyse reversible biochemical reactions to produce 1,3-diphosphoglycerate and lactate, respectively. In this expert opinion and based on published evidence, the author suggests that: "In transformed cells and hyperglycolytic cancer cells, the Warburg effect (permanent conversion of pyruvate to lactate) occurs secondary to a vicious cycle and a closed circuit between GAPDH and LDH (reaction of carcinogenesis) causing increased endogenous oxidative stress and subsequent carcinogenesis. Mitochondrial defects in cancer cells cause hyperglycolysis resulting in NADH.H accumulation (produced during GAPDH step) that obligatorily drives LDH to become an irreversible reaction in the direction of lactate formation (Warburg effect) but not pyruvate formation. Likewise, LDH oxidizes NADH.H producing excessive NAD+ that secondarily drives GAPDH reaction to be irreversible to produce NADH.H and so on. Pyruvate is an antioxidant while lactate is pro-oxidant, causing increased endogenous oxidative stress in cancer cells, tumour's hypoxia and obligatory hyperglycolysis with NADH.H overproduction (GAPDH step) to be consumed in the LDH step for lactate production and NAD+ generation (utilized by GAPDH) and so on". This confirms Warburg's origin of cancer cells. Best anticancer applications based on this hypothesis are: breaking this closed vicious circle using siRNA to target GAPDH and LDH, avoiding strong oxidants (as many cancer chemotherapeutics), and using strong antioxidants for causing antioxidant-oxidant antagonism or antioxidant-lactate antagonism to inhibit the Warburg effect. Strong natural antioxidants of prophetic medicine (related to Prophet Muhammad peace be upon him) such as Zamzam water, Nigella sativa, costus, Ajwa date fruit, olive oil, Al-hijamah and natural honey are strongly recommended to prevent and antagonize the Warburg effect.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Department of Clinical Biochemistry & Molecular Medicine, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Department of Medical Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt.,Prophetic Medicine Course and Research, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
50
|
Suryatin Alim G, Suzuki T, Honda K. Cell-Free Production and Regeneration of Cofactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:29-49. [PMID: 37306696 DOI: 10.1007/10_2023_222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cofactors, such as adenosine triphosphate, nicotinamide adenine dinucleotide, and coenzyme A, are involved in nearly 50% of enzymatic reactions and widely used in biocatalytic production of useful chemicals. Although commercial production of cofactors has been mostly dependent on extraction from microbial cells, this approach has a theoretical limitation to achieve a high-titer, high-yield production of cofactors owing to the tight regulation of cofactor biosynthesis in living cells. Besides the cofactor production, their regeneration is also a key challenge to enable continuous use of costly cofactors and improve the feasibility of enzymatic chemical manufacturing. Construction and implementation of enzyme cascades for cofactor biosynthesis and regeneration in a cell-free environment can be a promising approach to these challenges. In this chapter, we present the available tools for cell-free cofactor production and regeneration, the pros and cons, and how they can contribute to promote the industrial application of enzymes.
Collapse
Affiliation(s)
- Gladwin Suryatin Alim
- Department of Chemistry, University of Basel, Basel, Switzerland
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Takuma Suzuki
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Osaka, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| |
Collapse
|