1
|
Huang Y, Guan Y, Zhang X. METTL3-Mediated Maturation of miR-99a-5p Promotes Cell Migration and Invasion in Oral Squamous Cell Carcinoma by Targeting ZBTB7A. Mol Biotechnol 2024; 66:1942-1953. [PMID: 37498409 DOI: 10.1007/s12033-023-00815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
METTL3 is an important methyltransferase in N(6)-methyladenosine (m6A) modification. Recently, METTL3 mediates methylation of pri-microRNA (miRNA) to accelerate miRNA maturation, regulating tumor development. This study explored whether METTL3 mediated miR-99a-5p to influence oral squamous cell carcinoma (OSCC) cell metastasis. MiR-99a-5p, ZBTB7A, and MATTL3 expression was measured using quantitative real-time PCR. Biological behaviors were assessed using cell counting kit-8, flow cytometry, Transwell assay, as well as western blot. Luciferase reporter assay evaluated the interaction between miR-99a-5p and ZBTB7A. METTL3-regulated pri-miR-99a-5p processing was determined by RNA binding protein immunoprecipitation (RIP) and methylated RNA immunoprecipitation (MeRIP) assays. The consequences clarified that miR-99a-5p was upregulated in OSCC cells. Downregulation of miR-99a-5p suppressed cellular viability, migration, invasion, and epithelial-mesenchymal transition (EMT), and induced apoptosis. ZBTB7A acted as a miR-99a-5p target and reversed the effects on cellular behaviors induced by miR-99a-5p inhibitor. m6A content and METTL3 expression were increased in OSCC cells. METTL3 promoted the m6A modification of pri-miR-99a-5p and thereby facilitated miR-99a-5p processing. Moreover, knockdown of METTL3 inhibited OSCC metastasis by downregulating miR-99a-5p. Taken together, METTL3 promoted miR-99a-5p maturation in an m6A-dependent manner, which further targets ZBTB7A to accelerate the progression of OSCC. These findings suggest potential targets for OSCC therapy.
Collapse
Affiliation(s)
- Yuhua Huang
- Department of stomatology, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, 6/F, East Zone, No. 111, Dade Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - Yun Guan
- Department of stomatology, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, 6/F, East Zone, No. 111, Dade Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - Xing Zhang
- Department of stomatology, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, 6/F, East Zone, No. 111, Dade Road, Yuexiu District, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
2
|
Dey S, Biswas B, Manoj Appadan A, Shah J, Pal JK, Basu S, Sur S. Non-Coding RNAs in Oral Cancer: Emerging Roles and Clinical Applications. Cancers (Basel) 2023; 15:3752. [PMID: 37568568 PMCID: PMC10417002 DOI: 10.3390/cancers15153752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Oral cancer (OC) is among the most prevalent cancers in the world. Certain geographical areas are disproportionately affected by OC cases due to the regional differences in dietary habits, tobacco and alcohol consumption. However, conventional therapeutic methods do not yield satisfying treatment outcomes. Thus, there is an urgent need to understand the disease process and to develop diagnostic and therapeutic strategies for OC. In this review, we discuss the role of various types of ncRNAs in OC, and their promising clinical implications as prognostic or diagnostic markers and therapeutic targets. MicroRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) are the major ncRNA types whose involvement in OC are emerging. Dysregulated expression of ncRNAs, particularly miRNAs, lncRNAs, and circRNAs, are linked with the initiation, progression, as well as therapy resistance of OC via modulation in a series of cellular pathways through epigenetic, transcriptional, post-transcriptional, and translational modifications. Differential expressions of miRNAs and lncRNAs in blood, saliva or extracellular vesicles have indicated potential diagnostic and prognostic importance. In this review, we have summarized all the promising aspects of ncRNAs in the management of OC.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| | - Subhayan Sur
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| |
Collapse
|
3
|
Tajik F, Alian F, Yousefi M, Azadfallah A, Hoseini A, Mohammadi F, Karimi-Dehkordi M, Alizadeh-Fanalou S. MicroRNA-372 acts as a double-edged sword in human cancers. Heliyon 2023; 9:e15991. [PMID: 37251909 PMCID: PMC10208947 DOI: 10.1016/j.heliyon.2023.e15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are non-coding, single-stranded, endogenous RNAs that regulate various biological processes, most notably the pathophysiology of many human malignancies. It process is accomplished by binding to 3'-UTR mRNAs and controlling gene expression at the post-transcriptional level. As an oncogene, miRNAs can either accelerate cancer progression or slow it down as a tumor suppressor. MicroRNA-372 (miR-372) has been found to have an abnormal expression in numerous human malignancies, implying that the miRNA plays a role in carcinogenesis. It is both increased and downregulated in various cancers, and it serves as both a tumor suppressor and an oncogene. This study examines the functions of miR-372 as well as the LncRNA/CircRNA-miRNA-mRNA signaling pathways in various malignancies and analyses its potential prognostic, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Yousefi
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Aref Hoseini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Xing L, Feng Z, Nie H, Liu M, Liu Y, Zhang X, Zhou H. Research progress and clinical application prospects of miRNAs in oral cancer. Mol Biol Rep 2022; 49:10653-10665. [PMID: 35725854 DOI: 10.1007/s11033-022-07604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/13/2022] [Indexed: 12/09/2022]
Abstract
Oral cancer is one of the most common malignant tumors worldwide, and it is also one of the most important and difficult clinical problems to be solved. Due to the regional differences in diet culture, some areas have taken the 'hardest hit' of oral cancer cases. However, the existing clinical treatment methods (surgery as the main treatment method, radiotherapy and chemotherapy as the auxiliary ones) do not have satisfactory treatment effects; therefore, new diagnosis and treatment methods need to be developed and utilized. Micro RNAs (miRNAs), as a class of substances that play an important regulatory role in the development of tumors, have an important value in the diagnosis and treatment of various tumors. At the same time, many miRNAs have obvious expression differences in oral cancer tissues compared to normal tissues. Therefore, they may have diagnostic and therapeutic effects on oral cancer. In this review, we evaluate the miRNAs that play a regulatory role in the development of oral cancer and those that are expected to be applied in the diagnosis and treatment of oral cancer. At the same time, we summarize the important challenges that need to be addressed, aiming to provide evidence and suggestions for the application of miRNAs in the diagnosis and treatment of oral cancer.
Collapse
Affiliation(s)
- Long Xing
- Northwest Minzu University, Lanzhou, China
| | | | | | | | - Yali Liu
- Northwest Minzu University, Lanzhou, China
| | | | | |
Collapse
|
5
|
Liu J, Chou Z, Li C, Huang K, Wang X, Li X, Han C, Al-Danakh A, Li X, Song X. ZBTB7A, a miR-144-3p targeted gene, accelerates bladder cancer progression via downregulating HIC1 expression. Cancer Cell Int 2022; 22:179. [PMID: 35501800 PMCID: PMC9063087 DOI: 10.1186/s12935-022-02596-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background Zinc finger and BTB domain-containing 7A (ZBTB7A) is a member of the POK family of transcription factors that plays an oncogenic or tumor-suppressive role in different cancers depending on the type and genetic context of cancer. However, the function and molecular mechanism of ZBTB7A in bladder cancer (BC) remain elusive. Methods The role of ZBTB7A in bladder cancer was detected by colony formation, transwell, and tumor formation assays. The expression levels of ZBTB7A, HIC1, and miR-144-3p were analyzed by qRT-PCR and Western blot. Bioinformatics analysis and a dual-luciferase reporter assay were used to assess the effect of ZBTB7A on the promoter activity of HIC1. Results The present study revealed that knockdown of ZBTB7A suppressed BC cell growth and migration, as indicated by an approximately 50% reduction in the number of colonies and an approximately 70% reduction in the number of migrated cells. Loss of ZBTB7A inhibited tumor growth in vivo, resulting in a 75% decrease in tumor volume and an 80% decrease in tumor weight. Further mechanistic studies revealed that ZBTB7A bound to the hypermethylated in cancer 1 (HIC1) promoter and downregulated HIC1 expression, accelerating the malignant behavior of BC. Increased expression of ZBTB7A in BC tissues was negatively corrected with the expression of HIC1. Moreover, ZBTB7A was a target of miR-144-3p, which decreased ZBTB7A expression in BC. Conclusion Our data demonstrate that ZBTB7A, a targeted gene of miR-144-3p, promoted tumorigenesis of BC through downregulating HIC1 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02596-w.
Collapse
Affiliation(s)
- Junqiang Liu
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhiyuan Chou
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chun Li
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Kai Huang
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuejian Wang
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiunan Li
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chuanchun Han
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Abdullah Al-Danakh
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaodong Li
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Xishuang Song
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
6
|
The Role of Zinc Finger Proteins in Various Oral Conditions. ScientificWorldJournal 2022; 2022:4612054. [PMID: 35463825 PMCID: PMC9033369 DOI: 10.1155/2022/4612054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The zinc finger proteins (ZNFs) are essential transcription factors, and the genes encoding them constitute about 3% of the entire human genome. They are involved in the development of several tissues, and any alterations in their structure may promote chronic conditions like diabetes and tumorigenesis. Lately, their role in the development, progression, and metastasis of Oral Squamous Cell Carcinoma (OSCC), Epithelial Dysplasia, Oral Lichen Planus, and Periodontitis has been found. The present review aims to describe their role in various oral conditions. Electronic databases like Medline (PubMed) and Scopus were searched for original studies related to the role of ZNFs in various oral conditions. It yielded 48 studies included in the review. It was found that the ZNFs influenced chronic conditions like Oral Cancer and Periodontitis. They act both as tumor suppressors and oncogenes and have an anti-inflammatory effect. The knowledge from the present review may be utilized in designing drugs that prevent unusual expression of specific ZNFs. Besides, they may be applied as prognostic markers due to their high expression specificity in some tumors.
Collapse
|
7
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
8
|
Cheng Y, Li S, Gao L, Zhi K, Ren W. The Molecular Basis and Therapeutic Aspects of Cisplatin Resistance in Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:761379. [PMID: 34746001 PMCID: PMC8569522 DOI: 10.3389/fonc.2021.761379] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a kind of malignant tumors with low survival rate and prone to have early metastasis and recurrence. Cisplatin is an alkylating agent which induces DNA damage through the formation of cisplatin-DNA adducts, leading to cell cycle arrest and apoptosis. In the management of advanced OSCC, cisplatin-based chemotherapy or chemoradiotherapy has been considered as the first-line treatment. Unfortunately, only a portion of OSCC patients can benefit from cisplatin treatment, both inherent resistance and acquired resistance greatly limit the efficacy of cisplatin and even cause treatment failure. Herein, this review outline the underlying mechanisms of cisplatin resistance in OSCC from the aspects of DNA damage and repair, epigenetic regulation, transport processes, programmed cell death and tumor microenvironment. In addition, this review summarizes the strategies applicable to overcome cisplatin resistance, which can provide new ideas to improve the clinical therapeutic outcome of OSCC.
Collapse
Affiliation(s)
- Yali Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Chou CH, Chiang CYF, Yang CC, Liu YC, Chang SR, Chang KW, Lin SC. miR-31- NUMB Cascade Modulates Monocarboxylate Transporters to Increase Oncogenicity and Lactate Production of Oral Carcinoma Cells. Int J Mol Sci 2021; 22:11731. [PMID: 34769160 PMCID: PMC8584161 DOI: 10.3390/ijms222111731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is among the leading causes of cancer-associated death worldwide. miR-31 is an oncogenic miRNA in OSCC. NUMB is an adaptor protein capable of suppressing malignant transformation. Disruption of the miR-31-NUMB regulatory axis has been demonstrated in malignancies. Mitochondrial dysfunction and adaptation to glycolytic respiration are frequent events in malignancies. Monocarboxylate transporters (MCTs) function to facilitate lactate flux in highly glycolytic cells. Upregulation of MCT1 and MCT4 has been shown to be a prognostic factor of OSCC. Here, we reported that miR-31-NUMB can modulate glycolysis in OSCC. Using the CRISPR/Cas9 gene editing strategy, we identified increases in oncogenic phenotypes, MCT1 and MCT4 expression, lactate production, and glycolytic respiration in NUMB-deleted OSCC subclones. Transfection of the Numb1 or Numb4 isoform reversed the oncogenic induction elicited by NUMB deletion. This study also showed, for the first time, that NUMB4 binds MCT1 and MCT4 and that this binding increases their ubiquitination, which may decrease their abundance in cell lysates. The disruptions in oncogenicity and metabolism associated with miR-31 deletion and NUMB deletion were partially rescued by MCT1/MCT4 expression or knockdown. This study demonstrated that NUMB is a novel binding partner of MCT1 and MCT4 and that the miR-31-NUMB-MCT1/MCT4 regulatory cascade is present in oral carcinoma.
Collapse
Affiliation(s)
- Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Chun-Yu Fan Chiang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Cheng-Chieh Yang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ying-Chieh Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Sih-Rou Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
10
|
Meng X, Lou QY, Yang WY, Wang YR, Chen R, Wang L, Xu T, Zhang L. The role of non-coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic potential. Cancer Commun (Lond) 2021; 41:981-1006. [PMID: 34289530 PMCID: PMC8504146 DOI: 10.1002/cac2.12194] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), the eighth most prevalent cancer in the world, arises from the interaction of multiple factors including tobacco, alcohol consumption, and betel quid. Chemotherapeutic agents such as cisplatin, 5-fluorouracil, and paclitaxel have now become the first-line options for OSCC patients. Nevertheless, most OSCC patients eventually acquire drug resistance, leading to poor prognosis. With the discovery and identification of non-coding RNAs (ncRNAs), the functions of dysregulated ncRNAs in OSCC development and drug resistance are gradually being widely recognized. The mechanisms of drug resistance of OSCC are intricate and involve drug efflux, epithelial-mesenchymal transition, DNA damage repair, and autophagy. At present, strategies to explore the reversal of drug resistance of OSCC need to be urgently developed. Nano-delivery and self-cellular drug delivery platforms are considered as effective strategies to overcome drug resistance due to their tumor targeting, controlled release, and consistent pharmacokinetic profiles. In particular, the combined application of new technologies (including CRISPR systems) opened up new horizons for the treatment of drug resistance of OSCC. Hence, this review explored emerging regulatory functions of ncRNAs in drug resistance of OSCC, elucidated multiple ncRNA-meditated mechanisms of drug resistance of OSCC, and discussed the potential value of drug delivery platforms using nanoparticles and self-cells as carriers in drug resistance of OSCC.
Collapse
Affiliation(s)
- Xiang Meng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Hefei, Anhui, 230032, P. R. China
| | - Qiu-Yue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Wen-Ying Yang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Hefei, Anhui, 230032, P. R. China
| | - Yue-Rong Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Hefei, Anhui, 230032, P. R. China
| | - Ran Chen
- School of Stomatology, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Lu Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Hefei, Anhui, 230032, P. R. China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, P. R. China
- School of Pharmacy, Anhui Key Lab. of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Lei Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Hefei, Anhui, 230032, P. R. China
- Department of Periodontology, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| |
Collapse
|
11
|
Tu HF, Chang KW, Lin SC, Hung WW, Ji SH, Wu HL, Liu CJ. Aberrant miR-10b, miR-372, and miR-375 expression in the cytobrushed samples from oral potentially malignant disorders. J Dent Sci 2021; 17:688-695. [PMID: 35756791 PMCID: PMC9201535 DOI: 10.1016/j.jds.2021.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background/purpose MicroRNA (miRNA) alterations play important roles in the neoplastic process of oral squamous cell carcinoma (OSCC). Upregulation of miR-10b and miR-372 and downregulation of miR-375 are frequent events in OSCC. The aberrances of these miRNAs in oral potentially malignant lesions (OPMD) were studied to determine their status during the establishment of OSCC. Materials and methods Cytobrushed sampling was used to collect epithelial cells from 11 OSCC and 34 OPMD lesions and matched normal mucosa. The expression levels of miR-10b, miR-372, and miR-375 were analyzed using quantitative reverse transcription polymerase chain reaction analysis. The clinical implications of these aberrances were further investigated. Results Both miR-10b and miR-372 were upregulated in OPMD, but only miR-10b expression was upregulated in OSCC comparing to control. miR-375 was downregulated in OPMD and tended to be downregulated in OSCC. Dysplastic OPMD could be distinguished based on miR-372 expression level; miR-375 expression levels facilitated discrimination between OPMD and OSCC. The combined analysis of miR-375 and miR-372 remarkably enhanced the accuracy of differentiating OPMD from OSCC. Conclusion Aberrant miR-10b. miR-372, and miR-375 expression occurs early during oral carcinogenesis. The detection of miR-372 and miR-375 expression using cytobrush samples may assist in differentiating between OPMD and OSCC.
Collapse
|
12
|
Singh AK, Verma S, Kushwaha PP, Prajapati KS, Shuaib M, Kumar S, Gupta S. Role of ZBTB7A zinc finger in tumorigenesis and metastasis. Mol Biol Rep 2021; 48:4703-4719. [PMID: 34014468 DOI: 10.1007/s11033-021-06405-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
The zinc finger and BTB (broad-complex, tramtrack and bric a brac) domain containing protein 7A (ZBTB7A) is a pleiotropic transcription factor that plays an important role in various stages of cell proliferation, differentiation, and other developmental processes. ZBTB7A is a member of the POK family that directly and specifically binds to short DNA recognition sites located near their target genes thereby acting as transcriptional activator or repressor. ZBTB7A overexpression has been associated with tumorigenesis and metastasis in various human cancer types, including breast, prostate, lung, ovarian, and colon cancer. However in some instances downregulation of ZBTB7A results in tumor progression, suggesting its role as a tumor suppressor. ZBTB7A is involved with complicated regulatory networks which include protein-protein and protein-nucleic acid interactions. ZBTB7A involvement in cancer progression and metastasis is perhaps enabled through the regulation of various signaling pathways depending on the type and genetic context of cancer. The association of ZBTB7A with other proteins affects cancer aggressiveness, therapeutic resistance and clinical outcome. This review focuses on the involvement of ZBTB7A in various signaling pathways and its role in cancer progression. We will also review the literature on ZBTB7A and cancer which could be potentially explored for its therapeutic implications.
Collapse
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Prem Prakash Kushwaha
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Kumari Sunita Prajapati
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Mohd Shuaib
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA. .,Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA. .,Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA. .,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
14
|
Zhao L, Tian C, Xiao E, Du J, Liang J, Chen X, Chi W. Clinical significance and potential mechanisms of miR-223-3p and miR-204-5p in squamous cell carcinoma of head and neck: a study based on TCGA and GEO. Open Med (Wars) 2020; 15:728-738. [PMID: 33336030 PMCID: PMC7712329 DOI: 10.1515/med-2020-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 01/13/2023] Open
Abstract
Objective To explore the clinical significance and mechanisms of altered miRNAs in squamous cell carcinoma of head and neck (SCCHN) and provide references for SCCHN diagnosis and prognosis. Method Differential expressed miRNAs (DEMs) in SCCHN were screened through gene expression omnibus (GEO) DataSets and verified by the cancer genome atlas (TCGA) database. Next, the overall survival analysis, receiver operating characteristics, and clinical correlation analysis were adopted to filter the miRNAs with diagnostic and prognostic values. Finally, functional enrichment analyses were conducted for inquiring into the mechanisms of miRNAs. Results Total 103 DEMs (p < 0.05, fold change ≥ 2) in SCCHN were screened out from GSE124566. Partly, the expression levels of the selected (12/17) miRNAs were verified by TCGA. Followed, of the 12 miRNAs, two miRNA expression levels were associated with the overall survival, and five miRNAs showed diagnostic values (AUC ≥ 0.85). Besides, miR-223-3p and miR-204-5p expression levels were correlated to certain clinical features. Epithelial–mesenchymal transition (EMT) related biological process and energy metabolism controlling related AMPK signaling pathway might mediate the roles of miR-223-3p and miR-204-5p, respectively. Conclusion With diagnostic and prognostic values, miR-223-3p and miR-204-5p may be involved in the progression of SCCHN through EMT-related biological process and energy balance related AMPK signaling pathway, respectively.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Otorhinolaryngology, The Affiliated Hospital of Hebei University, Baoding, No. 212 Yuhua Road, Hebei Province, 071000, China
| | - Congzhe Tian
- Department of Otorhinolaryngology, The Affiliated Hospital of Hebei University, Baoding, No. 212 Yuhua Road, Hebei Province, 071000, China
| | - Erbin Xiao
- Department of Otorhinolaryngology, The Affiliated Hospital of Hebei University, Baoding, No. 212 Yuhua Road, Hebei Province, 071000, China
| | - Jinduo Du
- Department of Otorhinolaryngology, The Affiliated Hospital of Hebei University, Baoding, No. 212 Yuhua Road, Hebei Province, 071000, China
| | - Jingwei Liang
- Department of Otorhinolaryngology, The Affiliated Hospital of Hebei University, Baoding, No. 212 Yuhua Road, Hebei Province, 071000, China
| | - Xianghong Chen
- Department of Otorhinolaryngology, The Affiliated Hospital of Hebei University, Baoding, No. 212 Yuhua Road, Hebei Province, 071000, China
| | - Weiwei Chi
- Department of Otorhinolaryngology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050031, China
| |
Collapse
|
15
|
Lin SC, Wu HL, Yeh LY, Yang CC, Kao SY, Chang KW. Activation of the miR-371/372/373 miRNA Cluster Enhances Oncogenicity and Drug Resistance in Oral Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21249442. [PMID: 33322437 PMCID: PMC7764723 DOI: 10.3390/ijms21249442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is among the leading causes of cancer-associated deaths worldwide. Family members in miR-371/372/373 miRNA cluster, which is localized at human chromosome 19q13.4, are co-expressed in both human stem cells and malignancies. The individual miRNA in this cluster are also involved in modulating the pathogenesis of malignancies as either oncogenes or suppressors. The 19q13 region is frequently gained in head and neck cancers. High expression of miR-372 and miR-373 are survival predictors for OSCC. However, the role of the miR-371/372/373 cluster in oral carcinogenesis remains to be fully investigated. We use the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system to establish OSCC cell subclones that had the miR-371/372/373 cluster deleted. In addition, further subclones were established that had the promoter of this cluster deleted. Concordant silencing in SAS cells of miR-371/372/373 decreased oncogenic potential, increased cisplatin sensitivity, activated p53, and upregulated the expression of Bad and DKK1. We also employed the CRISPR/dCas9 synergistic activation mediator system, which allowed robust transcriptional activation of the whole miR-371/372/373 cistron. Upregulation of endogenous miR-371/372/372 expression increased both oncogenicity and drug resistance. These were accompanied by a slight activation of AKT, β-catenin, and Src. This study identifies the oncogenic role of the miR-371/372/373 cluster in OSCC. Using CRISPR based strategy can be a powerful paradigm that will provide mechanistic insights into miRNA cluster functionality, which will also likely help the development of targeting options for malignancies.
Collapse
Affiliation(s)
- Shu-Chun Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsiao-Li Wu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
| | - Li-Yin Yeh
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
| | - Cheng-Chieh Yang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Shou-Yen Kao
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: ; Fax: +886-2-28264053
| |
Collapse
|
16
|
Wang L, Zhang MX, Zhang MF, Tu ZW. ZBTB7A functioned as an oncogene in colorectal cancer. BMC Gastroenterol 2020; 20:370. [PMID: 33167891 PMCID: PMC7650168 DOI: 10.1186/s12876-020-01456-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background Despite zinc finger and BTB domain-containing 7A (ZBTB7A) documented importance in multiple tumors, the function and clinical value in Colorectal cancer (CRC) remain elusive. The aim of this study was to evaluate the functional roles and the clinical value of ZBTB7A in CRC progression. Methods The level of ZBTB7A was detected in a large cohort of CRC patients (n = 189) by immunohistochemistry (IHC), and we analyzed the diagnostic and prognostic value of the protein. In addition, the functional roles of ZBTB7A on CRC were explored in vitro and in vivo. Results Survival analyses indicated that patients with high ZBTB7A expression made the prognosis worse (P = 0.024). Functionally, knockdown of ZBTB7A could markedly inhibit tumor proliferation in vitro and in vivo, whereas ZBTB7A overexpression displayed the opposite results. Conclusions ZBTB7A was associated with poor survival outcomes and functioned as an oncogene in CRC patients, indicating that it is a potential prognostic biomarker and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiotherapy, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Meng-Xia Zhang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
| | - Zi-Wei Tu
- Department of Radiotherapy, Jiangxi Cancer Hospital, Medical College, Nanchang University, No. 519, Beijing East Road, Qingshan Lake District, Nanchang, 330029, Jiangxi, China.
| |
Collapse
|
17
|
Lampis A, Hahne JC, Hedayat S, Valeri N. MicroRNAs as mediators of drug resistance mechanisms. Curr Opin Pharmacol 2020; 54:44-50. [PMID: 32898724 DOI: 10.1016/j.coph.2020.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs are small RNA transcripts involved in fine-tuning of several cellular mechanisms and pathways crucial for maintaining cells' homeostasis like apoptosis, differentiation, inflammation and cell-cycle regulation. They act by regulation of gene expression at post-transcriptional level through fine-tuning of target proteins expression. Expression of microRNAs is cell-type specific and since their discovery they have been proven to be deregulated in various disorders including cancer. Several lines of evidence are emerging that link microRNAs to drug resistance mechanisms in tumours given their important role in modulating oncogenic and tumour suppressive mechanisms. This review will focus on latest knowledge of the roles and mechanisms of microRNAs as mediators to drug resistance and the implications for future therapies.
Collapse
Affiliation(s)
- Andrea Lampis
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Jens C Hahne
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Somaieh Hedayat
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Nicola Valeri
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Department of Medicine, The Royal Marsden Hospital, London and Sutton, UK
| |
Collapse
|
18
|
microRNAs in oral cancer: Moving from bench to bed as next generation medicine. Oral Oncol 2020; 111:104916. [PMID: 32711289 DOI: 10.1016/j.oraloncology.2020.104916] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Oral cancer is the thirteenth most common cancer in the world, with India contributing to 33% of the global burden. Lack of specific non-invasive markers, non-improvement in patient survival and tumor recurrence remain a major clinical challenge in oral cancer. Epigenetic regulation in the form of microRNAs (miRs) that act as tumor suppressor miRs or oncomiRs has gained significant momentum with the advancement in the field, suggesting the potential for clinical application of miRs in oral cancer. The current review of literature identified miR-21, miR-27a(-3p), miR-31, miR-93, miR-134, miR-146, miR-155, miR-196a, miR-196b, miR-211, miR-218, miR-222, miR-372 and miR-373 to be up-regulated and let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-26a, miR-99a-5p, miR-137, miR-139-5p, miR-143-3p, miR-184 and miR-375 to be down-regulated in oral cancer. Mechanistic studies have uncovered several miRs that are deregulated at varying levels and in different stages of oral cancer progression, thus providing clinical utility in better diagnosis as well as usefulness in prognosis by identifying patients with poor prognosis or stratifying patients based on responsiveness to chemo- and radio-therapy. Lastly, exogenous modulation of miR expression using miRNA-based drugs in combination with first-line agents may be adopted as a new therapeutic modality to treat oral cancer. Knowledge of miRs and their involvement in key molecular processes, clinical association, responsiveness to therapy and clinical advancement may highlight additional avenues in order to improve patient morbidity and mortality. Furthermore, combinatorial approaches with miR-therapy may be efficacious in oral cancer.
Collapse
|