2
|
Gona P, Gona C, Ballout S, Mapoma C, Rao S, Mokdad A. Trends in the burden of most common obesity-related cancers in 16 Southern Africa development community countries, 1990-2019. Findings from the global burden of disease study. Obes Sci Pract 2024; 10:e715. [PMID: 38264007 PMCID: PMC10804346 DOI: 10.1002/osp4.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/15/2023] [Accepted: 09/24/2023] [Indexed: 01/25/2024] Open
Abstract
Background Obesity-related cancers in the 16 Southern African Development Community (SADC) countries is quite prominent. The changes and time trends of the burden of obesity-related cancers in developing countries like SADC remain largely unknown. A descriptive epidemiological analysis was conducted to assess the burden of obesity-related cancers, (liver, esophageal, breast, prostate, colon/rectal, leukemia, ovarian, uterine, pancreatic, kidney, gallbladder/biliary tract, and thyroid cancers) in SADC countries. Methods Data from the 2019 Global Burden of Diseases Study was used. Deaths extracted from vital registration, verbal autopsies and ICD codes. Cancer-type, mortality and prevalence per 100,000 population and 95% uncertainty intervals (UIs) were calculated using the Cause of Death Ensemble model and Spatio-Temporal Gaussian process with mixed effects regression models. Annual rates of change (AROCs) between 1990 and 2019 and the corresponding UIs were calculated. Results The top age-standardized mortality rates per 100,000 in 2019 for males were leukemia, 20.1(14.4-26.4), esophageal cancer, 15.1 (11.2-19.1), and colon and rectal cancer, 10.3 (8.6-12.6). For females, breast cancer, 20.6 (16.6-25.0), leukemia, 17.1 (11.4-23.7), and esophageal cancer, 8.3 (5.5-10.7), had the leading mortality rates. For males, AROC substantial (p < 0.05) increase for kidney cancer for 11 of the countries (AROC from 0.41% to 1.24%), colon cancer for eight of the countries (from 0.39% to 0.92%), and pancreatic cancer for seven countries (from 0.26% to 1.01%). In females, AROC showed substantial increase for pancreatic cancer for 13 of the countries from (0.34%-1.67%), nine countries for kidney cancer (from 0.27% to 1.02%), seven countries each for breast cancer (0.35%-1.13%), and ovarian cancer (from 0.33% to 1.21%). Conclusions There is need for location-specific and culturally appropriate strategies for better nutrition and weight control, and improved screening for all cancers. Health promotion messaging should target kidney, colon, pancreatic, and breast cancers and encourage clinically tested methods of reducing BMI such as increasing personal physical activity and adoption of effective dietary regimes.
Collapse
Affiliation(s)
- Philimon Gona
- University of Massachusetts BostonBostonMassachusettsUSA
| | - Clara Gona
- MGH Institute for Health ProfessionsSchool of NursingBostonMassachusettsUSA
| | - Suha Ballout
- University of Massachusetts BostonBostonMassachusettsUSA
| | | | - Sowmya Rao
- Boston University School of Public HealthBostonMassachusettsUSA
| | - Ali Mokdad
- University of Washington Medical SchoolSeattleWashingtonUSA
| | | |
Collapse
|
3
|
Bigman G, Adebamowo SN, Yawe KDT, Yilkudi M, Olaomi O, Badejo O, Famooto A, Ezeome E, Salu IK, Miner E, Anosike I, Achusi B, Adebamowo C. Leisure-time physical activity is associated with reduced risks of breast cancer and triple negative breast cancer in Nigerian women. Cancer Epidemiol 2022; 79:102195. [PMID: 35717688 PMCID: PMC9904209 DOI: 10.1016/j.canep.2022.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND Leisure-time physical activity(LTPA) is associated with a reduced risk of breast cancer, but this has less been investigated by cancer subtypes in Africans living in Sub-Saharan Africa(SSA). We examined the associations between LTPA and breast cancer including its subtypes in Nigerian women and explored the effect modification of body size on such associations. METHODS The sample included 508 newly diagnosed primary invasive breast cancer cases and 892 controls from the Nigerian Integrative Epidemiology of Breast Cancer(NIBBLE) Study. Immunohistochemical(IHC) analysis was available for 294 cases. Total metabolic equivalents(METs) per hour/week of LTPA were calculated and divided by quartiles(Q1 <3.75, Q2:3.75-6.69, Q3:6.70-14.74, Q4:14.75 ≤). We applied logistic regressions to estimate the adjusted Odds Ratios(ORs) between LTPA and breast cancer and by its molecular subtypes and whether age-adjusted associations are modified by BMI. RESULTS The mean age(Mean±SD) of cases vs. controls(45.5 ± 11.1vs.40.1 ± 9.0) was higher, and the mean total METs hour/week was higher in controls vs. cases(11.9 ± 14.9vs.8.3 ± 11.1,p-value<0.001). Overall, 43.2%(N = 127/294) were classified as HRP, and 41.8%(N = 123/294) as TNBC. Women in the higher LTPA quartiles(Q3-Q4) vs. Q1 had lower odds of having breast cancer(ORQ4vs.Q1=0.51,95%CI:0.35-0.74) and TNBC(ORQ4vs.Q1=0.51, 95%CI:0.27-0.96), but not HRP(ORQ4vs.Q1=0.61,95%CI:0.34-1.09) after adjusting for age, age at first menarche, body size, breastfeeding, menopausal, parity, contraceptives, demographics, alcohol, smoking, and physical activity at home and work. Lastly, LTPA and its age-adjusted association with breast cancer was more pronounced in women with BMI< 30 vs. BMI 30 + . CONCLUSIONS LTPA may reduce the risk of breast cancer, especially TNBC, which is the more aggressive and prevalent molecular subtype of breast cancer in SSA.
Collapse
Affiliation(s)
- Galya Bigman
- Department of Epidemiology and Public Health, Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, United States,Correspondence to: 725 Lombard Street, Baltimore, MD 21201, United States. (G. Bigman), (C. Adebamowo)
| | - Sally N. Adebamowo
- Department of Epidemiology and Public Health, Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, United States
| | | | - Monday Yilkudi
- University of Abuja Teaching Hospital, Gwagwalada, Nigeria
| | | | | | - Ayo Famooto
- African Collaborative Center for Microbiome and Genomics Research(ACCME) Biorepository and Research Laboratory, Institute of Human Virology, Nigeria
| | | | | | | | | | | | - Clement Adebamowo
- Department of Epidemiology and Public Health, Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, United States,African Collaborative Center for Microbiome and Genomics Research(ACCME) Biorepository and Research Laboratory, Institute of Human Virology, Nigeria,Correspondence to: 725 Lombard Street, Baltimore, MD 21201, United States. (G. Bigman), (C. Adebamowo)
| |
Collapse
|
4
|
Ngwa W, Addai BW, Adewole I, Ainsworth V, Alaro J, Alatise OI, Ali Z, Anderson BO, Anorlu R, Avery S, Barango P, Bih N, Booth CM, Brawley OW, Dangou JM, Denny L, Dent J, Elmore SNC, Elzawawy A, Gashumba D, Geel J, Graef K, Gupta S, Gueye SM, Hammad N, Hessissen L, Ilbawi AM, Kambugu J, Kozlakidis Z, Manga S, Maree L, Mohammed SI, Msadabwe S, Mutebi M, Nakaganda A, Ndlovu N, Ndoh K, Ndumbalo J, Ngoma M, Ngoma T, Ntizimira C, Rebbeck TR, Renner L, Romanoff A, Rubagumya F, Sayed S, Sud S, Simonds H, Sullivan R, Swanson W, Vanderpuye V, Wiafe B, Kerr D. Cancer in sub-Saharan Africa: a Lancet Oncology Commission. Lancet Oncol 2022; 23:e251-e312. [PMID: 35550267 PMCID: PMC9393090 DOI: 10.1016/s1470-2045(21)00720-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023]
Abstract
In sub-Saharan Africa (SSA), urgent action is needed to curb a growing crisis in cancer incidence and mortality. Without rapid interventions, data estimates show a major increase in cancer mortality from 520 348 in 2020 to about 1 million deaths per year by 2030. Here, we detail the state of cancer in SSA, recommend key actions on the basis of analysis, and highlight case studies and successful models that can be emulated, adapted, or improved across the region to reduce the growing cancer crises. Recommended actions begin with the need to develop or update national cancer control plans in each country. Plans must include childhood cancer plans, managing comorbidities such as HIV and malnutrition, a reliable and predictable supply of medication, and the provision of psychosocial, supportive, and palliative care. Plans should also engage traditional, complementary, and alternative medical practices employed by more than 80% of SSA populations and pathways to reduce missed diagnoses and late referrals. More substantial investment is needed in developing cancer registries and cancer diagnostics for core cancer tests. We show that investments in, and increased adoption of, some approaches used during the COVID-19 pandemic, such as hypofractionated radiotherapy and telehealth, can substantially increase access to cancer care in Africa, accelerate cancer prevention and control efforts, increase survival, and save billions of US dollars over the next decade. The involvement of African First Ladies in cancer prevention efforts represents one practical approach that should be amplified across SSA. Moreover, investments in workforce training are crucial to prevent millions of avoidable deaths by 2030. We present a framework that can be used to strategically plan cancer research enhancement in SSA, with investments in research that can produce a return on investment and help drive policy and effective collaborations. Expansion of universal health coverage to incorporate cancer into essential benefits packages is also vital. Implementation of the recommended actions in this Commission will be crucial for reducing the growing cancer crises in SSA and achieving political commitments to the UN Sustainable Development Goals to reduce premature mortality from non-communicable diseases by a third by 2030.
Collapse
Affiliation(s)
- Wilfred Ngwa
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Information and Sciences, ICT University, Yaoundé, Cameroon.
| | - Beatrice W Addai
- Breast Care International, Peace and Love Hospital, Kumasi, Ghana
| | - Isaac Adewole
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Victoria Ainsworth
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, USA
| | - James Alaro
- National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | | | - Zipporah Ali
- Kenya Hospices and Palliative Care Association, Nairobi, Kenya
| | - Benjamin O Anderson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Non-communicable Diseases, WHO, Geneva, Switzerland
| | - Rose Anorlu
- Department of Obstetrics and Gynaecology, College of Medicine, University of Lagos, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Stephen Avery
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prebo Barango
- WHO, Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Noella Bih
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christopher M Booth
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Otis W Brawley
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Lynette Denny
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa; South African Medical Research Council, Gynaecological Cancer Research Centre, Tygerberg, South Africa
| | | | - Shekinah N C Elmore
- Department of Radiation Oncology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ahmed Elzawawy
- Department of Clinical Oncology, Suez Canal University, Ismailia, Egypt
| | | | - Jennifer Geel
- Division of Paediatric Haematology and Oncology, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Katy Graef
- BIO Ventures for Global Health, Seattle, WA, USA
| | - Sumit Gupta
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Nazik Hammad
- Department of Oncology, Queen's University, Kingston, ON, Canada
| | - Laila Hessissen
- Pediatric Oncology Department, Pediatric Teaching Hospital, Rabat, Morocco
| | - Andre M Ilbawi
- Department of Non-communicable Diseases, WHO, Geneva, Switzerland
| | - Joyce Kambugu
- Department of Pediatrics, Uganda Cancer Institute, Kampala, Uganda
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group, International Agency for Research on Cancer, WHO, Lyon, France
| | - Simon Manga
- Cameroon Baptist Convention Health Services, Bamenda, Cameroon
| | - Lize Maree
- Department of Nursing Education, University of the Witwatersrand, Johannesburg, South Africa
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Susan Msadabwe
- Department of Radiation Therapy, Cancer Diseases Hospital, Lusaka, Zambia
| | - Miriam Mutebi
- Department of Surgery, Aga Khan University Hospital, Nairobi, Kenya
| | | | - Ntokozo Ndlovu
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kingsley Ndoh
- Department of Global Health, University of Washington, Seattle, WA, USA
| | | | - Mamsau Ngoma
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Twalib Ngoma
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Timothy R Rebbeck
- Dana-Farber Cancer Institute, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Lorna Renner
- Department of Paediatrics, University of Ghana School of Medicine and Dentistry, Accra, Ghana
| | - Anya Romanoff
- Department of Health System Design and Global Health, Icahn School of Medicine, The Mount Sinai Hospital, New York, NY, USA
| | - Fidel Rubagumya
- Department of Oncology, Rwanda Military Hospital, Kigali, Rwanda; University of Global Health Equity, Kigali, Rwanda
| | - Shahin Sayed
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Shivani Sud
- Department of Radiation Oncology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Hannah Simonds
- Division of Radiation Oncology, Tygerberg Hospital and University of Stellenbosch, Stellenbosch, South Africa
| | | | - William Swanson
- Department of Physics and Applied Physics, Dana-Farber Cancer Institute, University of Massachusetts Lowell, Lowell, MA, USA
| | - Verna Vanderpuye
- National Centre for Radiotherapy, Oncology, and Nuclear Medicine, Korle Bu Teaching Hospital, Accra, Ghana
| | | | - David Kerr
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|