1
|
Rodrigues JAO, Kiran NS, Chatterjee A, Prajapati BG, Dhas N, Dos Santos AO, de Sousa FF, Souto EB. Metallodrugs: Synthesis, mechanism of action and nanoencapsulation for targeted chemotherapy. Biochem Pharmacol 2025; 231:116644. [PMID: 39577705 DOI: 10.1016/j.bcp.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
As a multifactorial and heterogeneous disease, cancer has a high mortality rate, and the search for more effective treatments is an enormous challenge. Metal coordination compounds open a range of possibilities that conventional organic and biological molecules can no longer fulfil due to increasing drug resistance. Metallodrugs still have tremendous potential to help overcome drug resistance and find new cures in medicine, considering that at least 25 metallic elements participate in healthy functioning of the human body. Transition metal ions, such as copper, zinc and iron, are incorporated into catalytic proteins, the so-called metalloenzymes, which participate in various chemical reactions necessary for life. The interaction of metal complexes in different pathways with the structural richness of deoxyribonucleic acid encouraged to seek to understand the mechanisms of action and overcome the obstacles encountered for a promising future of these drugs. The success of platinum-based metallodrugs is one of the great inspirations for the search of new metallodrugs, although the approval of these molecules has been slow in recent years due to the risk of systemic toxicity and insufficient understanding of their mechanisms. To overcome the clinical limitations encountered in some metallodrugs, nanoencapsulation has been proposed as a new approach to improve therapeutic index in chemotherapy. The remarkable selectivity of nanoencapsulated metallodrugs and their enhanced capacity to bypass various biological barriers allow site-specific targeting. In this review, we present the advances in the development and use of the most relevant metallodrugs, and new delivery approaches, in the fight against cancer.
Collapse
Affiliation(s)
- Jessica A O Rodrigues
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil.
| | - Neelakanta S Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Bhupendra G Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Adenilson O Dos Santos
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Francisco F de Sousa
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil; Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), 66075-110, Belem, PA, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
2
|
Zhou Z, Jiang WJ, Wang YP, Si JQ, Zeng XS, Li L. CD36-mediated ROS/PI3K/AKT signaling pathway exacerbates cognitive impairment in APP/PS1 mice after noise exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175879. [PMID: 39233068 DOI: 10.1016/j.scitotenv.2024.175879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
There is an association between noise exposure and cognitive impairment, and noise may have a more severe impact on patients with Alzheimer's disease (AD) and mild cognitive impairment; however, the mechanisms need further investigation. This study used the classic AD animal model APP/PS1 mice to simulate the AD population, and C57BL/6J mice to simulate the normal population. We compared their cognitive abilities after noise exposure, analyzed changes in Cluster of Differentiation (CD) between the two types of mice using transcriptomics, identified the differential CD molecule: CD36 in APP/PS1 after noise exposure, and used its pharmacological inhibitor to intervene to explore the mechanism by which CD36 affects APP/PS1 cognitive abilities. Our study shows that noise exposure has a more severe impact on the cognitive abilities of APP/PS1 mice, and that the expression trends of differentiation cluster molecules differ significantly between C57BL/6J and APP/PS1 mice. Transcriptomic analysis showed that the expression of CD36 in the hippocampus of APP/PS1 mice increased by 2.45-fold after noise exposure (p < 0.001). Meanwhile, Western Blot results from the hippocampus and entorhinal cortex indicated that CD36 protein levels increased by approximately 1.5-fold (p < 0.001) and 1.3-fold (p < 0.05) respectively, after noise exposure in APP/PS1 mice. The changes in CD36 expression elevated oxidative stress levels in the hippocampus and entorhinal cortex, leading to a decrease in PI3K/AKT phosphorylation, which in turn increased M1-type microglia and A1-type astrocytes while reducing the numbers of M2-type microglia and A2-type astrocytes. This increased neuroinflammation in the hippocampus and entorhinal cortex, causing synaptic and neuronal damage in APP/PS1 mice, ultimately exacerbating cognitive impairment. These findings may provide new insights into the relationship between noise exposure and cognitive impairment, especially given the different expression trends of CD molecules in the two types of mice, which warrants further research.
Collapse
Affiliation(s)
- Zan Zhou
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China; Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi 832000, Xinjiang, China
| | - Wen-Jun Jiang
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China; Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310051, China
| | - Yan-Ping Wang
- Department of Nursing, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xian-Si Zeng
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| |
Collapse
|
3
|
Fereydouni P, Al Mohaddesin A, Khaleghi S. Targeted biocompatible Zn-metal-organic framework nanocomposites for intelligent chemotherapy of breast cancer cells. Sci Rep 2024; 14:18311. [PMID: 39112669 PMCID: PMC11306755 DOI: 10.1038/s41598-024-69457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Finding a novel drug delivery system (DDS) represents one of the most challenging endeavors in cancer therapy. Hence, in this study, we developed a new biocompatible and biodegradable zinc-based nanoscale metal-organic framework (Zn-NMOF) coated with folic acid (FA) functionalized chitosan (CS) to facilitate targeted delivery of doxorubicin (D), a standard chemotherapeutic agent, into breast cancer cells. The synthesis of the NMOF-CS-FA-D nanocomposite preceded its comprehensive characterization via FT-IR, DLS, XRD, SEM, and TEM analyses. Subsequent in vitro studies were conducted on MCF-7 breast cancer cells and HFF-1 normal cells, encompassing assessments of cell viability, expression levels of apoptotic and autophagy genes, cell cycle arrest, and apoptotic analyses. The size of the NMOF-CS-FA-D particles was determined to be less than 80 nm, with a drug loading efficiency of 72 ± 5%. The release kinetics of DOX from the nanocomposite were investigated, revealing controlled release behavior at pH 7.4 and accelerated release at pH 5.0, which is conducive to drug delivery into cancer cells. In vitro results indicated a 17.39% ± 6.34 cell viability after 24 h of treatment with a 40 nM concentration of the NMOF-CS-FA-D nanocomposite. Furthermore, the expression levels of Caspase-9 and BAX, key apoptotic genes, along with BECLIN1, an autophagy gene, were found to increase by two-fold, four-fold, and two-fold, respectively, following 5 h of treatment with the nanocomposite. Additionally, analysis of cell cycle distribution revealed 15.4 ± 2% of cells in the sub-G1 phase, indicative of apoptotic cells, and 31.9% of cells undergoing early and late apoptosis in MCF-7 cells. Collectively, these findings underscore the potential of the NMOF-CS-FA-D nanocomposite in inhibiting cancer cell proliferation with low side effects.
Collapse
Affiliation(s)
- Parinaz Fereydouni
- Department of Life Sciences, Faculty of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Arash Al Mohaddesin
- Department of Life Sciences, Faculty of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| |
Collapse
|
4
|
Oliveira GFS, Gouveia FS, Andrade AL, de Vasconcelos MA, Teixeira EH, Palmeira-Mello MV, Batista AA, Lopes LGD, de Carvalho IMM, Sousa EHS. Minimal Functionalization of Ruthenium Compounds with Enhanced Photoreactivity against Hard-to-Treat Cancer Cells and Resistant Bacteria. Inorg Chem 2024; 63:14673-14690. [PMID: 39042379 PMCID: PMC11304396 DOI: 10.1021/acs.inorgchem.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Metallocompounds have emerged as promising new anticancer agents, which can also exhibit properties to be used in photodynamic therapy. Here, we prepared two ruthenium-based compounds with a 2,2'-bipyridine ligand conjugated to an anthracenyl moiety. These compounds coded GRBA and GRPA contain 2,2'-bipyridine or 1,10-phenathroline as auxiliary ligands, respectively, which provide quite a distinct behavior. Notably, compound GRPA exhibited remarkably high photoproduction of singlet oxygen even in water (ϕΔ = 0.96), almost twice that of GRBA (ϕΔ = 0.52). On the other hand, this latter produced twice more superoxide and hydroxyl radical species than GRPA, which may be due to the modulation of their excited state. Interestingly, GRPA exhibited a modest binding to DNA (Kb = 4.51 × 104), while GRBA did not show a measurable interaction only noticed by circular dichroism measurements. Studies with bacteria showed a great antimicrobial effect, including a synergistic effect in combination with commercial antibiotics. Besides that, GRBA showed very low or no cytotoxicity against four mammalian cells, including a hard-to-treat MDA-MB-231, triple-negative human breast cancer. Potent activities were measured for GRBA upon blue light irradiation, where IC50 of 43 and 13 nmol L-1 were seen against hard-to-treat triple-negative human breast cancer (MDA-MB-231) and ovarian cancer cells (A2780), respectively. These promising results are an interesting case of a simple modification with expressive enhancement of biological activity that deserves further biological studies.
Collapse
Affiliation(s)
- Geângela
de Fátima Sousa Oliveira
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Florencio Sousa Gouveia
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Alexandre Lopes Andrade
- Laboratório
Integrado de Biomoléculas, Departamento de Patologia e Medicina
Legal, Universidade Federal do Ceará, Fortaleza, Ceará 60441-750, Brazil
| | | | - Edson Holanda Teixeira
- Laboratório
Integrado de Biomoléculas, Departamento de Patologia e Medicina
Legal, Universidade Federal do Ceará, Fortaleza, Ceará 60441-750, Brazil
| | - Marcos V. Palmeira-Mello
- Departamento
de Química, Universidade Federal
de São Carlos, PO Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Alzir A. Batista
- Departamento
de Química, Universidade Federal
de São Carlos, PO Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Luiz Gonzaga de
França Lopes
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Idalina Maria Moreira de Carvalho
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| |
Collapse
|
5
|
Shackebaei D, Hesari M, Gorgani S, Vafaeipour Z, Salaramoli S, Yarmohammadi F. The Role of mTOR in the Doxorubicin-Induced Cardiotoxicity: A Systematic Review. Cell Biochem Biophys 2024:10.1007/s12013-024-01475-7. [PMID: 39102090 DOI: 10.1007/s12013-024-01475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug known to induce metabolic changes in the heart, leading to potential heart toxicity. These changes impact various cellular functions and pathways such as disrupting the mechanistic target of rapamycin (mTOR) signaling pathway. The study aimed to investigate the effect of DOX on the mTOR pathway through an in vivo systematic review. Databases were searched on September 11, 2023. We finally included 30 in vivo studies that examined the mTOR expression in cardiac tissue samples. The present study has shown that the PI3K/AKT/mTOR, the AMPK/mTOR, the p53/mTOR signaling, the mTOR/TFEB pathway, the p38 MAPK/mTOR, the sestrins/mTOR, and the KLF15/eNOS/mTORC1 signaling pathways play a crucial role in the development of DOX-induced cardiotoxicity. Inhibition or dysregulation of these pathways can lead to increased oxidative stress, apoptosis, and other adverse effects on the heart. Strategies that target and modulate the mTOR pathways, such as the use of mTOR inhibitors like rapamycin, have the potential to enhance the anticancer effects of DOX while also mitigating its cardiotoxic side effects.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Vafaeipour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sanaz Salaramoli
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Nandhini S, Thiruppathi G, Ranjani M, Puschmann H, Ravi M, Sundararaj P, Prabhakaran R. Effect of ruthenium(II) complexes on MDA-MB-231 cells and lifespan/tumor growth in gld-1mutant, Daf-16 TF and stress productive genes: A perspective study. J Inorg Biochem 2024; 257:112580. [PMID: 38701694 DOI: 10.1016/j.jinorgbio.2024.112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Pincer type coumarin based N-substituted semicarbazone ligands HL1-4 and their corresponding ruthenium(II) complexes (1-4) were synthesized, analyzed and confirmed by various spectro analytical techniques. The molecular structure of the ligand HL3 and complex 3 was confirmed by single crystal X-ray diffraction analysis. The stoichiometry of complexes 1, 2 and 4 was confirmed by high resolution mass spectroscopy (HRMS). The binding affinity of the compounds with CT-DNA (Calf Thymus DNA) and BSA (Bovine Serum Albumin) was established by absorption and emission titration methods. The results of In vitro cytotoxicity showed the significant cytotoxic potential of the complexes against MDA-MB-231 cells (TNBC- Triple-negative breast cancer). Among the complexes, 1 and 4 have shown appreciable results. Further, antimigratory activity against the MDA-MB-231 cells was studied for the complexes 1 and 4. The percentage cell cycle arrest, apoptosis and necrosis were explored by flow cytometry. The in vivo anti-tumor activity of the complexes 1 and 4 using C. elegans as model organism was established by using the tumoral C. elegans strain JK1466 (gld-1(q485)), which bears a mutation in the gld-1 tumor suppressor gene. We have determined the effect of our complexes on tumor gonad reduction and found to be non toxic to the JK1466 worms and they have prolonged their mean lifespan with potential antioxidant ability by overcoming stress responses. Overall, our study reported herein demonstrated that the complexes 1 and 4 could be established as potential metallo-drugs substantiating further exploration.
Collapse
Affiliation(s)
- S Nandhini
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - G Thiruppathi
- Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - M Ranjani
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - Horst Puschmann
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - M Ravi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - P Sundararaj
- Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
7
|
Regorafenib and Ruthenium Complex Combination Inhibit Cancer Cell Growth by Targeting PI3K/AKT/ERK Signalling in Colorectal Cancer Cells. Int J Mol Sci 2022; 24:ijms24010686. [PMID: 36614133 PMCID: PMC9820863 DOI: 10.3390/ijms24010686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Cancer is one of the leading cause of lethality worldwide, CRC being the third most common cancer reported worldwide, with 1.85 million cases and 850,000 deaths annually. As in all other cancers, kinases are one of the major enzymes that play an essential role in the incidence and progression of CRC. Thus, using multi-kinase inhibitors is one of the therapeutic strategies used to counter advanced-stage CRC. Regorafenib is an FDA-approved drug in the third-line therapy of refractory metastatic colorectal cancer. Acquired resistance to cancers and higher toxicity of these drugs are disadvantages to the patients. To counter this, combination therapy is used as a strategy where a minimal dose of drugs can be used to get a higher efficacy and reduce drug resistance development. Ruthenium-based compounds are observed to be a potential alternative to platinum-based drugs due to their significant safety and effectiveness. Formerly, our lab reported Ru-1, a ruthenium-based compound, for its anticancer activity against multiple cancer cells, such as HepG2, HCT116, and MCF7. This study evaluates Ru-1's activity against regorafenib-resistant HCT116 cells and as a combination therapeutic with regorafenib. Meanwhile, the mechanism of the effect of Ru-1 alone and with regorafenib as a combination is still unknown. In this study, we tested a drug combination (Ru-1 and regorafenib) against a panel of HT29, HCT116, and regorafenib-resistant HCT116 cells. The combination showed a synergistic inhibitory activity. Several mechanisms underlying these numerous synergistic activities, such as anti-proliferative efficacy, indicated that the combination exhibited potent cytotoxicity and enhanced apoptosis induction. Disruption of mitochondrial membrane potential increased intracellular ROS levels and decreased migratory cell properties were observed. The combination exhibited its activity by regulating PI3K/Akt and p38 MAP kinase signalling. This indicates that the combination of REG/Ru-1 targets cancer cells by modulating the PI3K/Akt and ERK signalling.
Collapse
|
8
|
Katheria S. Ruthenium Complexes as Potential Cancer Cell Growth Inhibitors for Targeted Chemotherapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202201645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Combination of ruthenium (II) polypyridyl complex Δ-Ru1 and Taxol enhances the anti-cancer effect on Taxol-resistant cancer cells through Caspase-1/GSDMD-mediated pyroptosis. J Inorg Biochem 2022; 230:111749. [DOI: 10.1016/j.jinorgbio.2022.111749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
|
10
|
Liu B, Ma X, Ha W. Identification of Potential Prognostic Biomarkers Associated With Macrophage M2 Infiltration in Gastric Cancer. Front Genet 2022; 12:827444. [PMID: 35111208 PMCID: PMC8802722 DOI: 10.3389/fgene.2021.827444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer is a common cancer afflicting people worldwide. Although incremental progress has been achieved in gastric cancer research, the molecular mechanisms underlying remain unclear. In this study, we conducted bioinformatics methods to identify prognostic marker genes associated with gastric cancer progression. Three hundred and twenty-seven overlapping DEGs were identified from three GEO microarray datasets. Functional enrichment analysis revealed that these DEGs are involved in extracellular matrix organization, tissue development, extracellular matrix–receptor interaction, ECM-receptor interaction, PI3K-Akt signaling pathway, focal adhesion, and protein digestion and absorption. A protein–protein interaction network (PPI) was constructed for the DEGs in which 25 hub genes were obtained. Furthermore, the turquoise module was identified to be significantly positively coexpressed with macrophage M2 infiltration by weighted gene coexpression network analysis (WGCNA). Hub genes of COL1A1, COL4A1, COL12A1, and PDGFRB were overlapped in both PPI hub gene list and the turquoise module with significant association with the prognosis in gastric cancer. Moreover, functional analysis demonstrated that these hub genes play pivotal roles in cancer cell proliferation and invasion. The investigation of the gene markers can help deepen our understanding of the molecular mechanisms of gastric cancer. In addition, these genes may serve as potential prognostic biomarkers for gastric cancer diagnosis.
Collapse
Affiliation(s)
- Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Baohong Liu,
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wei Ha
- Department of Radiology, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
11
|
Caglar S, Altay A, Kuzucu M, Caglar B. In Vitro Anticancer Activity of Novel Co(II) and Ni(II) Complexes of Non-steroidal Anti-inflammatory Drug Niflumic Acid Against Human Breast Adenocarcinoma MCF-7 Cells. Cell Biochem Biophys 2021; 79:729-746. [PMID: 33914261 DOI: 10.1007/s12013-021-00984-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Herein, we report the synthesis, characterization and anticancer activity of six novel complexes of non-steroidal anti-inflammatory drug niflumic acid with Co(II) and Ni(II). In vitro cytotoxicity screening in MCF-7, HepG2 and HT-29 cancer cell lines showed that the complex 3 [Co(nif)2(met)(4-pic)] and complex 6 [Ni(nif)2(met)(4-pic)] among all the complexes exhibited the highest cytotoxicity against MCF-7 cells with IC50 values of 11.14 µM and, 41.47 µM, respectively. Besides, all the complexes exhibited significantly higher selectivity towards mouse fibroblast 3T3L1 cells. Further mechanistic studies with both complexes on MCF-7 cells revealed their cytotoxic action through the mitochondrial-dependent apoptotic pathway causing an increase oxidative/nitrosative stress, decrease in mitochondrial membrane potential (ΔΨm), inducing the multicaspase activation and arresting the cell cycle at S phase. q-PCR analysis resulted in an increase in the expression of the apoptotic marker proteins bax, p53 and caspase-3 and -8 in MCF-7 cells, but a decrease in the expression of antiapoptotic bcl-2 gene. Moreover, both complexes induced the apoptosis through the inhibition of PI3K/Akt signaling pathway by decreasing the expression of PI3K and increasing dephosphorylation form of Akt protein. These results provide a significant contribution to the explanation of the anticancer mechanisms of these complexes in MCF-7 cells.
Collapse
Affiliation(s)
- Sema Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Bulent Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
12
|
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2021; 27:436-455. [PMID: 34624510 DOI: 10.1016/j.drudis.2021.09.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
P-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1α, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity.
Collapse
|
13
|
Chen BC, Lu JJ, Jiang N, Ma XR, Li RT, Ye RR. Synthesis, characterization and antitumor mechanism investigation of ruthenium(II) polypyridyl complexes with artesunate moiety. J Biol Inorg Chem 2021; 26:909-918. [PMID: 34545414 DOI: 10.1007/s00775-021-01901-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Six artesunate (ART) conjugated ruthenium(II) complexes (Ru(II)-ART conjugates) with the formula [Ru(N^N)2bpy(4-CH3-4'-CH2OART)](PF6)2 (Ru-ART-1-3) and [Ru(N^N)2bpy(4-CH2OART-4'-CH2OART)](PF6)2 (Ru-ART-4-6) (N^N = 2,2'-bipyridine (bpy, in Ru-ART-1 and Ru-ART-4), 1,10-phenanthroline (phen, in Ru-ART-2 and Ru-ART-5) and 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru-ART-3 and Ru-ART-6)), were synthesized and characterized. Among them, Ru-ART-1-3 and Ru-ART-4-6 carry one and two ART moieties, respectively. Ru-ART-3 and Ru-ART-6 exhibit better cytotoxicity among six Ru(II)-ART conjugates. These two complexes can be effectively taken up by human cervical carcinoma (HeLa) cells. In addition, they selectively kill cancer cell lines while mildly affect normal cells. Mechanism studies have shown that HeLa cells treated with Ru-ART-3 and Ru-ART-6 show typical apoptotic characteristics (morphology changes, mitochondrial dysfunction, caspase cascade, etc.). On the other hand, the up regulation of Beclin-1 and conversion of LC3-I to LC3-II note the appearance of autophagy. As a result, Ru-ART-3 and Ru-ART-6 induce autophagy-dependent cell apoptosis via mitochondrial dysfunction and reactive oxygen species (ROS) accumulation. In this work, six artesunate (ART) conjugated ruthenium(II) complexes (Ru(II)-ART conjugates) have been synthesized and characterized. Among them, Ru-ART-3 and Ru-ART-6 exhibit better cytotoxicity. Mechanism studies have shown that HeLa cells treated with Ru-ART-3 and Ru-ART-6 show typical apoptotic characteristics (morphology changes, mitochondrial dysfunction, caspase cascade, etc.). On the other hand, the up regulation of Beclin-1 and conversion of LC3-I to LC3-II note the appearance of autophagy.
Collapse
Affiliation(s)
- Bi-Chun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Ning Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
14
|
Binuclear silver(I) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, characterization, cytotoxic activity and evaluation of cellular mechanism of action. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Zhang C, Lin T, Nie G, Hu R, Pi S, Wei Z, Wang C, Xing C, Hu G. Cadmium and molybdenum co-induce pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116403. [PMID: 33433347 DOI: 10.1016/j.envpol.2020.116403] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) are harmful to animals, but the combined nephrotoxic mechanism of Cd and Mo in duck remains poorly elucidated. To assess joint effects of Cd and Mo on pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells, cells were cultured with 3CdSO4·8H2O (4.0 μM), (NH4)6Mo7O24·4H2O (500.0 μM), MCC950 (10.0 μM), BHA (100.0 μM) and combination of Cd and Mo or Cd, Mo and MCC950 or Cd, Mo and BHA for 12 h, and the joint cytotoxicity was explored. The results manifested that toxicity of non-equitoxic binary mixtures of Mo and Cd exhibited synergic interaction. Mo or/and Cd elevated ROS level, PTEN mRNA and protein levels, and decreased PI3K, AKT and p-AKT expression levels. Simultaneously, Mo or/and Cd upregulated ASC, NLRP3, NEK7, Caspase-1, GSDMA, GSDME, IL-18 and IL-1β mRNA levels and Caspase-1 p20, NLRP3, ASC, GSDMD protein levels, increased the percentage of pyroptotic cells, LDH, NO, IL-18 and IL-1β releases as well as relative conductivity. Moreover, NLRP3 inhibitor MCC950 and ROS scavenger BHA could ameliorate the above changed factors induced by Mo and Cd co-exposure. Collectively, our results reveal that combination of Mo and Cd synergistically cause oxidative stress and trigger pyroptosis via ROS/PTEN/PI3K/AKT axis in duck tubular epithelial cells.
Collapse
Affiliation(s)
- Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Tianjin Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology,Jiangxi University of Finance and Economics, No. 665 Yuping West Street, Economic and Technological Development District, Nanchang, 330032, Jiangxi, PR China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Shaoxing Pi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Zejing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
16
|
Yusoh NA, Ahmad H, Gill MR. Combining PARP Inhibition with Platinum, Ruthenium or Gold Complexes for Cancer Therapy. ChemMedChem 2020; 15:2121-2135. [PMID: 32812709 PMCID: PMC7754470 DOI: 10.1002/cmdc.202000391] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/24/2022]
Abstract
Platinum drugs are heavily used first-line chemotherapeutic agents for many solid tumours and have stimulated substantial interest in the biological activity of DNA-binding metal complexes. These complexes generate DNA lesions which trigger the activation of DNA damage response (DDR) pathways that are essential to maintain genomic integrity. Cancer cells exploit this intrinsic DNA repair network to counteract many types of chemotherapies. Now, advances in the molecular biology of cancer has paved the way for the combination of DDR inhibitors such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) and agents that induce high levels of DNA replication stress or single-strand break damage for synergistic cancer cell killing. In this review, we summarise early-stage, preclinical and clinical findings exploring platinum and emerging ruthenium anti-cancer complexes alongside PARPi in combination therapy for cancer and also describe emerging work on the ability of ruthenium and gold complexes to directly inhibit PARP activity.
Collapse
Affiliation(s)
- Nur Aininie Yusoh
- Department of ChemistryFaculty of ScienceUniversiti Putra Malaysia43400 UPMSerdang, SelangorMalaysia
| | - Haslina Ahmad
- Department of ChemistryFaculty of ScienceUniversiti Putra Malaysia43400 UPMSerdang, SelangorMalaysia
- Integrated Chemical BiophysicsFaculty of ScienceUniversiti Putra Malaysia43400 UPMSerdang, SelangorMalaysia
| | - Martin R. Gill
- Department of ChemistrySwansea UniversitySwanseaWales (UK
| |
Collapse
|
17
|
Wang L, Wang L, Shi X, Xu S. Chlorpyrifos induces the apoptosis and necroptosis of L8824 cells through the ROS/PTEN/PI3K/AKT axis. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122905. [PMID: 32768820 DOI: 10.1016/j.jhazmat.2020.122905] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/26/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Excessive chlorpyrifos (CPF) in the environment causes toxicity to nontarget organisms by triggering oxidative stress. Phosphatase and tensin homolog deleted on chromosome ten (PTEN) plays an important role in controlling apoptosis and necrosis by negatively regulating the phosphatidylinositol 3-kinase/threonine kinase (PI3K/AKT) pathway. However, the effects of different concentrations of CPF on grass fish liver cell injury and the role of the ROS/PTEN/PI3K/AKT axis remain poorly understood. In this study, L8824 cells treated with different concentrations of CPF (0, 40, 60, or 80 μM) were used as the research object. The results showed that the median inhibitory concentration (IC50) was 112.226 μM. As the CPF concentrations increased, the ROS and MDA levels increased, and the T-AOC levels and SOD/GPx/GST activities decreased. As PTEN expression increased, PI3K/AKT, BCL-2, and Caspase-8 expression dramatically decreased. Conversely, RIPK1/RIPK3/MLKL and Bax/Cyt-c/Caspase-3 expression increased. Additionally, necroptosis increased in a dose-dependent manner, while apoptosis first increased and then decreased. In conclusion, our study showed that CPF could trigger oxidative stress and induce apoptosis and necroptosis in fish liver cells by regulating the ROS/PTEN/PI3K/AKT axis, and the type of damage induced was dose-dependent. These results are meaningful for toxicological studies of CPF and efforts to protect the ecosystem.
Collapse
Affiliation(s)
- Lanqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Lanxi Wang
- College of Basic Medicine, Harbin Medical University, Harbin 150081, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
18
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
19
|
Becceneri AB, Fuzer AM, Plutin AM, Batista AA, Lelièvre SA, Cominetti MR. Three-dimensional cell culture models for metallodrug testing: induction of apoptosis and phenotypic reversion of breast cancer cells by the trans-[Ru(PPh 3) 2( N, N-dimethyl- N-thiophenylthioureato-k 2O,S)(bipy)]PF 6 complex. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00502a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Effects of trans-[Ru(PPh3)2(N,N-dimethyl-N-thiophenylthioureato-k2O,S)(bipy)]PF6 complex on cytotoxicity, on the induction of apoptosis and on the phenotypic reversion of tumor cells in different 3D culture techniques.
Collapse
Affiliation(s)
| | - Angelina M. Fuzer
- Department of Gerontology
- Federal University of São Carlos
- São Paulo
- Brazil
| | - Ana M. Plutin
- Facultad de Química
- Universidad de la Habana
- Habana
- Cuba
| | - Alzir A. Batista
- Department of Chemistry
- Federal University of São Carlos
- São Paulo
- Brazil
| | - Sophie A. Lelièvre
- Department of Basic Medical Sciences and Center for Cancer Research
- Purdue University
- West Lafayette
- USA
| | | |
Collapse
|