1
|
Akbulut S, Kucukakcali Z, Sahin TT, Colak C, Yilmaz S. Role of Epigenetic Factors in Determining the Biological Behavior and Prognosis of Hepatocellular Carcinoma. Diagnostics (Basel) 2024; 14:1925. [PMID: 39272711 PMCID: PMC11394249 DOI: 10.3390/diagnostics14171925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The current study's objective is to evaluate the molecular genetic mechanisms influencing the biological behavior of hepatocellular carcinoma (HCC) by analyzing the transcriptomic and epigenetic signatures of the tumors. METHODS Transcriptomic data were downloaded from the NCBI GEO database. We investigated the expression differences between the GSE46444 (48 cirrhotic tissues versus 88 HCC tissues) and GSE63898 (168 cirrhotic tissues versus 228 HCC tissues) data sets using GEO2R. Differentially expressed genes were evaluated using GO and KEGG metabolic pathway analysis websites. Whole genome bisulfite sequencing (WGBS) and Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq) data sets (26 HCC tissues versus 26 adjacent non-tumoral tissues) were also downloaded from the NCBI SRA database. These data sets were analyzed using Bismark and QSEA, respectively. The methylation differences between the groups were assessed using functional enrichment analysis. RESULTS In the GSE46444 data set, 80 genes were upregulated, and 315 genes were downregulated in the tumor tissue (HCC tissue) compared to the non-tumor cirrhotic tissue. In the GSE63898 data set, 1261 genes were upregulated, and 458 genes were downregulated in the cirrhotic tissue compared to the tumor tissues. WGBS revealed that 20 protein-coding loci were hypermethylated. while the hypomethylated regions were non-protein-coding. The methylated residues of the tumor tissue, non-tumorous cirrhotic tissue, and healthy tissue were comparable. MeDIP-Seq, conducted on tumoral and non-tumoral tissues, identified hypermethylated or hypomethylated areas as protein-coding regions. The functional enrichment analysis indicated that these genes were related to pathways including peroxisome, focal adhesion, mTOR, RAP1, Phospholipase D, Ras, and PI3K/AKT signal transduction. CONCLUSIONS The investigation of transcriptomic and epigenetic mechanisms identified several genes significant in the biological behavior of HCC. These genes present potential targets for the development of targeted therapy.
Collapse
Affiliation(s)
- Sami Akbulut
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Zeynep Kucukakcali
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Tevfik Tolga Sahin
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Sezai Yilmaz
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
2
|
Mousavikia SN, Darvish L, Bahreyni Toossi MT, Azimian H. Exosomes: Their role in the diagnosis, progression, metastasis, and treatment of glioblastoma. Life Sci 2024; 350:122743. [PMID: 38806071 DOI: 10.1016/j.lfs.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Exosomes are crucial for the growth and spread of glioblastomas, an aggressive form of brain cancer. These tiny vesicles play a crucial role in the activation of signaling pathways and intercellular communication. They can also transfer a variety of biomolecules such as proteins, lipids and nucleic acids from donor to recipient cells. Exosomes can influence the immune response by regulating the activity of immune cells, and they are crucial for the growth and metastasis of glioblastoma cells. In addition, exosomes contribute to drug resistance during treatment, which is a major obstacle in the treatment of glioblastoma. By studying them, the diagnosis and prognosis of glioblastoma can be improved. Due to their high biocompatibility and lack of toxicity, they have become an attractive option for drug delivery. The development of exosomes as carriers of specific therapeutic agents could overcome some of the obstacles to effective treatment of glioblastoma. In this review, we address the potential of exosomes for the treatment of glioblastoma and show how they can be modified for this purpose.
Collapse
Affiliation(s)
- S N Mousavikia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Darvish
- Department of Radiology, Faculty of Paramedicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - M T Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Wu Y, Cao Y, Chen L, Lai X, Zhang S, Wang S. Role of Exosomes in Cancer and Aptamer-Modified Exosomes as a Promising Platform for Cancer Targeted Therapy. Biol Proced Online 2024; 26:15. [PMID: 38802766 PMCID: PMC11129508 DOI: 10.1186/s12575-024-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
Collapse
Affiliation(s)
- Yating Wu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Medical Oncology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Yue Cao
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Xiaofeng Lai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| |
Collapse
|
4
|
Xie C, Chen X, Chen Y, Wang X, Zuo J, Zheng A, Luo Z, Cheng X, Zhong S, Jiang J, Du J, Zhao Y, Jiang P, Zhang W, Chen D, Pan H, Shen L, Zhu B, Zhou Q, Xu Y, Tang KF. Mutual communication between radiosensitive and radioresistant esophageal cancer cells modulates their radiosensitivity. Cell Death Dis 2023; 14:846. [PMID: 38114473 PMCID: PMC10730729 DOI: 10.1038/s41419-023-06307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Radiotherapy is an important treatment modality for patients with esophageal cancer; however, the response to radiation varies among different tumor subpopulations due to tumor heterogeneity. Cancer cells that survive radiotherapy (i.e., radioresistant) may proliferate, ultimately resulting in cancer relapse. However, the interaction between radiosensitive and radioresistant cancer cells remains to be elucidated. In this study, we found that the mutual communication between radiosensitive and radioresistant esophageal cancer cells modulated their radiosensitivity. Radiosensitive cells secreted more exosomal let-7a and less interleukin-6 (IL-6) than radioresistant cells. Exosomal let-7a secreted by radiosensitive cells increased the radiosensitivity of radioresistant cells, whereas IL-6 secreted by radioresistant cells decreased the radiosensitivity of radiosensitive cells. Although the serum levels of let-7a and IL-6 before radiotherapy did not vary significantly between patients with radioresistant and radiosensitive diseases, radiotherapy induced a more pronounced decrease in serum let-7a levels and a greater increase in serum IL-6 levels in patients with radioresistant cancer compared to those with radiosensitive cancer. The percentage decrease in serum let-7a and the percentage increase in serum IL-6 levels at the early stage of radiotherapy were inversely associated with tumor regression after radiotherapy. Our findings suggest that early changes in serum let-7a and IL-6 levels may be used as a biomarker to predict the response to radiotherapy in patients with esophageal cancer and provide new insights into subsequent treatments.
Collapse
Affiliation(s)
- Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, P. R. China
- Wenzhou key Laboratory of basic science and translational research of radiation oncology, 325000, Wenzhou, Zhejiang, P. R. China
| | - Xiao Chen
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Yueming Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Xingyue Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Jiwei Zuo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Anqi Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Zhicheng Luo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Xiaoxiao Cheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Shouhui Zhong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Jiayu Jiang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Jizao Du
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Yuemei Zhao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Peipei Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Didi Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, 325015, wenzhou, Zhejiang, P. R. China
| | - Huanle Pan
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Lanxiao Shen
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, Zhejiang, P. R. China
| | - Baoling Zhu
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, P. R. China
- Wenzhou key Laboratory of basic science and translational research of radiation oncology, 325000, Wenzhou, Zhejiang, P. R. China
| | - Qingyu Zhou
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, P. R. China
- Wenzhou key Laboratory of basic science and translational research of radiation oncology, 325000, Wenzhou, Zhejiang, P. R. China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Kai-Fu Tang
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, P. R. China.
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, 400016, Chongqing, Chongqing, P. R. China.
| |
Collapse
|
5
|
Juvkam IS, Zlygosteva O, Sitarz M, Thiede B, Sørensen BS, Malinen E, Edin NJ, Søland TM, Galtung HK. Proton Compared to X-Irradiation Induces Different Protein Profiles in Oral Cancer Cells and Their Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:16983. [PMID: 38069306 PMCID: PMC10707519 DOI: 10.3390/ijms242316983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released from cells, and their cargo can alter the function of recipient cells. EVs from X-irradiated cells have been shown to play a likely role in non-targeted effects. However, EVs derived from proton irradiated cells have not yet been studied. We aimed to investigate the proteome of EVs and their cell of origin after proton or X-irradiation. The EVs were derived from a human oral squamous cell carcinoma (OSCC) cell line exposed to 0, 4, or 8 Gy from either protons or X-rays. The EVs and irradiated OSCC cells underwent liquid chromatography-mass spectrometry for protein identification. Interestingly, we found different protein profiles both in the EVs and in the OSCC cells after proton irradiation compared to X-irradiation. In the EVs, we found that protons cause a downregulation of proteins involved in cell growth and DNA damage response compared to X-rays. In the OSCC cells, proton and X-irradiation induced dissimilar cell death pathways and distinct DNA damage repair systems. These results are of potential importance for understanding how non-targeted effects in normal tissue can be limited and for future implementation of proton therapy in the clinic.
Collapse
Affiliation(s)
- Inga Solgård Juvkam
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
| | - Olga Zlygosteva
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Mateusz Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.S.); (B.S.S.)
| | - Bernd Thiede
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway;
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.S.); (B.S.S.)
- Department of Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Eirik Malinen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Nina Jeppesen Edin
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Tine Merete Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
- Department of Pathology, Oslo University Hospital, 0372 Oslo, Norway
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
| |
Collapse
|
6
|
Jahangiri B, Khalaj-Kondori M, Asadollahi E, Kian Saei A, Sadeghizadeh M. Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions. J Cell Commun Signal 2023:10.1007/s12079-023-00794-3. [PMID: 37973719 DOI: 10.1007/s12079-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell-cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system. Opposing effects of mesenchymal stem cells-derived exosomes on cancer cells.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Elahe Asadollahi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Wandrey M, Jablonska J, Stauber RH, Gül D. Exosomes in Cancer Progression and Therapy Resistance: Molecular Insights and Therapeutic Opportunities. Life (Basel) 2023; 13:2033. [PMID: 37895415 PMCID: PMC10608050 DOI: 10.3390/life13102033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The development of therapy resistance still represents a major hurdle in treating cancers, leading to impaired treatment success and increased patient morbidity. The establishment of minimally invasive liquid biopsies is a promising approach to improving the early diagnosis, as well as therapy monitoring, of solid tumors. Because of their manifold functions in the tumor microenvironment, tumor-associated small extracellular vesicles, referred to as exosomes, have become a subject of intense research. Besides their important roles in cancer progression, metastasis, and the immune response, it has been proposed that exosomes also contribute to the acquisition and transfer of therapy resistance, mainly by delivering functional proteins and RNAs, as well as facilitating the export of active drugs or functioning as extracellular decoys. Extensive research has focused on understanding the molecular mechanisms underlying the occurrence of resistance and translating these into strategies for early detection. With this review, we want to provide an overview of the current knowledge about the (patho-)biology of exosomes, as well as state-of-the-art methods of isolation and analysis. Furthermore, we highlight the role of exosomes in tumorigenesis and cancer treatment, where they can function as therapeutic agents, biomarkers, and/or targets. By focusing on their roles in therapy resistance, we will reveal new paths of exploiting exosomes for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Madita Wandrey
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| | - Jadwiga Jablonska
- Translational Oncology/ENT Department, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany;
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Roland H. Stauber
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| | - Désirée Gül
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| |
Collapse
|
8
|
Zhao D, Mo Y, Neganova ME, Aleksandrova Y, Tse E, Chubarev VN, Fan R, Sukocheva OA, Liu J. Dual effects of radiotherapy on tumor microenvironment and its contribution towards the development of resistance to immunotherapy in gastrointestinal and thoracic cancers. Front Cell Dev Biol 2023; 11:1266537. [PMID: 37849740 PMCID: PMC10577389 DOI: 10.3389/fcell.2023.1266537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Successful clinical methods for tumor elimination include a combination of surgical resection, radiotherapy, and chemotherapy. Radiotherapy is one of the crucial components of the cancer treatment regimens which allow to extend patient life expectancy. Current cutting-edge radiotherapy research is focused on the identification of methods that should increase cancer cell sensitivity to radiation and activate anti-cancer immunity mechanisms. Radiation treatment activates various cells of the tumor microenvironment (TME) and impacts tumor growth, angiogenesis, and anti-cancer immunity. Radiotherapy was shown to regulate signaling and anti-cancer functions of various TME immune and vasculature cell components, including tumor-associated macrophages, dendritic cells, endothelial cells, cancer-associated fibroblasts (CAFs), natural killers, and other T cell subsets. Dual effects of radiation, including metastasis-promoting effects and activation of oxidative stress, have been detected, suggesting that radiotherapy triggers heterogeneous targets. In this review, we critically discuss the activation of TME and angiogenesis during radiotherapy which is used to strengthen the effects of novel immunotherapy. Intracellular, genetic, and epigenetic mechanisms of signaling and clinical manipulations of immune responses and oxidative stress by radiotherapy are accented. Current findings indicate that radiotherapy should be considered as a supporting instrument for immunotherapy to limit the cancer-promoting effects of TME. To increase cancer-free survival rates, it is recommended to combine personalized radiation therapy methods with TME-targeting drugs, including immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Margarita E. Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Vladimir N. Chubarev
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Pasqualetti F, Miniati M, Gonnelli A, Gadducci G, Giannini N, Palagini L, Mancino M, Fuentes T, Paiar F. Cancer Stem Cells and Glioblastoma: Time for Innovative Biomarkers of Radio-Resistance? BIOLOGY 2023; 12:1295. [PMID: 37887005 PMCID: PMC10604498 DOI: 10.3390/biology12101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Despite countless papers in the field of radioresistance, researchers are still far from clearly understanding the mechanisms triggered in glioblastoma. Cancer stem cells (CSC) are important to the growth and spread of cancer, according to many studies. In addition, more recently, it has been suggested that CSCs have an impact on glioblastoma patients' prognosis, tumor aggressiveness, and treatment outcomes. In reviewing this new area of biology, we will provide a summary of the most recent research on CSCs and their role in the response to radio-chemotherapy in GB. In this review, we will examine the radiosensitivity of stem cells. Moreover, we summarize the current knowledge of the biomarkers of stemness and evaluate their potential function in the study of radiosensitivity.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, University of Pisa, Italy, Via Roma 67, 56100 Pisa, Italy;
| | - Alessandra Gonnelli
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Giovanni Gadducci
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Noemi Giannini
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, University of Pisa, Italy, Via Roma 67, 56100 Pisa, Italy;
| | - Maricia Mancino
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Taiusha Fuentes
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Fabiola Paiar
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| |
Collapse
|
10
|
Tang JY, Chuang YT, Shiau JP, Yen CY, Chang FR, Tsai YH, Farooqi AA, Chang HW. Connection between Radiation-Regulating Functions of Natural Products and miRNAs Targeting Radiomodulation and Exosome Biogenesis. Int J Mol Sci 2023; 24:12449. [PMID: 37569824 PMCID: PMC10419287 DOI: 10.3390/ijms241512449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Jain DP, Dinakar YH, Kumar H, Jain R, Jain V. The multifaceted role of extracellular vesicles in prostate cancer-a review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:481-498. [PMID: 37842237 PMCID: PMC10571058 DOI: 10.20517/cdr.2023.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 10/17/2023]
Abstract
Prostate cancer is the second most prominent form of cancer in men and confers the highest mortality after lung cancer. The term "extracellular vesicles" refers to minute endosomal-derived membrane microvesicles and it was demonstrated that extracellular vesicles affect the environment in which tumors originate. Extracellular vesicles' involvement is also established in the development of drug resistance, angiogenesis, stemness, and radioresistance in various cancers including prostate cancer. Extracellular vesicles influence the general environment, processes, and growth of prostate cancer and can be a potential area that offers a significant lead in prostate cancer therapy. In this review, we have elaborated on the multifaceted role of extracellular vesicles in various processes involved in the development of prostate cancer, and their multitude of applications in the diagnosis and treatment of prostate cancer through the encapsulation of various bioactives.
Collapse
Affiliation(s)
- Divya Prakash Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
12
|
Wen C, Dechsupa N, Yu Z, Zhang X, Liang S, Lei X, Xu T, Gao X, Hu Q, Innuan P, Kantapan J, Lü M. Pentagalloyl Glucose: A Review of Anticancer Properties, Molecular Targets, Mechanisms of Action, Pharmacokinetics, and Safety Profile. Molecules 2023; 28:4856. [PMID: 37375411 DOI: 10.3390/molecules28124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Pentagalloyl glucose (PGG) is a natural hydrolyzable gallotannin abundant in various plants and herbs. It has a broad range of biological activities, specifically anticancer activities, and numerous molecular targets. Despite multiple studies available on the pharmacological action of PGG, the molecular mechanisms underlying the anticancer effects of PGG are unclear. Here, we have critically reviewed the natural sources of PGG, its anticancer properties, and underlying mechanisms of action. We found that multiple natural sources of PGG are available, and the existing production technology is sufficient to produce large quantities of the required product. Three plants (or their parts) with maximum PGG content were Rhus chinensis Mill, Bouea macrophylla seed, and Mangifera indica kernel. PGG acts on multiple molecular targets and signaling pathways associated with the hallmarks of cancer to inhibit growth, angiogenesis, and metastasis of several cancers. Moreover, PGG can enhance the efficacy of chemotherapy and radiotherapy by modulating various cancer-associated pathways. Therefore, PGG can be used for treating different human cancers; nevertheless, the data on the pharmacokinetics and safety profile of PGG are limited, and further studies are essential to define the clinical use of PGG in cancer therapies.
Collapse
Affiliation(s)
- Chengli Wen
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou 646000, China
| | - Xu Zhang
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Sicheng Liang
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xianying Lei
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao Xu
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaolan Gao
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qinxue Hu
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muhan Lü
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
13
|
Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer 2023; 22:96. [PMID: 37322433 PMCID: PMC10268375 DOI: 10.1186/s12943-023-01801-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cancer is the most prevalent cause of death globally, and radiotherapy is considered the standard of care for most solid tumors, including lung, breast, esophageal, and colorectal cancers and glioblastoma. Resistance to radiation can lead to local treatment failure and even cancer recurrence. MAIN BODY In this review, we have extensively discussed several crucial aspects that cause resistance of cancer to radiation therapy, including radiation-induced DNA damage repair, cell cycle arrest, apoptosis escape, abundance of cancer stem cells, modification of cancer cells and their microenvironment, presence of exosomal and non-coding RNA, metabolic reprogramming, and ferroptosis. We aim to focus on the molecular mechanisms of cancer radiotherapy resistance in relation to these aspects and to discuss possible targets to improve treatment outcomes. CONCLUSIONS Studying the molecular mechanisms responsible for radiotherapy resistance and its interactions with the tumor environment will help improve cancer responses to radiotherapy. Our review provides a foundation to identify and overcome the obstacles to effective radiotherapy.
Collapse
Affiliation(s)
- Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Runze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
14
|
Hoque S, Dhar R, Kar R, Mukherjee S, Mukherjee D, Mukerjee N, Nag S, Tomar N, Mallik S. Cancer stem cells (CSCs): key player of radiotherapy resistance and its clinical significance. Biomarkers 2023; 28:139-151. [PMID: 36503350 DOI: 10.1080/1354750x.2022.2157875] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are self-renewing and slow-multiplying micro subpopulations in tumour microenvironments. CSCs contribute to cancer's resistance to radiation (including radiation) and other treatments. CSCs control the heterogeneity of the tumour. It alters the tumour's microenvironment cellular singling and promotes epithelial-to-mesenchymal transition (EMT). Current research decodes the role of extracellular vesicles (EVs) and CSCs interlink in radiation resistance. Exosome is a subpopulation of EVs and originated from plasma membrane. It is secreted by several active cells. It involed in cellular communication and messenger of healthly and multiple pathological complications. Exosomal biological active cargos (DNA, RNA, protein, lipid and glycan), are capable to transform recipient cells' nature. The molecular signatures of CSCs and CSC-derived exosomes are potential source of cancer theranostics development. This review discusse cancer stem cells, radiation-mediated CSCs development, EMT associated with CSCs, the role of exosomes in radioresistance development, the current state of radiation therapy and the use of CSCs and CSCs-derived exosomes biomolecules as a clinical screening biomarker for cancer. This review gives new researchers a reason to keep an eye on the next phase of scientific research into cancer theranostics that will help mankind.
Collapse
Affiliation(s)
- Saminur Hoque
- Department of Radiology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Rajib Dhar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Rishav Kar
- Department of Medical Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute
| | - Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, West Bengal, India.,Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tamil Nadu, India
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
15
|
Wu Q, Ding Q, Lin W, Weng Y, Feng S, Chen R, Chen C, Qiu S, Lin D. Profiling of Tumor Cell-Delivered Exosome by Surface Enhanced Raman Spectroscopy-Based Biosensor for Evaluation of Nasopharyngeal Cancer Radioresistance. Adv Healthc Mater 2023; 12:e2202482. [PMID: 36528342 DOI: 10.1002/adhm.202202482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Although the advancement of radiotherapy significantly improves the survival of nasopharyngeal cancer (NPC), radioresistance associated with recurrence and poor outcomes still remains a daunting challenge in the clinical scenario. Currently, effective biomarkers and convenient detection methods for predicting radioresistance have not been well established. Here, the surface-enhanced Raman spectroscopy combined with proteomics is used to firstly profile the characteristic spectral patterns of exosomes secreted from self-established NPC radioresistance cells, and reveals specific variations of proteins expression during radioresistance formation, including collagen alpha-2 (I) chain (COL1A2) that is associated with a favorable prognosis in NPC and is negatively associated with DNA repair scores and DNA repair-related genes via bioinformatic analysis. Furthermore, deep learning model-based diagnostic model is generated to accurately identify the exosomes from radioresistance group. This work demonstrates the promising potential of exosomes as a novel biomarker for predicting the radioresistance and develops a rapid and sensitive liquid biopsy method that will provide a personalized and precise strategy for clinical NPC treatment.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, 350001, China
| | - Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Wanzun Lin
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
| | - Rong Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
| |
Collapse
|
16
|
Tumor Cell-Derived Exosomal circ-PRKCI Promotes Proliferation of Renal Cell Carcinoma via Regulating miR-545-3p/CCND1 Axis. Cancers (Basel) 2022; 15:cancers15010123. [PMID: 36612120 PMCID: PMC9817713 DOI: 10.3390/cancers15010123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Renal cell carcinoma (RCC) originates from the epithelial cells of the renal tubules and has a high degree of malignancy and heterogeneity. Recent studies have found that exosomes regulate intercellular communication via transferring various bioactive molecules, such as circular RNAs (circRNAs), which are critical for cancer progression. However, the role of tumor cell-derived exosomal circRNAs in RCC remains unclear. In this study, we reported the high expression of circ-PRKCI in RCC tissues and serum exosomes. We also found that circ-PRKCI could be transferred exosomally from highly malignant RCC cells to relatively less malignant RCC cells. Tumor cell-derived exosomal circ-PRKCI promoted the proliferation, migration, and invasion of RCC cells, while inhibiting their apoptosis. Mechanistically, we found that circ-PRKCI promoted the proliferation of RCC via the miR-545-3p/CCND1 signaling pathway. Our study is the first to report the potential mechanisms of tumor cell-derived exosomal circ-PRKCI in RCC. In conclusion, this study will provide a new understanding about the molecular mechanisms of RCC progression.
Collapse
|
17
|
Yang Z, Zhong W, Yang L, Wen P, Luo Y, Wu C. The emerging role of exosomes in radiotherapy. Cell Commun Signal 2022; 20:171. [PMCID: PMC9620591 DOI: 10.1186/s12964-022-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
Presently, more than half of cancer patients receive radiotherapy to cure localized cancer, palliate symptoms, or control the progression of cancer. However, radioresistance and radiation-induced bystander effects (RIBEs) are still challenging problems in cancer treatment. Exosomes, as a kind of extracellular vesicle, have a significant function in mediating and regulating intercellular signaling pathways. An increasing number of studies have shown that radiotherapy can increase exosome secretion and alter exosome cargo. Furthermore, radiation-induced exosomes are involved in the mechanism of radioresistance and RIBEs. Therefore, exosomes hold great promise for clinical application in radiotherapy. In this review, we not only focus on the influence of radiation on exosome biogenesis, secretion and cargoes but also on the mechanism of radiation-induced exosomes in radioresistance and RIBEs, which may expand our insight into the cooperative function of exosomes in radiotherapy.
Video abstract
Collapse
Affiliation(s)
- Zhenyi Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Wen Zhong
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Liang Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ping Wen
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Yixuan Luo
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Chunli Wu
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| |
Collapse
|
18
|
Lin Z, Wu Y, Xu Y, Li G, Li Z, Liu T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol Cancer 2022; 21:179. [PMID: 36100944 PMCID: PMC9468526 DOI: 10.1186/s12943-022-01650-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be obtained from various human tissues and organs. They can differentiate into a wide range of cell types, including osteoblasts, adipocytes and chondrocytes, thus exhibiting great potential in regenerative medicine. Numerous studies have indicated that MSCs play critical roles in cancer biology. The crosstalk between tumour cells and MSCs has been found to regulate many tumour behaviours, such as proliferation, metastasis and epithelial-mesenchymal transition (EMT). Multiple lines of evidence have demonstrated that MSCs can secrete exosomes that can modulate the tumour microenvironment and play important roles in tumour development. Notably, very recent works have shown that mesenchymal stem cell-derived exosomes (MSC-derived exosomes) are critically involved in cancer resistance to chemotherapy agents, targeted-therapy drugs, radiotherapy and immunotherapy. In this review, we systematically summarized the emerging roles and detailed molecular mechanisms of MSC-derived exosomes in mediating cancer therapy resistance, thus providing novel insights into the clinical applications of MSC-derived exosomes in cancer management.
Collapse
|
19
|
Clark GC, Hampton JD, Koblinski JE, Quinn B, Mahmoodi S, Metcalf O, Guo C, Peterson E, Fisher PB, Farrell NP, Wang XY, Mikkelsen RB. Radiation induces ESCRT pathway dependent CD44v3 + extracellular vesicle production stimulating pro-tumor fibroblast activity in breast cancer. Front Oncol 2022; 12:913656. [PMID: 36106109 PMCID: PMC9465418 DOI: 10.3389/fonc.2022.913656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023] Open
Abstract
Despite recent advances in radiotherapeutic strategies, acquired resistance remains a major obstacle, leading to tumor recurrence for many patients. Once thought to be a strictly cancer cell intrinsic property, it is becoming increasingly clear that treatment-resistance is driven in part by complex interactions between cancer cells and non-transformed cells of the tumor microenvironment. Herein, we report that radiotherapy induces the production of extracellular vesicles by breast cancer cells capable of stimulating tumor-supporting fibroblast activity, facilitating tumor survival and promoting cancer stem-like cell expansion. This pro-tumor activity was associated with fibroblast production of the paracrine signaling factor IL-6 and was dependent on the expression of the heparan sulfate proteoglycan CD44v3 on the vesicle surface. Enzymatic removal or pharmaceutical inhibition of its heparan sulfate side chains disrupted this tumor-fibroblast crosstalk. Additionally, we show that the radiation-induced production of CD44v3+ vesicles is effectively silenced by blocking the ESCRT pathway using a soluble pharmacological inhibitor of MDA-9/Syntenin/SDCBP PDZ1 domain activity, PDZ1i. This population of vesicles was also detected in the sera of human patients undergoing radiotherapy, therefore representing a potential biomarker for radiation therapy and providing an opportunity for clinical intervention to improve treatment outcomes.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Virginia Commonwealth University, Richmond, VA, United States,Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States,*Correspondence: Gene Chatman Clark,
| | - James David Hampton
- Virginia Commonwealth University, Richmond, VA, United States,Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer E. Koblinski
- Virginia Commonwealth University, Richmond, VA, United States,Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Bridget Quinn
- Virginia Commonwealth University, Richmond, VA, United States,Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Sitara Mahmoodi
- Virginia Commonwealth University, Richmond, VA, United States
| | - Olga Metcalf
- University of Virginia, Charlottesville, VA, United States
| | - Chunqing Guo
- Virginia Commonwealth University, Richmond, VA, United States,Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Erica Peterson
- Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul B. Fisher
- Virginia Commonwealth University, Richmond, VA, United States,Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Nicholas P. Farrell
- Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Virginia Commonwealth University, Richmond, VA, United States,University of Virginia, Charlottesville, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Ross B. Mikkelsen
- Virginia Commonwealth University, Richmond, VA, United States,Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
20
|
Mekers VE, Kho VM, Ansems M, Adema GJ. cGAS/cGAMP/STING signal propagation in the tumor microenvironment: key role for myeloid cells in antitumor immunity. Radiother Oncol 2022; 174:158-167. [PMID: 35870728 DOI: 10.1016/j.radonc.2022.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS), second messenger 2'3'-cyclic GMP-AMP (cGAMP) and stimulator of interferon genes (STING) are fundamental for sensing cytoplasmic double stranded DNA. Radiotherapy treatment induces large amounts of nuclear and mitochondrial DNA damage and results in the presence of DNA fragments in the cytoplasm, activating the cGAS/STING pathway. Triggering of the cGAS/STING pathway in the tumor microenvironment (TME) results in the production of type I interferons (IFNs). Type I IFNs are crucial for an effective antitumor defense, with myeloid cells as key players. Many questions remain on how these myeloid cells are activated and in which cells (tumor versus myeloid) in the TME the signaling pathway is initiated. The significance of cGAS/STING signaling in the onco-immunology field is being recognized, emphasized by the frequent occurrence of mutations in or silencing of genes in this pathway. We here review several mechanisms of cGAS/STING signal propagation in the TME, focusing on tumor cells and myeloid cells. Cell-cell contact-dependent interactions facilitate the transfer of tumor-derived DNA and cGAMP. Alternatively, transport routes via the extracellular space such as extracellular vesicles, and channel-mediated cGAMP transfer to and from the extracellular space contribute to propagation of cGAS/STING signal mediators DNA and cGAMP. Finally, we discuss regulation of extracellular cGAMP. Altogether, we provide a comprehensive overview of cGAS/cGAMP/STING signal propagation from tumor to myeloid cells in the TME, revealing novel targets for combinatorial treatment approaches with conventional anticancer therapies like radiotherapy.
Collapse
Affiliation(s)
- Vera E Mekers
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Vera M Kho
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Jokar S, Marques IA, Khazaei S, Martins-Marques T, Girao H, Laranjo M, Botelho MF. The Footprint of Exosomes in the Radiation-Induced Bystander Effects. Bioengineering (Basel) 2022; 9:bioengineering9060243. [PMID: 35735486 PMCID: PMC9220715 DOI: 10.3390/bioengineering9060243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is widely used as the primary treatment option for several cancer types. However, radiation therapy is a nonspecific method and associated with significant challenges such as radioresistance and non-targeted effects. The radiation-induced non-targeted effects on nonirradiated cells nearby are known as bystander effects, while effects far from the ionising radiation-exposed cells are known as abscopal effects. These effects are presented as a consequence of intercellular communications. Therefore, a better understanding of the involved intercellular signals may bring promising new strategies for radiation risk assessment and potential targets for developing novel radiotherapy strategies. Recent studies indicate that radiation-derived extracellular vesicles, particularly exosomes, play a vital role in intercellular communications and may result in radioresistance and non-targeted effects. This review describes exosome biology, intercellular interactions, and response to different environmental stressors and diseases, and focuses on their role as functional mediators in inducing radiation-induced bystander effect (RIBE).
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran P94V+927, Iran;
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês A. Marques
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran P94V+927, Iran;
| | - Tania Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
22
|
Sun H, Sun R, Song X, Gu W, Shao Y. Mechanism and clinical value of exosomes and exosomal contents in regulating solid tumor radiosensitivity. J Transl Med 2022; 20:189. [PMID: 35484557 PMCID: PMC9052527 DOI: 10.1186/s12967-022-03392-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
Radiotherapy is among the routine treatment options for malignant tumors. And it damages DNA and other cellular organelles in target cells by using ionizing radiation produced by various rays, killing the cells. In recent years, multiple studies have demonstrated that exosomes are mechanistically involved in regulating tumor formation, development, invasion and metastasis, and immune evasion. The latest research shows that radiation can affect the abundance and composition of exosomes as well as cell-to-cell communication. In the environment, exosome-carried miRNAs, circRNA, mRNA, and proteins are differentially expressed in cancer cells, while these molecules play a role in numerous biological processes, including the regulation of oncogene expression, mediation of signaling pathways in cancer cells, remodeling of tumor-related fibroblasts, regulation of cell radiosensitivity, and so forth. Therefore, elucidation of the mechanism underlying the role of exosomes in radiotherapy of malignant tumors is crucial for improving the efficacy of radiotherapy. This review will summarize the research advances in radiosensitivity of malignant tumors related to exosomes.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Rui Sun
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Xing Song
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
23
|
Rezaie J, Akbari A, Rahbarghazi R. Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis. Cell Biochem Funct 2022; 40:248-262. [PMID: 35285964 DOI: 10.1002/cbf.3695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Most eukaryotic cells secrete extracellular vesicles (EVs), which contribute to intracellular communication through transferring different biomolecules such as proteins, RNAs, and lipids to cells. Two main types of EVs are exosomes and microvesicles. Exosomes originate from multivesicular bodies, while microvesicles are shed from the plasma membrane. Mechanisms of exosomes and microvesicle biogenesis/trafficking are complex and many molecules are involved in their biogenesis and secretion. Tumor-derived EVs contain oncogenic molecules that promote tumor growth, metastasis, immune surveillance, angiogenesis, and chemoresistance. A growing body of evidence indicates various compounds can inhibit biogenesis and secretion of EVs from cells and several experiments were conducted to use EVs-inhibitors for understanding the biology of the cells or for understanding the pathology of several diseases like cancer. However, the nontargeting effects of drugs/inhibitors remain a concern. Our current knowledge of EVs biogenesis and their inhibition from tumor cells may provide an avenue for cancer management. In this review, we shed light on exosomes and microvesicles biogenesis, key roles of tumor-derived EVs, and discuss methods used to inhibition of EVs by different inhibitors.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Fan Q, Yu Y, Zhou Y, Zhang S, Wu C. An emerging role of radiation‑induced exosomes in hepatocellular carcinoma progression and radioresistance (Review). Int J Oncol 2022; 60:46. [PMID: 35266016 PMCID: PMC8923655 DOI: 10.3892/ijo.2022.5336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence rates of hepatocellular carcinoma (HCC) worldwide are increasing, and the role of radiotherapy is currently under discussion. Radioresistance is one of the most important challenges in the therapy of HCC compared with other local advanced, recurrent and metastatic cancers. The mechanisms of radioresistance are complex and remain to be fully understood; however, extracellular vesicles have been investigated in recent studies. Exosomes, which are 40- to 150-nm extracellular vesicles released by cancer cells, contain multiple pathogenic components, including proteins, nucleic acids and lipids, and play critical functions in cancer progression. Emerging data indicate a diagnosis potential for exosomes in HCC, since radiation-derived exosomes promote radioresistance. Radiation-based therapy alters the contents and components of exosomes, suggesting that exosomes and their components may serve as prognostic and predictive biomarkers to monitor radiation response. Therefore, understanding the roles and mechanisms of exosomes in HCC progression and radiation response during HCC therapy may increase our knowledge concerning the roles of exosomes in radioresistance, and may lead to novel approaches for HCC prognosis and treatment. The current review summarizes recent studies on exosome involvement in HCC and the molecular changes in exosome components during HCC progression. It also discusses the functions of exosomes in HCC therapy, and highlights the importance of exosomes in HCC progression and resistance for the development of novel therapies.
Collapse
Affiliation(s)
- Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Yue Yu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Yueling Zhou
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Sheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Chunli Wu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
25
|
Makhijani P, McGaha TL. Myeloid Responses to Extracellular Vesicles in Health and Disease. Front Immunol 2022; 13:818538. [PMID: 35320943 PMCID: PMC8934876 DOI: 10.3389/fimmu.2022.818538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles are mediators of cell-cell communication playing a key role in both steady-state and disease conditions. Extracellular vesicles carry diverse donor-derived cargos, including DNA, RNA, proteins, and lipids that induce a complex network of signals in recipient cells. Due to their ability to capture particulate matter and/or capacity to polarize and orchestrate tissue responses, myeloid immune cells (e.g., dendritic cells, macrophages, etc.) rapidly respond to extracellular vesicles, driving local and systemic effects. In cancer, myeloid-extracellular vesicle communication contributes to chronic inflammation, self-tolerance, and therapeutic resistance while in autoimmune disease, extracellular vesicles support inflammation and tissue destruction. Here, we review cellular mechanisms by which extracellular vesicles modulate myeloid immunity in cancer and autoimmune disease, highlighting some contradictory results and outstanding questions. We will also summarize how understanding of extracellular vesicle biology is being utilized for novel therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Priya Makhijani
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumor Immunotherapy Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Tracy L. McGaha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumor Immunotherapy Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- *Correspondence: Tracy L. McGaha,
| |
Collapse
|
26
|
Strybel U, Marczak L, Zeman M, Polanski K, Mielańczyk Ł, Klymenko O, Samelak-Czajka A, Jackowiak P, Smolarz M, Chekan M, Zembala-Nożyńska E, Widlak P, Pietrowska M, Wojakowska A. Molecular Composition of Serum Exosomes Could Discriminate Rectal Cancer Patients with Different Responses to Neoadjuvant Radiotherapy. Cancers (Basel) 2022; 14:993. [PMID: 35205741 PMCID: PMC8870712 DOI: 10.3390/cancers14040993] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Identification of biomarkers that could be used for the prediction of the response to neoadjuvant radiotherapy (neo-RT) in locally advanced rectal cancer remains a challenge addressed by different experimental approaches. Exosomes and other classes of extracellular vesicles circulating in patients' blood represent a novel type of liquid biopsy and a source of cancer biomarkers. Here, we used a combined proteomic and metabolomic approach based on mass spectrometry techniques for studying the molecular components of exosomes isolated from the serum of rectal cancer patients with different responses to neo-RT. This allowed revealing several proteins and metabolites associated with common pathways relevant for the response of rectal cancer patients to neo-RT, including immune system response, complement activation cascade, platelet functions, metabolism of lipids, metabolism of glucose, and cancer-related signaling pathways. Moreover, the composition of serum-derived exosomes and a whole serum was analyzed in parallel to compare the biomarker potential of both specimens. Among proteins that the most properly discriminated good and poor responders were GPLD1 (AUC = 0.85, accuracy of 74%) identified in plasma as well as C8G (AUC = 0.91, accuracy 81%), SERPINF2 (AUC = 0.91, accuracy 79%) and CFHR3 (AUC = 0.90, accuracy 81%) identified in exosomes. We found that the proteome component of serum-derived exosomes has the highest capacity to discriminate samples of patients with different responses to neo-RT when compared to the whole plasma proteome and metabolome. We concluded that the molecular components of exosomes are associated with the response of rectal cancer patients to neo-RT and could be used for the prediction of such response.
Collapse
Affiliation(s)
- Urszula Strybel
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Lukasz Marczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Marcin Zeman
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Łukasz Mielańczyk
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Ł.M.); (O.K.)
| | - Olesya Klymenko
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Ł.M.); (O.K.)
| | - Anna Samelak-Czajka
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Paulina Jackowiak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Mateusz Smolarz
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Mykola Chekan
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Ewa Zembala-Nożyńska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Piotr Widlak
- Clinical Research Support Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Anna Wojakowska
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| |
Collapse
|
27
|
He D, Zhao Z, Fu B, Li X, Zhao L, Chen Y, Liu L, Liu R, Li J. Exosomes Participate in the Radiotherapy Resistance of Cancers. Radiat Res 2022; 197:559-565. [PMID: 35588472 DOI: 10.1667/rade-21-00115.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Dan He
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.China
| | | | - Bo Fu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Xiaofei Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Long Zhao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Lei Liu
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sich
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| |
Collapse
|
28
|
Soltész B, Buglyó G, Németh N, Szilágyi M, Pös O, Szemes T, Balogh I, Nagy B. The Role of Exosomes in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010008. [PMID: 35008434 PMCID: PMC8744561 DOI: 10.3390/ijms23010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection, characterization and monitoring of cancer are possible by using extracellular vesicles (EVs) isolated from non-invasively obtained liquid biopsy samples. They play a role in intercellular communication contributing to cell growth, differentiation and survival, thereby affecting the formation of tumor microenvironments and causing metastases. EVs were discovered more than seventy years ago. They have been tested recently as tools of drug delivery to treat cancer. Here we give a brief review on extracellular vesicles, exosomes, microvesicles and apoptotic bodies. Exosomes play an important role by carrying extracellular nucleic acids (DNA, RNA) in cell-to-cell communication causing tumor and metastasis development. We discuss the role of extracellular vesicles in the pathogenesis of cancer and their practical application in the early diagnosis, follow up, and next-generation treatment of cancer patients.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
- Correspondence: ; Tel.: +36-52416531
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| | - Ondrej Pös
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (T.S.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia
| | - Tomas Szemes
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (T.S.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| |
Collapse
|
29
|
Van der Mude A. A proposed Information-Based modality for the treatment of cancer. Biosystems 2021; 211:104587. [PMID: 34915101 DOI: 10.1016/j.biosystems.2021.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/20/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Treatment modalities for cancer involve physical manipulations such as surgery, immunology, radiation, chemotherapy or gene editing. This is a proposal for an information-based modality. This modality does not change the internal state of the cancer cell directly - instead, the cancer cell is manipulated by giving it information to instruct the cell to perform an action. This modality is based on a theory of Structure Encoding in DNA, where information about body part structure controls the epigenetic state of cells in the process of development from pluripotent cells to fully differentiated cells. It has been noted that cancer is often due to errors in morphogenetic differentiation accompanied by associated epigenetic processes. This implies a model of cancer called the Epigenetic Differentiation Model. A major feature of the Structure Encoding Theory is that the characteristics of the differentiated cell are affected by inter-cellular information passed in the tissue microenvironment, which specifies the exact location of a cell in a body part structure. This is done by exosomes that carry fragments of long non-coding RNA and transposons, which convey structure information. In the normal process of epigenetic differentiation, the information passed may lead to apoptosis due to the constraints of a particular body part structure. The proposed treatment involves determining what structure information is being passed in a particular tumor, then adding artificial exosomes that overwhelm the current information with commands for the cells to go into apoptosis.
Collapse
|
30
|
Exosomes Derived from Radioresistant Breast Cancer Cells Promote Therapeutic Resistance in Naïve Recipient Cells. J Pers Med 2021; 11:jpm11121310. [PMID: 34945782 PMCID: PMC8704086 DOI: 10.3390/jpm11121310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation resistance is a significant challenge in the treatment of breast cancer in humans. Human breast cancer is commonly treated with surgery and adjuvant chemotherapy/radiotherapy, but recurrence and metastasis upon the development of therapy resistance results in treatment failure. Exosomes are extracellular vesicles secreted by most cell types and contain biologically active cargo that, when transferred to recipient cells, can influence the cells’ genome and proteome. We propose that exosomes secreted by radioresistant (RR) cells may be able to disseminate the RR phenotype throughout the tumour. Here, we isolated exosomes from the human breast cancer cell line, MDA-MB-231, and the canine mammary carcinoma cell line, REM134, and their RR counterparts to investigate the effects of exosomes derived from RR cells on non-RR recipient cells. Canine mammary cancer cells lines have previously been shown to be excellent translational models of human breast cancer. This is consistent with our current data showing that exosomes derived from RR cells can increase cell viability and colony formation in naïve recipient cells and increase chemotherapy and radiotherapy resistance, in both species. These results are consistent in cancer stem cell and non-cancer stem cell populations. Significantly, exosomes derived from RR cells increased the tumoursphere-forming ability of recipient cells compared to exosomes derived from non-RR cells. Our results show that exosomes are potential mediators of radiation resistance that could be therapeutically targeted.
Collapse
|
31
|
Gareev I, Beylerli O, Liang Y, Xiang H, Liu C, Xu X, Yuan C, Ahmad A, Yang G. The Role of MicroRNAs in Therapeutic Resistance of Malignant Primary Brain Tumors. Front Cell Dev Biol 2021; 9:740303. [PMID: 34692698 PMCID: PMC8529124 DOI: 10.3389/fcell.2021.740303] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023] Open
Abstract
Brain tumors in children and adults are challenging tumors to treat. Malignant primary brain tumors (MPBTs) such as glioblastoma have very poor outcomes, emphasizing the need to better understand their pathogenesis. Developing novel strategies to slow down or even stop the growth of brain tumors remains one of the major clinical challenges. Modern treatment strategies for MPBTs are based on open surgery, chemotherapy, and radiation therapy. However, none of these treatments, alone or in combination, are considered effective in controlling tumor progression. MicroRNAs (miRNAs) are 18-22 nucleotide long endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level by interacting with 3'-untranslated regions (3'-UTR) of mRNA-targets. It has been proven that miRNAs play a significant role in various biological processes, including the cell cycle, apoptosis, proliferation, differentiation, etc. Over the last decade, there has been an emergence of a large number of studies devoted to the role of miRNAs in the oncogenesis of brain tumors and the development of resistance to radio- and chemotherapy. Wherein, among the variety of molecules secreted by tumor cells into the external environment, extracellular vesicles (EVs) (exosomes and microvesicles) play a special role. Various elements were found in the EVs, including miRNAs, which can be transported as part of these EVs both between neighboring cells and between remotely located cells of different tissues using biological fluids. Some of these miRNAs in EVs can contribute to the development of resistance to radio- and chemotherapy in MPBTs, including multidrug resistance (MDR). This comprehensive review examines the role of miRNAs in the resistance of MPBTs (e.g., high-grade meningiomas, medulloblastoma (MB), pituitary adenomas (PAs) with aggressive behavior, and glioblastoma) to chemoradiotherapy and pharmacological treatment. It is believed that miRNAs are future therapeutic targets in MPBTs and such the role of miRNAs needs to be critically evaluated to focus on solving the problems of resistance to therapy this kind of human tumors.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Huang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Chunyang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Xun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Chao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| |
Collapse
|
32
|
Chen HH, Zhang TN, Wu QJ, Huang XM, Zhao YH. Circular RNAs in Lung Cancer: Recent Advances and Future Perspectives. Front Oncol 2021; 11:664290. [PMID: 34295810 PMCID: PMC8290158 DOI: 10.3389/fonc.2021.664290] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Globally, lung cancer is the most commonly diagnosed cancer and carries with it the greatest mortality rate, with 5-year survival rates varying from 4–17% depending on stage and geographical differences. For decades, researchers have studied disease mechanisms, occurrence rates and disease development, however, the mechanisms underlying disease progression are not yet fully elucidated, thus an increased understanding of disease pathogenesis is key to developing new strategies towards specific disease diagnoses and targeted treatments. Circular RNAs (circRNAs) are a class of non-coding RNA widely expressed in eukaryotic cells, and participate in various biological processes implicated in human disease. Recent studies have indicated that circRNAs both positively and negatively regulate lung cancer cell proliferation, migration, invasion and apoptosis. Additionally, circRNAs could be promising biomarkers and targets for lung cancer therapies. This review systematically highlights recent advances in circRNA regulatory roles in lung cancer, and sheds light on their use as potential biomarkers and treatment targets for this disease.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatric, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Lu Z, Ortiz A, Verginadis II, Peck AR, Zahedi F, Cho C, Yu P, DeRita RM, Zhang H, Kubanoff R, Sun Y, Yaspan AT, Krespan E, Beiting DP, Radaelli E, Ryeom SW, Diehl JA, Rui H, Koumenis C, Fuchs SY. Regulation of intercellular biomolecule transfer-driven tumor angiogenesis and responses to anticancer therapies. J Clin Invest 2021; 131:144225. [PMID: 33998600 PMCID: PMC8121529 DOI: 10.1172/jci144225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Intercellular biomolecule transfer (ICBT) between malignant and benign cells is a major driver of tumor growth, resistance to anticancer therapies, and therapy-triggered metastatic disease. Here we characterized cholesterol 25-hydroxylase (CH25H) as a key genetic suppressor of ICBT between malignant and endothelial cells (ECs) and of ICBT-driven angiopoietin-2-dependent activation of ECs, stimulation of intratumoral angiogenesis, and tumor growth. Human CH25H was downregulated in the ECs from patients with colorectal cancer and the low levels of stromal CH25H were associated with a poor disease outcome. Knockout of endothelial CH25H stimulated angiogenesis and tumor growth in mice. Pharmacologic inhibition of ICBT by reserpine compensated for CH25H loss, elicited angiostatic effects (alone or combined with sunitinib), augmented the therapeutic effect of radio-/chemotherapy, and prevented metastatic disease induced by these regimens. We propose inhibiting ICBT to improve the overall efficacy of anticancer therapies and limit their prometastatic side effects.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Angelica Ortiz
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ioannis I. Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy R. Peck
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Farima Zahedi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina Cho
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pengfei Yu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel M. DeRita
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hongru Zhang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan Kubanoff
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrew T. Yaspan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elise Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sandra W. Ryeom
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J. Alan Diehl
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Srivatsav AT, Kapoor S. The Emerging World of Membrane Vesicles: Functional Relevance, Theranostic Avenues and Tools for Investigating Membrane Function. Front Mol Biosci 2021; 8:640355. [PMID: 33968983 PMCID: PMC8101706 DOI: 10.3389/fmolb.2021.640355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell membranes and govern various membrane functions. Lipid organization within membrane plane dictates recruitment of specific proteins and lipids into distinct nanoclusters that initiate cellular signaling while modulating protein and lipid functions. In addition, one of the most versatile function of lipids is the formation of diverse lipid membrane vesicles for regulating various cellular processes including intracellular trafficking of molecular cargo. In this review, we focus on the various kinds of membrane vesicles in eukaryotes and bacteria, their biogenesis, and their multifaceted functional roles in cellular communication, host-pathogen interactions and biotechnological applications. We elaborate on how their distinct lipid composition of membrane vesicles compared to parent cells enables early and non-invasive diagnosis of cancer and tuberculosis, while inspiring vaccine development and drug delivery platforms. Finally, we discuss the use of membrane vesicles as excellent tools for investigating membrane lateral organization and protein sorting, which is otherwise challenging but extremely crucial for normal cellular functioning. We present current limitations in this field and how the same could be addressed to propel a fundamental and technology-oriented future for extracellular membrane vesicles.
Collapse
Affiliation(s)
- Aswin T. Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- Wadhwani Research Center of Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
35
|
Yu X, Liu B, Zhang N, Wang Q, Cheng G. Immune Response: A Missed Opportunity Between Vitamin D and Radiotherapy. Front Cell Dev Biol 2021; 9:646981. [PMID: 33928081 PMCID: PMC8076745 DOI: 10.3389/fcell.2021.646981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Radiotherapy (RT) is a mainstay treatment in several types of cancer and acts by mediating various forms of cancer cell death, although it is still a large challenge to enhance therapy efficacy. Radiation resistance represents the main cause of cancer progression, therefore, overcoming treatment resistance is now the greatest challenge for clinicians. Increasing evidence indicates that immune response plays a role in reprogramming the radiation-induced tumor microenvironment (TME). Intriguingly, radiation-induced immunosuppression possibly overwhelms the ability of immune system to ablate tumor cells. This induces an immune equilibrium, which, we hypothesize, is an opportunity for radiosensitizers to make actions. Vitamin D has been reported to act in synergistic with RT by potentiating antiproliferative effect induced by therapeutics. Additionally, vitamin D can also regulate the TME and may even lead to immunostimulation by blocking immunosuppression following radiation. Previous reviews have focused on vitamin D metabolism and epidemiological trials, however, the synergistic effect of vitamin D and existing therapies remains unknown. This review summarizes vitamin D mediated radiosensitization, radiation immunity, and vitamin D-regulated TME, which may contribute to more successful vitamin D-adjuvant radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Guanghui Cheng
- Department of Radiation Oncology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Yin T, Xin H, Yu J, Teng F. The role of exosomes in tumour immunity under radiotherapy: eliciting abscopal effects? Biomark Res 2021; 9:22. [PMID: 33789758 PMCID: PMC8011088 DOI: 10.1186/s40364-021-00277-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
As a curative treatment of localized tumours or as palliative control, radiotherapy (RT) has long been known to kill tumour cells and trigger the release of proinflammatory factors and immune cells to elicit an immunological response to cancer. As a crucial part of the tumour microenvironment (TME), exosomes, which are double-layered nanometre-sized vesicles, can convey molecules, present antigens, and mediate cell signalling to regulate tumour immunity via their contents. Different contents result in different effects of exosomes. The abscopal effect is a systemic antitumour effect that occurs outside of the irradiated field and is associated with tumour regression. This effect is mediated through the immune system, mainly via cell-mediated immunity, and results from a combination of inflammatory cytokine cascades and immune effector cell activation. Although the abscopal effect has been observed in various malignancies for many years, it is still a rarely identified clinical event. Researchers have indicated that exosomes can potentiate abscopal effects to enhance the effects of radiation, but the specific mechanisms are still unclear. In addition, radiation can affect exosome release and composition, and irradiated cells release exosomes with specific contents that change the cellular immune status. Hence, fully understanding how radiation affects tumour immunity and the interaction between specific exosomal contents and radiation may be a potential strategy to maximize the efficacy of cancer therapy. The optimal application of exosomes as novel immune stimulators is under active investigation and is described in this review.
Collapse
Affiliation(s)
- Tianwen Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huixian Xin
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
37
|
Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Front Oncol 2021; 11:638357. [PMID: 33791224 PMCID: PMC8005721 DOI: 10.3389/fonc.2021.638357] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles are small membrane particles derived from various cell types. EVs are broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis and cargoes. Numerous studies have shown that EVs regulate multiple physiological and pathophysiological processes. The roles of small extracellular vesicles in cancer growth and metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles are an ideal drug delivery platform for anticancer agents. However, several aspects of small extracellular vesicle biology remain unclear, hindering the clinical implementation of small extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers and predict treatment outcomes. We also review findings from preclinical and clinical studies of small extracellular vesicle-based cancer therapies and summarize interventional clinical trials registered in the United States Food and Drug Administration and the Chinese Clinical Trials Registry. Finally, we discuss the main challenges limiting the clinical implementation of small extracellular vesicles and recommend possible approaches to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Wang X, Cao Q, Shi Y, Wu X, Mi Y, Liu K, Kan Q, Fan R, Liu Z, Zhang M. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRα pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance. Int J Biol Sci 2021; 17:1061-1078. [PMID: 33867829 PMCID: PMC8040305 DOI: 10.7150/ijbs.57168] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is a central nervous malignancy with a very poor prognosis. This study attempted to explore the role of exosomes induced by low-dose radiation-induced (ldrEXOs) and ldrEXOs-derived circ-METRN in glioblastoma progression and radioresistance at the molecular, cellular, animal, and clinical levels. Results in the present study revealed that low-dose radiation stimulated the secretion of ldrEXOs which delivered high levels of circ-METRN. And circ-METRN-abundant ldrEXOs increased the expression of γ-H2AX, indicating an efficient DNA damage-repair process in glioblastoma cells. The ldrEXOs-derived circ-METRN enhanced the glioblastoma progression and radioresistance via miR-4709-3p/GRB14/PDGFRα pathway. Up-regulating PDGFRα can rescue the tumor-promoting function of ldrEXOs in groups previously treated with inhibition of GRB14. Additionally, in-vivo experiments revealed that treatments with ldrEXOs promoted the growth of xenografted tumors and shortened the survival period. Furthermore, clinical researches indicated that circ-METRN may be transported into the bloodstream by exosomes in the early stages of fractionated radiotherapy. It has important clinical values to detect the serum exosomal circ-METRN in the early stage of radiotherapy, which is not only conducive to predict radioresistance and prognosis but also to assist MRI diagnosis in detecting the very early recurrence of glioblastoma. In summary, this study reveals for the first time that low-dose radiation-induced exosomal circ-METRN plays an oncogenic role in glioblastoma progression and radioresistance through miR-4709-3p/GRB14/PDGFRα pathway, providing mechanistic insights into the roles of circRNAs and a valuable marker for therapeutic targets in glioblastoma.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qinchen Cao
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yonggang Shi
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiaolong Wu
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yin Mi
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ke Liu
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Quancheng Kan
- Department of Pharmacy and Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhangsuo Liu
- Department of Pharmacy and Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Mingzhi Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
39
|
Qiu H, Zhang L, Yi T, Yang K, Gong Y, Xie C. Retracted: Long non-coding RNA TP73-AS1 facilitates progression and radioresistance in lung cancer cells by the miR-216a-5p/CUL4B axis with exosome involvement. Thorac Cancer 2021; 12:409. [PMID: 32841514 PMCID: PMC7862789 DOI: 10.1111/1759-7714.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
Retraction: Qiu, H., Zhang, L., Yi, T., Yang, K., Gong, Y. and Xie, C. (2020), Long non-coding RNA TP73-AS1 facilitates progression and radioresistance in lung cancer cells by the miR-216a-5p/CUL4B axis with exosome involvement. Thorac Cancer. https://doi.org/10.1111/1759-7714.13602 The above article, published online on 25 August 2020 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement among the authors, the journal Editor in Chief Qinghua Zhou, and John Wiley & Sons Ltd. The retraction has been agreed after the results reported in Figures 3B, 3C, 3I, and 3J were found to be not repeatable in authors' further study.
Collapse
Affiliation(s)
- Huibing Qiu
- Department of Radiation and Medical OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Lingyun Zhang
- Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Tienan Yi
- Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Kai Yang
- Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Yan Gong
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Conghua Xie
- Department of Radiation and Medical OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumor Biological BehaviorsZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Cancer Clinical Study CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
40
|
Yang X, Cai S, Shu Y, Deng X, Zhang Y, He N, Wan L, Chen X, Qu Y, Yu S. Exosomal miR-487a derived from m2 macrophage promotes the progression of gastric cancer. Cell Cycle 2021; 20:434-444. [PMID: 33522393 DOI: 10.1080/15384101.2021.1878326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages contribute to cell growth, development, and metastasis in various cancers. However, the underlying mechanisms of M2 macrophage that modulate the progression of gastric cancer (GC) remain largely unknown. In this study, we detected the ratio of macrophages in GC tissues and found that the proportion of M2 macrophages was increased in GC tissues. We then co-cultured GC cells with M1 and M2 macrophages, respectively, and then assessed cell proliferation and tumorigenicity of GC cells by MTT and colony formation assay. The results indicated that M2 macrophages promoted the proliferation of GC cells, but M1 not. Besides, GW4869, an exosomes inhibitor, reduced the effects induced by M2 macrophage. Then, we isolated and identified exosomes derived from M1 and M2 macrophage, and confirmed that the exosomes could be taken up by GC cells. We demonstrated that M2 macrophage-exosomes could induce the proliferation and tumorigenesis in vitro and in vivo. Moreover, miR-487a was enriched in M2 macrophage-exosomes and further determined that miR-487a exert the functions by targeting TIA1. In conclusion, exosomal miR-487a derived from M2 macrophage promotes the proliferation and tumorigenesis in gastric cancer, and the novel findings might be helpful to the development of novel diagnostic and therapeutic methods in GC.
Collapse
Affiliation(s)
- Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University , Zunyi, China.,Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Shuang Cai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Yue Shu
- Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University , Zunyi, China
| | - Xun Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Yuanwei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Nian He
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Lei Wan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Xu Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Yan Qu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Shouyang Yu
- Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University , Zunyi, China
| |
Collapse
|
41
|
Byrne NM, Tambe P, Coulter JA. Radiation Response in the Tumour Microenvironment: Predictive Biomarkers and Future Perspectives. J Pers Med 2021; 11:jpm11010053. [PMID: 33467153 PMCID: PMC7830490 DOI: 10.3390/jpm11010053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) is a primary treatment modality for a number of cancers, offering potentially curative outcomes. Despite its success, tumour cells can become resistant to RT, leading to disease recurrence. Components of the tumour microenvironment (TME) likely play an integral role in managing RT success or failure including infiltrating immune cells, the tumour vasculature and stroma. Furthermore, genomic profiling of the TME could identify predictive biomarkers or gene signatures indicative of RT response. In this review, we will discuss proposed mechanisms of radioresistance within the TME, biomarkers that may predict RT outcomes, and future perspectives on radiation treatment in the era of personalised medicine.
Collapse
|
42
|
Ariyoshi K, Hiroyama Y, Fujiwara N, Miura T, Kasai K, Nakata A, Fujishima Y, Ting Goh VS, Yoshida MA. Extracellular vesicles released from irradiated neonatal mouse cheek tissue increased cell survival after radiation. JOURNAL OF RADIATION RESEARCH 2021; 62:73-78. [PMID: 33302296 PMCID: PMC7779349 DOI: 10.1093/jrr/rraa106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 05/03/2023]
Abstract
Alopecia is one of the common symptoms after high-dose radiation exposure. In our experiments, neonatal mice that received 7 Gy X-ray exhibited defects in overall hair growth, except for their cheeks. This phenomenon might suggest that some substances were secreted and prevented hair follicle loss in the infant tissues around their cheeks after radiation damage. In this study, we focused on exosome-like vesicles (ELV) secreted from cheek skin tissues and back skin tissues, as control, and examined their radiation protective effects on mouse fibroblast cell lines. We observed that ELV from irradiated cheek skin showed protective effects from radiation. Our results suggest that ELV from radiation-exposed cheek skin tissue is one of the secreted factors that prevent hair follicle loss after high-dose radiation.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Corresponding author: Integrated Center for Science and Humanities, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan. Tel: +81-24-547-1111: Fax: +81-24-547-1967: E-mail:
| | - Yota Hiroyama
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Naoya Fujiwara
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Tomisato Miura
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Kosuke Kasai
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Akifumi Nakata
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
| | - Yohei Fujishima
- Department of Radiation Biology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Valerie Swee Ting Goh
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Mitsuaki A Yoshida
- Integrated Center for Science and Humanities, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan
| |
Collapse
|
43
|
Mortezaee K, Najafi M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit Rev Oncol Hematol 2020; 157:103180. [PMID: 33264717 DOI: 10.1016/j.critrevonc.2020.103180] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a common modality for more than half of cancer patients. Classically, radiation is known as a strategy to kill cancer cells via direct interaction with DNA or generation of free radicals. Nowadays, we know that modulation of immune system has a key role in the outcome of radiotherapy. Selecting an appropriate dose per fraction is important for stimulation of anti-tumor immunity. Unfortunately, cancer cells and other cells within tumor microenvironment (TME) promote some mechanisms implicated in the attenuation of anti-tumor immunity via exhaustion of CD8 + T lymphocytes and natural killer (NK) cells. Immunotherapy with immune checkpoint inhibitors (ICIs) has shown to be an interesting adjuvant for induction of more effective anti-tumor immunity. Clinical trial studies are ongoing for uncovering more knowledge about the efficacy of ICI combination with radiotherapy. Some newer pre-clinical studies show more effective therapeutic window for targeting PD-1 and some other targets in combination with hypofractionated radiotherapy. In this review, we explain cellular and molecular consequences in the TME following radiotherapy and promising immune targets to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
44
|
Zare N, Kefayat A, Javanmard SH. Evaluation of Radiation and Ammonium Lactate Effects on Hyaluronic Acid Expression as a Pro-cancerous Factor in Supernatant and Exosome Isolated from Supernatant of Primary Mouse Fibroblast Cell Culture. Int J Prev Med 2020; 11:125. [PMID: 33088453 PMCID: PMC7554551 DOI: 10.4103/ijpvm.ijpvm_135_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/04/2022] Open
Abstract
Background: Previous studies show that aberrant synthesis of Hyaluronan accelerates tumor growth, angiogenesis, and metastasis. The fibroblasts are probably responsible for most of the hyaluronic acid (HA) accumulation in tumor microenvironment after radiotherapy. Our goal is to investigate and compare radiation and lactate effects on HA levels in supernatant and exosome isolated from supernatant of primary mouse fibroblast cell culture. Methods: Fibroblast cells were prepared from skin of C57BL6 mouse. These cells were divided into three groups (no treatment, cells treated with 10 mM ammonium lactate, and irradiated cells). Then supernatant was harvested from FBS-free culture media after 48 h. Exosomes were purified by differential centrifugation (300 × g for 10 min, 2000 × g for 30 min, 16500 g for 30 min) and were pelleted by ultracentrifugation (150,000 × g for 180 min). Size of exosomes was determined using a Zetasizer. HA concentration measured using a HA ELISA Kit. Data were analyzed using one-way ANOVA. Results: There was a significant increase in HA-coated exosomes isolated from supernatants of irradiated cells compared to untreated cell and cells treated with 10 mM ammonium lactate (P < 0.001). As well, there was a significant increase in the HA concentration in the supernatants of cells treated with 10 mM ammonium lactate relative to untreated cells and irradiated cells (P < 0.05). Conclusions: It seems that routine radiation therapy leads to massive shedding of HA-coated exosomes by normal fibroblast cells and thus exosomes-HA may contribute to tumor promotion and induce of the premetastatic niche.
Collapse
Affiliation(s)
- Nasrin Zare
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhosein Kefayat
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Askenase PW. COVID-19 therapy with mesenchymal stromal cells (MSC) and convalescent plasma must consider exosome involvement: Do the exosomes in convalescent plasma antagonize the weak immune antibodies? J Extracell Vesicles 2020; 10:e12004. [PMID: 33304473 PMCID: PMC7710130 DOI: 10.1002/jev2.12004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/12/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Exosome extracellular vesicles as biologic therapy for COVID-19 are discussed for two areas. The first involves the growing use of mesenchymal stromal cells (MSCs) for the profound clinical cytokine storm and severe pneumonia in COVID-19 patients. Instead, it is recommended to treat alternatively with their MSC-released exosomes. This is because many reports in the literature and our data have shown that the release of exosomes from the in vivo administered MSC is actually responsible for their beneficial effects. Further, the exosomes are superior, simpler and clinically more convenient compared to their parental MSC. Additionally, in the context of COVID-19, the known tendency of MSC to intravascularly aggregate causing lung dysfunction might synergize with the pneumonia aspects, and the tendency of MSC peripheral vascular micro aggregates might synergize with the vascular clots of the COVID-19 disease process, causing significant central or peripheral vascular insufficiency. The second exosome therapeutic area for severe COVID-19 involves use of convalescent plasma for its content of acquired immune antibodies that must consider the role in this therapy of contained nearly trillions of exosomes. Many of these derive from activated immune modulating cells and likely can function to transfer miRNAs that acting epigenetically to also influence the convalescent plasma recipient response to the virus. There is sufficient evidence, like recovery of patients with antibody deficiencies, to postulate that the antibodies actually have little effect and that immune resistance is principally due to T cell mechanisms. Further, COVID-19 convalescent plasma has remarkably weak beneficial effects if compared to what was expected from many prior studies. This may be due to the dysfunctional immune response to the infection and resulting weak Ab that may be impaired further by antagonistic exosomes in the convalescent plasma. At the least, pre selection of plasma for the best antibodies and relevant exosomes would produce the most optimum therapy for very severely affected COVID-19 patients.
Collapse
Affiliation(s)
- Philip W. Askenase
- Section of Rheumatology and Clinical ImmunologyDepartment of Internal MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
46
|
Luo Y, Ma J, Liu F, Guo J, Gui R. Diagnostic value of exosomal circMYC in radioresistant nasopharyngeal carcinoma. Head Neck 2020; 42:3702-3711. [PMID: 32945062 DOI: 10.1002/hed.26441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/11/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The relationship between circulating exosomal circular RNA (circRNA) and prognosis of patients with nasopharyngeal carcinoma (NPC) remain unknown. This study focused on the expression of exosomal circMYC and its relationship with the recurrence and prognosis of patients with NPC. METHODS The circulating exosomes were obtained from 210 patients with NPC. Quantitative polymerase chain reaction, 5-ethynyl-2'-deoxyuridine (EdU) staining, colony formation, and bioinformatic analysis were performed. RESULTS Circulating exosomal circMYC was significantly increased in patients with NPC and was associated with tumor size, lymph node metastasis, TNM stage, survival rate, and disease recurrence. Gain-functional and loss-functional experiments revealed that overexpression of circMYC promoted cell proliferation and reduce radiosensitivity, while knockdown of circMYC inhibited cell proliferation and enhanced radiotherapy. CONCLUSION circMYC is an oncogene in NPC cells and can enhance the radiotherapy resistance of NPC cells. Circulating exosomal circMYC can be used as a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinqi Ma
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fengxia Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Guo
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Elzanowska J, Semira C, Costa-Silva B. DNA in extracellular vesicles: biological and clinical aspects. Mol Oncol 2020; 15:1701-1714. [PMID: 32767659 PMCID: PMC8169445 DOI: 10.1002/1878-0261.12777] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
The study of extracellular vesicles (EVs), especially in the liquid biopsy field, has rapidly evolved in recent years. However, most EV studies have focused on RNA or protein content and DNA in EVs (EV‐DNA) has largely been unnoticed. In this review, we compile current evidence regarding EV‐DNA and provide an extensive discussion on EV‐DNA biology. We look into EV‐DNA biogenesis and mechanisms of DNA loading into EVs, as well as describe the particularly significant function of DNA‐carrying EVs in the maintenance of cellular homeostasis, intracellular communication, and immune response modulation. We also examine the current role of EV‐DNA in the clinical setting, specifically in cancer, infections, pregnancy, and prenatal diagnosis.
Collapse
Affiliation(s)
- Julia Elzanowska
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Christine Semira
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Bruno Costa-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
48
|
Could Protons and Carbon Ions Be the Silver Bullets Against Pancreatic Cancer? Int J Mol Sci 2020; 21:ijms21134767. [PMID: 32635552 PMCID: PMC7369903 DOI: 10.3390/ijms21134767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a very aggressive cancer type associated with one of the poorest prognostics. Despite several clinical trials to combine different types of therapies, none of them resulted in significant improvements for patient survival. Pancreatic cancers demonstrate a very broad panel of resistance mechanisms due to their biological properties but also their ability to remodel the tumour microenvironment. Radiotherapy is one of the most widely used treatments against cancer but, up to now, its impact remains limited in the context of pancreatic cancer. The modern era of radiotherapy proposes new approaches with increasing conformation but also more efficient effects on tumours in the case of charged particles. In this review, we highlight the interest in using charged particles in the context of pancreatic cancer therapy and the impact of this alternative to counteract resistance mechanisms.
Collapse
|
49
|
Tumor microenvironment, immune response and post-radiotherapy tumor clearance. Clin Transl Oncol 2020; 22:2196-2205. [PMID: 32445035 DOI: 10.1007/s12094-020-02378-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy is the treatment of choice for many cancer patients. Residual tumor leads to local recurrence after a period of an equilibrium created between proliferating, quiescent and dying cancer cells. The tumor microenvironment is a main obstacle for the efficacy of radiotherapy, as impaired blood flow leads to hypoxia, acidity and reduced accessibility of radiosensitizers. Eradication of remnant disease is an intractable clinical quest. After more than a century of research, anti-tumor immunity has gained a dominant position in oncology research and therapy. Immune cells play a significant role in the eradication of tumors during and after the completion of radiotherapy. The tumor equilibrium reached in the irradiated tumor may shift towards cancer cell eradication if the immune response is appropriately modulated. In the modern immunotherapy era, clinical trials are urged to standardize immunotherapy schemes that could be safely applied to improve clearance of the post-radiotherapy remnant disease.
Collapse
|
50
|
Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, Mehta M, Peterson JE, Munshi A, Ramesh R. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett 2020; 486:18-28. [PMID: 32439419 DOI: 10.1016/j.canlet.2020.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Exosomes are small membranous vesicles implicated in intercellular signalling. Through their uncanny ability to carry and deliver donor cellular cargo (biomolecules) to target cells, they exert a profound effect on the regular functioning of healthy cells and play a significant role in pathogenesis and progression of several diseases, including cancer. The composition and number of endogenously circulating exosomes frequently vary, which is often reflective of the pathophysiological status of the cell. Applicability of exosomes derived from normal cells as a drug carrier with or without modifying their intraluminal and surface components are generally tested. Conversely, exosomes also are reported to contribute to resistance towards several anti-cancer therapies. Therefore, it is necessary to carefully evaluate the role of exosomes in cancer progression, resistance and the potential use of exosomes as a delivery vehicle of cancer therapeutics. In this review, we summarize the recent advancements in the exploitation of exosomes as a drug delivery vehicle. We also discuss the role of exosomes in conferring resistance to anti-cancer therapeutics. While this review is focused on cancer, the exosome-based drug delivery and resistance is also applicable to other human diseases.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Akhil Srivastava
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Narsireddy Amreddy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohammad Razaq
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vipul Pareek
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rebaz Ahmed
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|