1
|
Cedzyński M, Świerzko AS. The Role of Pulmonary Collectins, Surfactant Protein A (SP-A) and Surfactant Protein D (SP-D) in Cancer. Cancers (Basel) 2024; 16:3116. [PMID: 39335088 PMCID: PMC11430738 DOI: 10.3390/cancers16183116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Surfactant proteins A and D (SP-A and SP-D) belong to the collectin subfamily of C-type oligomeric lectins. They are pattern-recognition molecules (PRMs), able to recognise pathogen- or danger-associated molecular patterns (PAMPs, DAMPs) in the presence of Ca2+ cations. That property enables opsonisation or agglutination of non-self or altered/abnormal self cells and contributes to their clearance. Like other collectins, SP-A and SP-D are characterised by the presence of four distinct domains: a cysteine-rich domain (at the N-terminus), a collagen-like region, an α-helical neck domain and a globular carbohydrate-recognition domain (CRD) (at the C-terminus). Pulmonary surfactant is a lipoprotein complex, preventing alveolar collapse by reducing surface tension at the air-liquid interface. SP-A and SP-D, produced by type II alveolar epithelial cells and Clara cells, are not only pattern-recognition molecules but also contribute to the surfactant structure and homeostasis. Moreover, they are expressed in a variety of extrapulmonary sites where they are involved in local immunity. The term "cancer" includes a variety of diseases: tumours start from uncontrolled growth of abnormal cells in any tissue which may further spread to other sites of the body. Many cancers are incurable, difficult to diagnose and often fatal. This short review summarises anti- and pro-tumorigenic associations of SP-A and SP-D as well as perspectives of their usefulness in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland
| |
Collapse
|
2
|
Pourmanaf H, Nikoukheslat S, Sari-Sarraf V, Amirsasan R, Vakili J, Mills DE. The acute effects of endurance exercise on epithelial integrity of the airways in athletes and non-athletes: A systematic review and meta-analysis. Respir Med 2023; 220:107457. [PMID: 37951313 DOI: 10.1016/j.rmed.2023.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
INTRODUCTION Acute endurance exercise may induce airway epithelium injury. However, the response of epithelial integrity markers of the airways including club cell secretory protein (CC16) and surfactant protein D (SP-D) to endurance exercise have not been systematically reviewed. Therefore, the aim of this systematic review and meta-analysis was to assess the acute effects of endurance exercise on markers of epithelial integrity of the airways (CC16, SP-D and the CC16/SP-D ratio) in athletes and non-athletes. METHODS A systematic search was performed utilizing PubMed/Medline, EMBASE, Web of Science, and hand searching bibliographies of retrieved articles through to September 2022. Based on the inclusion criteria, articles with available data about the acute effects of endurance exercise on serum or plasma concentrations of CC16, SP-D and CC16/SP-D ratio in athletes and non-athletes were included. Quality assessment of studies and statistical analysis were conducted via Review Manager 5.4 software. RESULTS The search resulted in 908 publications. Finally, thirteen articles were included in the review. Acute endurance exercise resulted in an increase in CC16 (P = 0.0006, n = 13) and CC16/SP-D ratio (P = 0.005, n = 2) whereas SP-D (P = 0.47, n = 3) did not change significantly. Subgroup analysis revealed that the type (P = 0.003), but not the duration of exercise (P = 0.77) or the environmental temperature (P = 0.06) affected the CC16 response to endurance exercise. CONCLUSIONS Acute endurance exercise increases CC16 and the CC16/SP-D ratio, as markers of epithelial integrity, but not SP-D in athletes and non-athletes.
Collapse
Affiliation(s)
- Hadi Pourmanaf
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Nikoukheslat
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Vahid Sari-Sarraf
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Ramin Amirsasan
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Javad Vakili
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Dean E Mills
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, Queensland, Australia; Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, Queensland, Australia; Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, Queensland, Australia.
| |
Collapse
|
3
|
Zhao C, Yan S, Song Y, Xia X. Roles of Antimicrobial Peptides in Gynecological Cancers. Int J Mol Sci 2022; 23:ijms231710104. [PMID: 36077500 PMCID: PMC9456504 DOI: 10.3390/ijms231710104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) are essential components of the mucosal barrier of the female reproductive tract (FRT) and are involved in many important physiological processes, including shaping the microbiota and maintaining normal reproduction and pregnancy. Gynecological cancers seriously threaten women's health and bring a heavy burden to society so that new strategies are needed to deal with these diseases. Recent studies have suggested that AMPs also have a complex yet intriguing relationship with gynecological cancers. The expression level of AMPs changes during tumor progression and they may act as promising biomarkers in cancer detection and prognosis prediction. Although AMPs have long been considered as host protective, they actually play a "double-edged sword" role in gynecological cancers, either tumorigenic or antitumor, depending on factors such as AMP and cancer types, as well as AMP concentrations. Moreover, AMPs are associated with chemoresistance and regulation of AMPs' expression may alter sensitivity of cancer cells to chemotherapy. However, more work is needed, especially on the identification of molecular mechanisms of AMPs in the FRT, as well as the clinical application of these AMPs in detection, diagnosis and treatment of gynecological malignancies.
Collapse
|
4
|
Ganguly K, Kishore U, Metkari SM, Madan T. Immunomodulatory Role of Surfactant Protein-D in a Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) Model. Front Immunol 2022; 13:930449. [PMID: 35874783 PMCID: PMC9302643 DOI: 10.3389/fimmu.2022.930449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Surfactant protein D (SP-D), a pattern recognition molecule, is emerging as a potent anti-tumoural innate immune defense molecule in a range of cancers. Previously, SP-D expression was found to be significantly downregulated at the malignant sites of human prostate adenocarcinoma and associated with an increasing Gleason score and severity. We recently reported selective induction of intrinsic apoptosis by a recombinant fragment of human SP-D (rfhSP-D) in the human Prostate cancer (PCa) biopsy explants and cells with glucose regulated protein of 78 (GRP78) as one of the key interacting partners. The present study evaluated the expression of SP-D in early and advanced stages of PCa using transgenic adenocarcinoma of mouse prostate (TRAMP) model. Both early and late stages of PCa showed significantly decreased SP-D mRNA expression and increased proteolytic degradation of SP-D protein. Systemic and tumoural immunophenotyping of TRAMP model revealed increased serine proteases producing granulocytes and polymorphonuclear myeloid-derived suppressor cells (PMN MDSCs) in the late stage; the serine proteases secreted by these cells could be involved in the degradation of SP-D. Susceptibility of rfhSP-D to elastase-mediated proteolysis provided the rationale to use an elastase-inhibitor to sustain intact rfhSP-D in the tumour microenvironment. The study revealed an immunomodulatory potential of rfhSP-D and elastase inhibitor, sivelestat, to induce macrophage polarization towards M1 with downregulation of PMN MDSCs in ex-vivo cultured TRAMP tumours. Furthermore, rfhSP-D induced immunogenic cell death in murine PCa cells and in TRAMP explants. The findings highlight that SP-D plays an anti-tumourigenic role in PCa by inducing immunogenic cell death and immunomodulation while the prostate tumour milieu adversely impacts SP-D by inhibiting its transcription, and enhancing its proteolytic degradation. Transformation of an immunologically "cold tumour" into a "hot tumour" implicates therapeutic potential of rfhSP-D in PCa.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)- National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Veterinary Medicine, United Arab Emirates (U.A.E) University, Al Ain, United Arab Emirates
| | - Siddhanath M. Metkari
- Indian Council of Medical Research (ICMR)- National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Taruna Madan
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)- National Institute for Research in Reproductive and Child Health, Mumbai, India
| |
Collapse
|
5
|
Gorący A, Rosik J, Szostak B, Ustianowski Ł, Ustianowska K, Gorący J. Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses 2022; 14:v14051092. [PMID: 35632833 PMCID: PMC9144443 DOI: 10.3390/v14051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Since the end of 2019, the whole world has been struggling with the life-threatening pandemic amongst all age groups and geographic areas caused by Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). The Coronavirus Disease 2019 (COVID-19) pandemic, which has led to more than 468 million cases and over 6 million deaths reported worldwide (as of 20 March 2022), is one of the greatest threats to human health in history. Meanwhile, the lack of specific and irresistible treatment modalities provoked concentrated efforts in scientists around the world. Various mechanisms of cell entry and cellular dysfunction were initially proclaimed. Especially, mitochondria and cell membrane are crucial for the course of infection. The SARS-CoV-2 invasion depends on angiotensin converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and cluster of differentiation 147 (CD147), expressed on host cells. Moreover, in this narrative review, we aim to discuss other cell organelles targeted by SARS-CoV-2. Lastly, we briefly summarize the studies on various drugs.
Collapse
Affiliation(s)
- Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Jakub Rosik
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Jarosław Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
| |
Collapse
|
6
|
Togashi Y, Kono Y, Okuma T, Shioiri N, Mizushima R, Tanaka A, Ishiwari M, Toriyama K, Kikuchi R, Takoi H, Abe S. Surfactant protein D: A useful biomarker for distinguishing COVID‐19 pneumonia from COVID‐19 pneumonia‐like diseases. Health Sci Rep 2022; 5:e622. [PMID: 35509408 PMCID: PMC9059194 DOI: 10.1002/hsr2.622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Computed tomography is useful for the diagnosis of coronavirus disease (COVID‐19) pneumonia. However, many types of interstitial lung diseases and even bacterial pneumonia can show abnormal chest shadows that are indistinguishable from those observed in COVID‐19 pneumonia. Thus, it is necessary to identify useful biomarkers that can efficiently distinguish COVID‐19 pneumonia from COVID‐19 pneumonia‐like diseases. Herein, we investigated the usefulness of serum Krebs von den Lungen 6 (KL‐6) and surfactant protein D (SP‐D) for identifying patients with COVID‐19 pneumonia among patients with abnormal chest shadows consistent with COVID‐19 pneumonia. Method This was a retrospective cohort study of consecutive patients who underwent evaluation of serum KL‐6 and SP‐D at a single center from February 2019 to December 2020. A total of 54 patients with COVID‐19 pneumonia and 65 patients with COVID‐19 pneumonia‐like diseases were enrolled in this study from the source population. Serum KL‐6 and SP‐D levels in both groups were analyzed. Result The serum levels of KL‐6 and SP‐D in patients with COVID‐19 pneumonia were significantly lower than those in patients with COVID‐19 pneumonia‐like disease (median [interquartile range]: 208.5 [157.5–368.5] U/ml vs. 430 [284.5–768.5] U/ml, p < 0.0001 and 24.7 [8.6–51.0] ng/ml vs. 141 [63.7–243.5] ng/ml, p < 0.0001, respectively). According to receiver operating characteristic (ROC) analysis, the areas under the ROC curves (95% confidence intervals) of serum KL‐6 and SP‐D levels for distinguishing COVID‐19 pneumonia from COVID‐19 pneumonia‐like diseases were 0.761 (0.675–0.847) and 0.874 (0.812–0.936), respectively. The area under the ROC curve of serum SP‐D was significantly larger than that of serum KL‐6 (p = 0.0213), suggesting that serum SP‐D can more efficiently distinguish COVID‐19 pneumonia from COVID‐19 pneumonia‐like diseases. Conclusion Serum SP‐D is a promising biomarker for distinguishing COVID‐19 pneumonia from COVID‐19 pneumonia‐like diseases. Serum SP‐D can be useful for the management of patients with abnormal chest shadow mimicking COVID‐19 pneumonia.
Collapse
Affiliation(s)
- Yuki Togashi
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| | - Yuta Kono
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| | - Takashi Okuma
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| | - Nao Shioiri
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| | - Reimi Mizushima
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| | - Akane Tanaka
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| | - Mayuko Ishiwari
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| | - Kazutoshi Toriyama
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| | - Ryota Kikuchi
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| | - Hiroyuki Takoi
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| | - Shinji Abe
- Department of Respiratory Medicine Tokyo Medical University Hospital Shinjuku‐ku Tokyo Japan
| |
Collapse
|
7
|
Katopodis P, Randeva HS, Spandidos DA, Saravi S, Kyrou I, Karteris E. Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). Int J Mol Med 2021; 49:20. [PMID: 34935057 PMCID: PMC8722767 DOI: 10.3892/ijmm.2021.5075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
The pathophysiology of coronavirus disease 2019 (COVID-19) is mainly dependent on the underlying mechanisms that mediate the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cells of the various human tissues/organs. Recent studies have indicated a higher order of complexity of the mechanisms of infectivity, given that there is a wide-repertoire of possible cell entry mediators that appear to co-localise in a cell- and tissue-specific manner. The present study provides an over-view of the 'canonical' SARS-CoV-2 mediators, namely angiotensin converting enzyme 2, transmembrane protease serine 2 and 4, and neuropilin-1, expanding on the involvement of novel candidates, including glucose-regulated protein 78, basigin, kidney injury molecule-1, metabotropic glutamate receptor subtype 2, ADAM metallopeptidase domain 17 (also termed tumour necrosis factor-α convertase) and Toll-like receptor 4. Furthermore, emerging data indicate that changes in microRNA (miRNA/miR) expression levels in patients with COVID-19 are suggestive of further complexity in the regulation of these viral mediators. An in silico analysis revealed 160 candidate miRNAs with potential strong binding capacity in the aforementioned genes. Future studies should concentrate on elucidating the association between the cellular tropism of the SARS-CoV-2 cell entry mediators and the mechanisms through which they might affect the clinical outcome. Finally, the clinical utility as a biomarker or therapeutic target of miRNAs in the context of COVID-19 warrants further investigation.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Harpal S Randeva
- Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Sayeh Saravi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Ioannis Kyrou
- Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
8
|
The Antitriple Negative Breast cancer Efficacy of Spatholobus suberectus Dunn on ROS-Induced Noncanonical Inflammasome Pyroptotic Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5187569. [PMID: 34659633 PMCID: PMC8514942 DOI: 10.1155/2021/5187569] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer (BCa) is the leading cause of women's death worldwide; among them, triple-negative breast cancer (TNBC) is one of the most troublesome subtypes with easy recurrence and great aggressive properties. Spatholobus suberectus Dunn has been used in the clinic of Chinese society for hundreds of years. Shreds of evidence showed that Spatholobus suberectus Dunn has a favorable outcome in the management of cancer. However, the anti-TNBC efficacy of Spatholobus suberectus Dunn percolation extract (SSP) and its underlying mechanisms have not been fully elucidated. Hence, the present study is aimed at evaluating the anti-TNBC potential of SSP both in vitro and in vivo, through the cell viability, morphological analysis of MDA-MB-231, LDH release assay, ROS assay, and the tests of GSH aborted pyroptotic noninflammasome signaling pathway. Survival analysis using the KM Plotter and TNM plot database exhibited the inhibition of transcription levels of caspase-4 and 9 related to low relapse-free survival in patients with BCa. Based on the findings, SSP possesses anti-TNBC efficacy that relies on ROS-induced noncanonical inflammasome pyroptosis in cancer cells. In this study, our preclinical evidence is complementary to the preceding clinic of Chinese society; studies on the active principles of SPP remain underway in our laboratory.
Collapse
|
9
|
Khan HA, Kishore U, Alsulami HM, Alrokayan SH. Pro-Apoptotic and Immunotherapeutic Effects of Carbon Nanotubes Functionalized with Recombinant Human Surfactant Protein D on Leukemic Cells. Int J Mol Sci 2021; 22:ijms221910445. [PMID: 34638783 PMCID: PMC8508673 DOI: 10.3390/ijms221910445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles are efficient drug delivery vehicles for targeting specific organs as well as systemic therapy for a range of diseases, including cancer. However, their interaction with the immune system offers an intriguing challenge. Due to the unique physico-chemical properties, carbon nanotubes (CNTs) are considered as nanocarriers of considerable interest in cancer diagnosis and therapy. CNTs, as a promising nanomaterial, are capable of both detecting as well as delivering drugs or small therapeutic molecules to tumour cells. In this study, we coupled a recombinant fragment of human surfactant protein D (rfhSP-D) with carboxymethyl-cellulose (CMC) CNTs (CMC-CNT, 10-20 nm diameter) for augmenting their apoptotic and immunotherapeutic properties using two leukemic cell lines. The cell viability of AML14.3D10 or K562 cancer cell lines was reduced when cultured with CMC-mwCNT-coupled-rfhSP-D (CNT + rfhSP-D) at 24 h. Increased levels of caspase 3, 7 and cleaved caspase 9 in CNT + rfhSP-D treated AML14.3D10 and K562 cells suggested an involvement of an intrinsic pathway of apoptosis. CNT + rfhSP-D treated leukemic cells also showed higher mRNA expression of p53 and cell cycle inhibitors (p21 and p27). This suggested a likely reduction in cdc2-cyclin B1, causing G2/M cell cycle arrest and p53-dependent apoptosis in AML14.3D10 cells, while p53-independent mechanisms appeared to be in operation in K562 cells. We suggest that CNT + rfhSP-D has therapeutic potential in targeting leukemic cells, irrespective of their p53 status, and thus, it is worth setting up pre-clinical trials in animal models.
Collapse
Affiliation(s)
- Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (S.H.A.)
- Correspondence: ; Tel.: +966-11-4675859
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Hamed M. Alsulami
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (S.H.A.)
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (S.H.A.)
| |
Collapse
|
10
|
Lemma S, Perrone AM, De Iaco P, Gasparre G, Kurelac I. Current methodologies to detect circulating tumor cells: a focus on ovarian cancer. Am J Cancer Res 2021; 11:4111-4126. [PMID: 34659879 PMCID: PMC8493391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023] Open
Abstract
Identification of circulating tumor cells (CTC) in liquid biopsies opens a window of opportunities for the optimization of clinical management of oncologic patients. In ovarian cancer (OC), which involves atypical routes of metastatic spread, CTC analyses may also offer novel insights about the mechanisms behind malignant progression of the disease. However, current methodologies struggle to precisely define CTC number in the peripheral blood of OC patients, and the isolation of viable cells for further characterization is still challenging. The biggest limitation is the lack of methodological standardization for OC CTC detection, preventing comprehensive definition of their clinical potential required for the transfer to practice. Here we describe and compare methods for CTC analysis that have been implemented for OC thus far, discussing pros, cons and improvements needed. We identify biophysical separation approaches as optimal for CTC enrichment. On the other hand, the identification of specific tumor antigens or gene transcripts, despite displaying drawbacks related to tumor heterogeneity, still remains the best approach for OC CTC detection.
Collapse
Affiliation(s)
- Silvia Lemma
- Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Study and Research Center on Gynecological Neoplasias, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna40138 Bologna, Italy
| | - Anna M Perrone
- Study and Research Center on Gynecological Neoplasias, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Division of Oncologic Gynecology, IRCCS-Azienda Ospedaliero-Universitaria di Bologna40138 Bologna, Italy
| | - Pierandrea De Iaco
- Study and Research Center on Gynecological Neoplasias, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Division of Oncologic Gynecology, IRCCS-Azienda Ospedaliero-Universitaria di Bologna40138 Bologna, Italy
| | - Giuseppe Gasparre
- Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Study and Research Center on Gynecological Neoplasias, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna40138 Bologna, Italy
| | - Ivana Kurelac
- Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Study and Research Center on Gynecological Neoplasias, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna40138 Bologna, Italy
| |
Collapse
|
11
|
Saravi S, Alizzi Z, Tosi S, Hall M, Karteris E. Preclinical Studies on the Effect of Rucaparib in Ovarian Cancer: Impact of BRCA2 Status. Cells 2021; 10:cells10092434. [PMID: 34572083 PMCID: PMC8472031 DOI: 10.3390/cells10092434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Approximately 50% of ovarian cancer patients harbour homologous recombination repair deficiencies. These deficiencies have been successfully targeted using poly (ADP-ribose) polymerase inhibitors (PARPi) particularly for patients harbouring BRCA1/2 mutations. The aim of this study is to assess the effects of the PARPi rucaparib in vitro using cell lines with BRCA2 mutations in comparison to those with BRCA2 wild type. Methods: Cell proliferation assays, RT-qPCR, immunofluorescence, annexin V/PI assays were used to assess the effects of rucaparib in vitro. Results: The BRCA2 mutant ovarian cancer cell line PEO1 exhibited higher PARP1 activity when treated with H2O2 compared to wild type cell lines. The migratory and proliferative capacity of PEO1 cells was compromised following treatment with rucaparib 10 µM compared to BRCA2 wild-type cell lines via a mechanism involving the mTOR pathway. Rucaparib treatment significantly increased DNA damage primarily in PEO1 cells and SKOV3 cells compared with wild type. Conclusions: Appropriate identification of robust predictive biomarkers for homologous recombination deficiency using ‘liquid’ biopsies would facilitate the identification of patients suitable for PARPi therapy. Preliminary efforts to undertake such testing are described here. This study also demonstrates the mechanisms of action of rucaparib (PARPi) which may involve elements of the mTOR pathway.
Collapse
Affiliation(s)
- Sayeh Saravi
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.S.); (Z.A.); (S.T.)
| | - Zena Alizzi
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.S.); (Z.A.); (S.T.)
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood HA6 2RN, UK
| | - Sabrina Tosi
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.S.); (Z.A.); (S.T.)
| | - Marcia Hall
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.S.); (Z.A.); (S.T.)
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood HA6 2RN, UK
- Correspondence: (M.H.); (E.K.)
| | - Emmanouil Karteris
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.S.); (Z.A.); (S.T.)
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield, Uxbridge UB9 6JH, UK
- Correspondence: (M.H.); (E.K.)
| |
Collapse
|
12
|
Madan T, Biswas B, Varghese PM, Subedi R, Pandit H, Idicula-Thomas S, Kundu I, Rooge S, Agarwal R, Tripathi DM, Kaur S, Gupta E, Gupta SK, Kishore U. A Recombinant Fragment of Human Surfactant Protein D Binds Spike Protein and Inhibits Infectivity and Replication of SARS-CoV-2 in Clinical Samples. Am J Respir Cell Mol Biol 2021; 65:41-53. [PMID: 33784482 PMCID: PMC8320127 DOI: 10.1165/rcmb.2021-0005oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease (COVID-19) is an acute infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human SP-D (surfactant protein D) is known to interact with the spike protein of SARS-CoV, but its immune surveillance against SARS-CoV-2 is not known. The current study aimed to examine the potential of a recombinant fragment of human SP-D (rfhSP-D) as an inhibitor of replication and infection of SARS-CoV-2. The interaction of rfhSP-D with the spike protein of SARS-CoV-2 and human ACE-2 (angiotensin-converting enzyme 2) receptor was predicted via docking analysis. The inhibition of interaction between the spike protein and ACE-2 by rfhSP-D was confirmed using direct and indirect ELISA. The effect of rfhSP-D on replication and infectivity of SARS-CoV-2 from clinical samples was assessed by measuring the expression of RdRp gene of the virus using quantitative PCR. In silico interaction studies indicated that three amino acid residues in the receptor-binding domain of spike protein of SARS-CoV-2 were commonly involved in interacting with rfhSP-D and ACE-2. Studies using clinical samples of SARS-CoV-2–positive cases (asymptomatic, n = 7; symptomatic, n = 8) and negative control samples (n = 15) demonstrated that treatment with 1.67 μM rfhSP-D inhibited viral replication by ∼5.5-fold and was more efficient than remdesivir (100 μM) in Vero cells. An approximately two-fold reduction in viral infectivity was also observed after treatment with 1.67 μM rfhSP-D. These results conclusively demonstrate that the rfhSP-D mediated calcium independent interaction between the receptor-binding domain of the S1 subunit of the SARS-CoV-2 spike protein and human ACE-2, its host cell receptor, and significantly reduced SARS-CoV-2 infection and replication in vitro.
Collapse
Affiliation(s)
| | | | - Praveen M Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | | | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Indra Kundu
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Sheetalnath Rooge
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Reshu Agarwal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Dinesh M Tripathi
- Department of Virology, Institute of Liver and Biliary Sciences, Delhi, India; and
| | - Savneet Kaur
- Department of Virology, Institute of Liver and Biliary Sciences, Delhi, India; and
| | - Ekta Gupta
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | | | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
13
|
Mangogna A, Varghese PM, Agostinis C, Alrokayan SH, Khan HA, Stover CM, Belmonte B, Martorana A, Ricci G, Bulla R, Kishore U. Prognostic Value of Complement Properdin in Cancer. Front Immunol 2020; 11:614980. [PMID: 33542722 PMCID: PMC7851055 DOI: 10.3389/fimmu.2020.614980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
The complement system is readily triggered by the presence of damage-associated molecular patterns on the surface of tumor cells. The complement alternative pathway provides rapid amplification of the molecular stress signal, leading to complement cascade activation to deal with pathogens or malignant cells. Properdin is the only known positive regulator of the alternative pathway. In addition, properdin promotes the phagocytic uptake of apoptotic T cells by macrophages and dendritic cells without activating the complement system, thus, establishing its ability to recognize "altered-self". Dysregulation of properdin has been implicated in substantial tissue damage in the host, and in some cases, chronic unresolved inflammation. A corollary of this may be the development of cancer. Hence, to establish a correlation between properdin presence/levels in normal and cancer tissues, we performed bioinformatics analysis, using Oncomine and UALCAN. Survival analyses were performed using UALCAN and PROGgeneV2 to assess if properdin can serve as a potential prognostic marker for human lung adenocarcinoma (LUAD), liver hepatocellular carcinoma (LIHC), cervical squamous cell carcinoma (CESC), and pancreatic adenocarcinoma (PAAD). We also analyzed levels of tumor-infiltrating immune cells using TIMER, a tool for characterizing immune cell composition in cancers. We found that in LUAD and LIHC, there was a lower expression of properdin in the tumors compared to normal tissues, while no significant difference was observed in CESC and PAAD. Survival analysis demonstrated a positive association between properdin mRNA expression and overall survival in all 4 types of cancers. TIMER analysis revealed that properdin expression correlated negatively with tumor purity and positively with levels of infiltrating B cells, cytotoxic CD8+ T cells, CD4+ helper T cells, macrophages, neutrophils and dendritic cells in LUAD, CESC and PAAD, and with levels of B cells, CD8+ T cells and dendritic cells in LIHC. Immunohistochemical analysis revealed that infiltrating immune cells were the most likely source of properdin in the tumor microenvironment. Thus, complement protein properdin shows promise as a prognostic marker in cancer and warrants further study.
Collapse
Affiliation(s)
- Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Cordula M. Stover
- School of Biological Sciences, University of Leicester, Leicester, United Kingdom
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Anna Martorana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
- *Correspondence: Roberta Bulla, ; Uday Kishore, ;
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- *Correspondence: Roberta Bulla, ; Uday Kishore, ;
| |
Collapse
|
14
|
Murugaiah V, Agostinis C, Varghese PM, Belmonte B, Vieni S, Alaql FA, Alrokayan SH, Khan HA, Kaur A, Roberts T, Madan T, Bulla R, Kishore U. Hyaluronic Acid Present in the Tumor Microenvironment Can Negate the Pro-apototic Effect of a Recombinant Fragment of Human Surfactant Protein D on Breast Cancer Cells. Front Immunol 2020; 11:1171. [PMID: 32733438 PMCID: PMC7360846 DOI: 10.3389/fimmu.2020.01171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
Human surfactant protein D (SP-D) belongs to the family of collectins that is composed of a characteristic amino-terminal collagenous region and a carboxy-terminal C-type lectin domain. Being present at the mucosal surfaces, SP-D acts as a potent innate immune molecule and offers protection against non-self and altered self, such as pathogens, allergens, and tumor. Here, we examined the effect of a recombinant fragment of human SP-D (rfhSP-D) on a range of breast cancer lines. Breast cancer has four molecular subtypes characterized by varied expressions of estrogen (ER), progesterone (PR), and epidermal growth factor (EGF) receptors (HER2). The cell viability of HER2-overexpressing (SKBR3) and triple-positive (BT474) breast cancer cell lines [but not of a triple-negative cell line (BT20)] was reduced following rfhSP-D treatment at 24 h. Upregulation of p21/p27 cell cycle inhibitors and p53 phosphorylation (Ser15) in rfhSP-D-treated BT474 and SKBR3 cell lines signified G2/M cell cycle arrest. Cleaved caspases 9 and 3 were detected in rfhSP-D-treated BT474 and SKBR3 cells, suggesting an involvement of the intrinsic apoptosis pathway. However, rfhSP-D-induced apoptosis was nullified in the presence of hyaluronic acid (HA) whose increased level in breast tumor microenvironment is associated with malignant tumor progression and invasion. rfhSP-D bound to solid-phase HA and promoted tumor cell proliferation. rfhSP-D-treated SKBR3 cells in the presence of HA showed decreased transcriptional levels of p53 when compared to cells treated with rfhSP-D only. Thus, HA appears to negate the anti-tumorigenic properties of rfhSP-D against HER2-overexpressing and triple-positive breast cancer cells.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Praveen M. Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Beatrice Belmonte
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Salvatore Vieni
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Fanan A. Alaql
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuvinder Kaur
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Terry Roberts
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, ICMR—National Institute for Research in Reproductive Health, Mumbai, India
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
- *Correspondence: Roberta Bulla
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Uday Kishore ;
| |
Collapse
|
15
|
Thakur G, Prakash G, Murthy V, Sable N, Menon S, Alrokayan SH, Khan HA, Murugaiah V, Bakshi G, Kishore U, Madan T. Human SP-D Acts as an Innate Immune Surveillance Molecule Against Androgen-Responsive and Androgen-Resistant Prostate Cancer Cells. Front Oncol 2019; 9:565. [PMID: 31355132 PMCID: PMC6637921 DOI: 10.3389/fonc.2019.00565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Surfactant Protein D (SP-D), a pattern recognition innate immune molecule, has been implicated in the immune surveillance against cancer. A recent report showed an association of decreased SP-D expression in human prostate adenocarcinoma with an increased Gleason score and severity. In the present study, the SP-D expression was evaluated in primary prostate epithelial cells (PrEC) and prostate cancer cell lines. LNCaP, an androgen dependent prostate cancer cell line, exhibited significantly lower mRNA and protein levels of SP-D than PrEC and the androgen independent cell lines (PC3 and DU145). A recombinant fragment of human SP-D, rfhSP-D, showed a dose and time dependent binding to prostate cancer cells via its carbohydrate recognition domain. This study, for the first time, provides evidence of significant and specific cell death of tumor cells in rfhSP-D treated explants as well as primary tumor cells isolated from tissue biopsies of metatstatic prostate cancer patients. Viability of PrEC was not altered by rfhSP-D. Treated LNCaP (p53+/+) and PC3 (p53 -/-) cells exhibited reduced cell viability in a dose and time dependent manner and were arrested in G2/M and G1/G0 phase of the cell cycle, respectively. rfhSP-D treated LNCaP cells showed a significant upregulation of p53 whereas a significant downregulation of pAkt was observed in both PC3 and LNCaP cell lines. The rfhSP-D-induced apoptosis signaling cascade involved upregulation of Bax:Bcl2 ratio, cytochrome c and cleaved products of caspase 7. The study concludes that rfhSP-D induces apoptosis in prostate tumor explants as well as in androgen dependent and independent prostate cancer cells via p53 and pAkt pathways.
Collapse
Affiliation(s)
- Gargi Thakur
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Gagan Prakash
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Vedang Murthy
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Nilesh Sable
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Santosh Menon
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Ganesh Bakshi
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|