1
|
Zheng DX, Soldozy S, Mulligan KM, Levoska MA, Cohn EF, Finberg A, Alsaloum P, Cwalina TB, Hanft SJ, Scott JF, Rothermel LD, Nambudiri VE. Epidemiology, management, and treatment outcomes of metastatic spinal melanoma. World Neurosurg X 2023; 18:100156. [PMID: 36875322 PMCID: PMC9976572 DOI: 10.1016/j.wnsx.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/29/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Metastatic spinal melanoma is a rare and aggressive disease process with poor prognosis. We review the literature on metastatic spinal melanoma, focusing on its epidemiology, management, and treatment outcomes. Demographics of metastatic spinal melanoma are similar to those for cutaneous melanoma, and cutaneous primary tumors tend to be most common. Decompressive surgical intervention and radiotherapy have traditionally been considered mainstays of treatment, and stereotactic radiosurgery has emerged as a promising approach in the operative management of metastatic spinal melanoma. While survival outcomes for metastatic spinal melanoma remain poor, they have improved in recent years with the advent of immune checkpoint inhibition, used in conjunction with surgery and radiotherapy. New treatment options remain under investigation, especially for patients with disease refractory to immunotherapy. We additionally explore several of these promising future directions. Nevertheless, further investigation of treatment outcomes, ideally incorporating high-quality prospective data from randomized controlled trials, is needed to identify optimal management of metastatic spinal melanoma.
Collapse
Affiliation(s)
- David X Zheng
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States.,Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Sauson Soldozy
- Department of Neurological Surgery, University of Miami, Miami, FL, United States.,Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Kathleen M Mulligan
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Melissa A Levoska
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Erin F Cohn
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Ariel Finberg
- Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Peter Alsaloum
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas B Cwalina
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Simon J Hanft
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Jeffrey F Scott
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Xu MN, Wang Q, Wang M, Xu Y, Yuan SM. Enhanced Activation of mTOR Signaling Pathway Was Found in the Hypertrophic and Nodular Lesions of Port Wine Stains. Clin Cosmet Investig Dermatol 2022; 15:643-651. [PMID: 35444442 PMCID: PMC9014311 DOI: 10.2147/ccid.s358612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/27/2022] [Indexed: 11/24/2022]
Abstract
Background Port wine stain (PWS) is a congenital skin lesion involving capillary malformations. Most PWS lesions will gradually become hypertrophic and appear nodular in contour. Current research shows that rapamycin, an mTOR inhibitor, is probably a promising adjunctive therapy for PWS, which suggests that the mTOR signaling pathway may play an important role in its pathological process. Methods From January 2013 to January 2019, 13 samples were obtained during the surgical excision. Each sample was divided into 3 parts according to the type of lesion, namely, the flat, hypertrophic and nodular lesions. Pathologic structures of each type were observed under the microscope after HE staining. The expression of mTORC1, p70S6, p-p70S6, eIF4EBP1 and p-eIF4EBP1 was examined by immunohistochemical staining and western blotting. The location of the expression of mTORC1, p-p70S6 and p-elF4EBP1 was further detected by immunofluorescence staining. Results Large amounts of dilated and malformed vessels were observed in all types of PWS lesions. Abundant hyperplastic hair follicles/glands were shown in the hypertrophic or nodular lesions. Phosphorylation level of p70S6 and elF4EBP1 in PWS was significantly higher than those in normal skin and increased accordingly in the progression of PWS. Activated molecules in mTOR signaling pathway were mostly located in the endothelium of malformed vessels. They were also located in the hyperplastic hair follicles/glands of hypertrophic and nodular lesions. Conclusion The mTOR signaling pathway was increasingly activated during the progression of PWS. Enhanced activation of mTOR signaling pathway may contribute to the hypertrophy and nodularity of PWS. The results provide preliminary evidence for treating PWS and related syndromes by inhibiting mTOR signaling pathway.
Collapse
Affiliation(s)
- Meng-Nan Xu
- Department of Plastic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Qian Wang
- Department of Plastic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Min Wang
- Department of Plastic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Yuan Xu
- Department of Plastic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Si-Ming Yuan
- Department of Plastic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, People's Republic of China.,Department of Plastic Surgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, 210002, People's Republic of China
| |
Collapse
|
3
|
Cai Y, Gao K, Peng B, Xu Z, Peng J, Li J, Chen X, Zeng S, Hu K, Yan Y. Alantolactone: A Natural Plant Extract as a Potential Therapeutic Agent for Cancer. Front Pharmacol 2021; 12:781033. [PMID: 34899346 PMCID: PMC8664235 DOI: 10.3389/fphar.2021.781033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023] Open
Abstract
Alantolactone (ALT) is a natural compound extracted from Chinese traditional medicine Inula helenium L. with therapeutic potential in the treatment of various diseases. Recently, in vitro and in vivo studies have indicated cytotoxic effects of ALT on various cancers, including liver cancer, colorectal cancer, breast cancer, etc. The inhibitory effects of ALT depend on several cancer-associated signaling pathways and abnormal regulatory factors in cancer cells. Moreover, emerging studies have reported several promising strategies to enhance the oral bioavailability of ALT, such as combining ALT with other herbs and using ALT-entrapped nanostructured carriers. In this review, studies on the anti-tumor roles of ALT are mainly summarized, and the underlying molecular mechanisms of ALT exerting anticancer effects on cells investigated in animal-based studies are also discussed.
Collapse
Affiliation(s)
- Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Kewa Gao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Jelgersma C, Vajkoczy P. How to Target Spinal Metastasis in Experimental Research: An Overview of Currently Used Experimental Mouse Models and Future Prospects. Int J Mol Sci 2021; 22:ijms22115420. [PMID: 34063821 PMCID: PMC8196562 DOI: 10.3390/ijms22115420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/20/2023] Open
Abstract
The spine is one of the organs that is most affected by metastasis in cancer patients. Since the control of primary tumor is continuously improving, treatment of metastases is becoming one of the major challenges to prevent cancer-related death. Due to the anatomical proximity to the spinal cord, local spread of metastasis can directly cause neurological deficits, severely limiting the patient’s quality of life. To investigate the underlying mechanisms and to develop new therapies, preclinical models are required which represent the complexity of the multistep cascade of metastasis. Current research of metastasis focuses on the formation of the premetastatic niche, tumor cell dormancy and the influence and regulating function of the immune system. To unveil whether these influence the organotropism to the spine, spinal models are irreplaceable. Mouse models are one of the most suitable models in oncologic research. Therefore, this review provides an overview of currently used mouse models of spinal metastasis. Furthermore, it discusses technical aspects clarifying to what extend these models can picture key steps of the metastatic process. Finally, it addresses proposals to develop better mouse models in the future and could serve as both basis and stimulus for researchers and clinicians working in this field.
Collapse
|