1
|
Buti G, Ajdari A, Bridge CP, Sharp GC, Bortfeld T. Diffusion tensor transformation for personalizing target volumes in radiation therapy. Med Image Anal 2024; 97:103271. [PMID: 39043108 PMCID: PMC11365800 DOI: 10.1016/j.media.2024.103271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Diffusion tensor imaging (DTI) is used in tumor growth models to provide information on the infiltration pathways of tumor cells into the surrounding brain tissue. When a patient-specific DTI is not available, a template image such as a DTI atlas can be transformed to the patient anatomy using image registration. This study investigates a model, the invariance under coordinate transform (ICT), that transforms diffusion tensors from a template image to the patient image, based on the principle that the tumor growth process can be mapped, at any point in time, between the images using the same transformation function that we use to map the anatomy. The ICT model allows the mapping of tumor cell densities and tumor fronts (as iso-levels of tumor cell density) from the template image to the patient image for inclusion in radiotherapy treatment planning. The proposed approach transforms the diffusion tensors to simulate tumor growth in locally deformed anatomy and outputs the tumor cell density distribution over time. The ICT model is validated in a cohort of ten brain tumor patients. Comparative analysis with the tumor cell density in the original template image shows that the ICT model accurately simulates tumor cell densities in the deformed image space. By creating radiotherapy target volumes as tumor fronts, this study provides a framework for more personalized radiotherapy treatment planning, without the use of additional imaging.
Collapse
Affiliation(s)
- Gregory Buti
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA.
| | - Ali Ajdari
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA
| | - Christopher P Bridge
- Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth St, Charlestown, MA 02129, USA
| | - Gregory C Sharp
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA
| |
Collapse
|
2
|
Menna G, Marinno S, Valeri F, Mahadevan S, Mattogno PP, Gaudino S, Olivi A, Doglietto F, Berger MS, Della Pepa GM. Diffusion tensor imaging in detecting gliomas sub-regions of infiltration, local and remote recurrences: a systematic review. Neurosurg Rev 2024; 47:301. [PMID: 38954077 DOI: 10.1007/s10143-024-02529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Given that glioma cells tend to infiltrate and migrate along WM tracts, leading to demyelination and axonal injuries, Diffusion Tensor Imaging (DTI) emerged as a promising tool for identifying major "high-risk areas" of recurrence within the peritumoral brain zone (PBZ) or at a distance throughout the adjacents white matter tracts. Of our systematic review is to answer the following research question: In patients with brain tumor, is DTI able to recognizes within the peri-tumoral brain zone (PBZ) areas more prone to local (near the surgical cavity) or remote recurrence compared to the conventional imaging techniques?. We conducted a comprehensive literature search to identify relevant studies in line with the PRISMA-P (Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols) guidelines. 15 papers were deemed compatible with our research question and included. To enhance the paper's readability, we have categorized our findings into two distinct groups: the first delves into the role of DTI in detecting PBZ sub-regions of infiltration and local recurrences (n = 8), while the second group explores the feasibility of DTI in detecting white matter tract infiltration and remote recurrences (n = 7). DTI values and, within a broader framework, radiomics investigations can provide precise, voxel-by-voxel insights into the state of PBZ and recurrences. Better defining the regions at risk for potential recurrence within the PBZ and along WM bundles will allow targeted therapy.
Collapse
Affiliation(s)
- Grazia Menna
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy.
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli Largo Agostino Gemelli 1, Rome, 00168, Italy.
| | - Salvatore Marinno
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Federico Valeri
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Swapnil Mahadevan
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Pier Paolo Mattogno
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simona Gaudino
- Diagnostic Neuroradiology Unit, Department of Radiological and Hematological Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Olivi
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Doglietto
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mitchel Stuart Berger
- Depertament of Neurosurgery, University of California San Francisco, San Francisco, USA
| | - Giuseppe Maria Della Pepa
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
3
|
Buti G, Ajdari A, Hochreuter K, Shih H, Bridge CP, Sharp GC, Bortfeld T. The influence of anisotropy on the clinical target volume of brain tumor patients. Phys Med Biol 2024; 69:10.1088/1361-6560/ad1997. [PMID: 38157552 PMCID: PMC10863979 DOI: 10.1088/1361-6560/ad1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Objective.Current radiotherapy guidelines for glioma target volume definition recommend a uniform margin expansion from the gross tumor volume (GTV) to the clinical target volume (CTV), assuming uniform infiltration in the invaded brain tissue. However, glioma cells migrate preferentially along white matter tracts, suggesting that white matter directionality should be considered in an anisotropic CTV expansion. We investigate two models of anisotropic CTV expansion and evaluate their clinical feasibility.Approach.To incorporate white matter directionality into the CTV, a diffusion tensor imaging (DTI) atlas is used. The DTI atlas consists of water diffusion tensors that are first spatially transformed into local tumor resistance tensors, also known as metric tensors, and secondly fed to a CTV expansion algorithm to generate anisotropic CTVs. Two models of spatial transformation are considered in the first step. The first model assumes that tumor cells experience reduced resistance parallel to the white matter fibers. The second model assumes that the anisotropy of tumor cell resistance is proportional to the anisotropy observed in DTI, with an 'anisotropy weighting parameter' controlling the proportionality. The models are evaluated in a cohort of ten brain tumor patients.Main results.To evaluate the sensitivity of the model, a library of model-generated CTVs was computed by varying the resistance and anisotropy parameters. Our results indicate that the resistance coefficient had the most significant effect on the global shape of the CTV expansion by redistributing the target volume from potentially less involved gray matter to white matter tissue. In addition, the anisotropy weighting parameter proved useful in locally increasing CTV expansion in regions characterized by strong tissue directionality, such as near the corpus callosum.Significance.By incorporating anisotropy into the CTV expansion, this study is a step toward an interactive CTV definition that can assist physicians in incorporating neuroanatomy into a clinically optimized CTV.
Collapse
Affiliation(s)
- Gregory Buti
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| | - Ali Ajdari
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| | - Kim Hochreuter
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
- Aarhus University Hospital, Danish Centre for Particle Therapy, Palle Juul-Jensens Blvd. 99, DK-8200 Aarhus, Denmark
- Aarhus University, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 82, DK-8200 Aarhus, Denmark
| | - Helen Shih
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 100 Blossom St, Boston, MA 02114, United States of America
| | - Christopher P Bridge
- Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth St, Charlestown, MA 02129, United States of America
| | - Gregory C Sharp
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| |
Collapse
|
4
|
Shusharina N, Nguyen C. Consistency of muscle fibers directionality in human thigh derived from diffusion-weighted MRI. Phys Med Biol 2023; 68:175045. [PMID: 37586375 PMCID: PMC10472329 DOI: 10.1088/1361-6560/acf10c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Objective.Diffusion-weighted MR imaging (DW-MRI) is known to quantify muscle fiber directionality and thus may be useful for radiotherapy target definition in sarcomas. Here, we investigate the variability of tissue anisotropy derived from diffusion tensor (DT) in the human thigh to establish the baseline parameters and protocols for DW-MRI acquisition for future studies in sarcoma patients.Approach.We recruited ten healthy volunteers to acquire diffusion-weighted MR images of the left and right thigh. DW-MRI data were used to reconstruct DT eigenvectors within each individual thigh muscle. Deviations of the principal eigenvector from its mean were calculated for different experimental conditions.Main results.Within the majority of muscles in most subjects, the mode of the histogram of the angular deviation of the principal eigenvector of the water DT from its muscle-averaged value did not exceed 20°. On average for all subjects, the mode ranged from 15° to 24°. Deviations much larger than 20° were observed in muscles far from the RF coil, including cases with significant amounts of subcutaneous fat and muscle deformation under its own weight.Significance.Our study is a robust characterization of angular deviations of muscle fiber directionality in the thigh as determined by DW-MRI. We show that an appropriate choice of experimental conditions reduces the variability of the observed directionality. Precise determination of tissue directionality will enable reproducible models of microscopic tumor spread, with future application in defining the clinical target volume for soft tissue sarcoma.
Collapse
Affiliation(s)
- Nadya Shusharina
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, United States of America
- Harvard Medical School, Boston, MA 02115, United States of America
| | - Christopher Nguyen
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States of America
| |
Collapse
|
5
|
Shusharina N, Liu X, Coll-Font J, Foster A, El Fakhri G, Woo J, Bortfeld T, Nguyen C. Feasibility study of clinical target volume definition for soft-tissue sarcoma using muscle fiber orientations derived from diffusion tensor imaging. Phys Med Biol 2022; 67. [PMID: 35817048 PMCID: PMC9344976 DOI: 10.1088/1361-6560/ac8045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Soft-tissue sarcoma spreads preferentially along muscle fibers. We explore the utility of deriving muscle fiber orientations from diffusion tensor MRI (DT-MRI) for defining the boundary of the clinical target volume (CTV) in muscle tissue. Approach. We recruited eight healthy volunteers to acquire MR images of the left and right thigh. The imaging session consisted of (a) two MRI spin-echo-based scans, T1- and T2-weighted; (b) a diffusion weighted (DW) spin-echo-based scan using an echo planar acquisition with fat suppression. The thigh muscles were auto-segmented using the convolutional neural network. DT-MRI data were used as a geometry encoding input to solve the anisotropic Eikonal equation with the Hamiltonian Fast-Marching method. The isosurfaces of the solution modeled the CTV boundary. Main results. The auto-segmented muscles of the thigh agreed with manually delineated with the Dice score ranging from 0.8 to 0.94 for different muscles. To validate our method of deriving muscle fiber orientations, we compared anisotropy of the isosurfaces across muscles with different anatomical orientations within a thigh, between muscles in the left and right thighs of each subject, and between different subjects. The fiber orientations were identified reproducibly across all comparisons. We identified two controlling parameters, the distance from the gross tumor volume to the isosurface and the eigenvalues ratio, to tailor the proposed CTV to the satisfaction of the clinician. Significance. Our feasibility study with healthy volunteers shows the promise of using muscle fiber orientations derived from DW MRI data for automated generation of anisotropic CTV boundary in soft tissue sarcoma. Our contribution is significant as it serves as a proof of principle for combining DT-MRI information with tumor spread modeling, in contrast to using moderately informative 2D CT planes for the CTV delineation. Such improvements will positively impact the cancer centers with a small volume of sarcoma patients.
Collapse
|
6
|
Bortfeld T, Buti G. Modeling the propagation of tumor fronts with shortest path and diffusion models—implications for the definition of the clinical target volume. Phys Med Biol 2022; 67. [PMID: 35817046 PMCID: PMC9388053 DOI: 10.1088/1361-6560/ac8043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. The overarching objective is to make the definition of the clinical target volume (CTV) in radiation oncology less subjective and more scientifically based. The specific objective of this study is to investigate similarities and differences between two methods that model tumor spread beyond the visible gross tumor volume (GTV): (1) the shortest path model, which is the standard method of adding a geometric GTV-CTV margin, and (2) the reaction-diffusion model. Approach. These two models to capture the invisible tumor ‘fire front’ are defined and compared in mathematical terms. The models are applied to example cases that represent tumor spread in non-uniform and anisotropic media with anatomical barriers. Main results. The two seemingly disparate models bring forth traveling waves that can be associated with the front of tumor growth outward from the GTV. The shape of the fronts is similar for both models. Differences are seen in cases where the diffusive flow is reduced due to anatomical barriers, and in complex spatially non-uniform cases. The diffusion model generally leads to smoother fronts. The smoothness can be controlled with a parameter defined by the ratio of the diffusion coefficient and the proliferation rate. Significance. Defining the CTV has been described as the weakest link of the radiotherapy chain. There are many similarities in the mathematical description and the behavior of the common geometric GTV-CTV expansion method, and the definition of the CTV tumor front via the reaction-diffusion model. Its mechanistic basis and the controllable smoothness make the diffusion model an attractive alternative to the standard GTV-CTV margin model.
Collapse
|
7
|
Is Diffusion Tensor Imaging-Guided Radiotherapy the New State-of-the-Art? A Review of the Current Literature and Technical Insights. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the increasing precision of radiotherapy delivery, it is still frequently associated with neurological complications. This is in part due to damage to eloquent white matter (WM) tracts, which is made more likely by the fact they cannot be visualised on standard structural imaging. WM is additionally more vulnerable than grey matter to radiation damage. Primary brain malignancies also are known to spread along the WM. Diffusion tensor imaging (DTI) is the only in vivo method of delineating WM tracts. DTI is an imaging technique that models the direction of diffusion and therefore can infer the orientation of WM fibres. This review article evaluates the current evidence for using DTI to guide intracranial radiotherapy and whether it constitutes a new state-of-the-art technique. We provide a basic overview of DTI and its known applications in radiotherapy, which include using tractography to reduce the radiation dose to eloquent WM tracts and using DTI to detect or predict tumoural spread. We evaluate the evidence for DTI-guided radiotherapy in gliomas, metastatic disease, and benign conditions, finding that the strongest evidence is for its use in arteriovenous malformations. However, the evidence is weak in other conditions due to a lack of case-controlled trials.
Collapse
|
8
|
Castellano A, Bailo M, Cicone F, Carideo L, Quartuccio N, Mortini P, Falini A, Cascini GL, Minniti G. Advanced Imaging Techniques for Radiotherapy Planning of Gliomas. Cancers (Basel) 2021; 13:cancers13051063. [PMID: 33802292 PMCID: PMC7959155 DOI: 10.3390/cancers13051063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Michele Bailo
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-0-961-369-4155
| | - Luciano Carideo
- National Cancer Institute, G. Pascale Foundation, 80131 Naples, Italy;
| | - Natale Quartuccio
- A.R.N.A.S. Ospedale Civico Di Cristina Benfratelli, 90144 Palermo, Italy;
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Andrea Falini
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Giuseppe Lucio Cascini
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|