1
|
Jaurand MC, Murphy F, Felley-Bosco E. Editorial: Asbestos and disease genomics: is mesothelioma a genomic paradigm? FRONTIERS IN TOXICOLOGY 2025; 6:1536344. [PMID: 39831064 PMCID: PMC11739162 DOI: 10.3389/ftox.2024.1536344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Affiliation(s)
- Marie-Claude Jaurand
- Université de Paris, Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid Tumors, Paris, France
| | - Fiona Murphy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | |
Collapse
|
2
|
Kadariya Y, Sementino E, Hua X, Kappes DJ, Testa JR. Modeling Malignant Mesothelioma in Genetically Engineered Mice. Curr Protoc 2025; 5:e70086. [PMID: 39791266 PMCID: PMC11737608 DOI: 10.1002/cpz1.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Mesothelioma is a lethal cancer of the serosal lining of the body cavities. Risk factors include environmental and genetic factors. Asbestos exposure is considered the principal environmental risk factor, but other carcinogenic mineral fibers, such as erionite, also have a causal role. Pathogenic germline (heritable) mutations of specific genes, especially BAP1, are thought to predispose the individual to mesothelioma in about 10% of cases. Somatic mutations and deletions of specific tumor suppressor genes, particularly BAP1, CDKN2A/B, and NF2, occur frequently in human mesothelioma, and asbestos-exposed mice with heterozygous deletions of any one of these genes have been shown to develop mesothelioma more often and at an accelerated rate than in control animals. Autochthonous mesothelioma mouse models, which are genetically engineered to carry multiple genetic lesions matching those observed in the human disease counterpart, closely resemble the disease phenotype and the extensive inflammatory responses that characterize human mesothelioma. Because autochthonous mice do not require asbestos exposure and form tumors rapidly, these models are invaluable for assessing novel therapeutic strategies in an immunocompetent setting. The overlapping genetic, epigenetic, and immune environments of the tumors observed in these genetically engineered mouse models (GEMMs) and human primary mesothelioma specimens support the clinical relevance of these preclinical models. This article presents protocols for studies of asbestos-induced mesothelioma in GEMMs and non-carcinogenic conditional knockout models of mesothelioma, including an example of a preclinical application. These models are invaluable for understanding the biological underpinnings of mesothelioma and for testing new therapeutics and chemoprevention or interception agents. © 2025 Wiley Periodicals LLC. Basic Protocol 1: Generation of a genetically engineered mouse model (GEMM) with a germline Bap1 knockout allele Basic Protocol 2: Generation of GEMMs with germline Bap1 knock-in alleles Basic Protocol 3: Asbestos carcinogenicity investigations with GEMMs Basic Protocol 4: Preclinical chemoprevention and chemotherapy studies using a GEMM with asbestos-induced mesothelioma Basic Protocol 5: Generation of a GEMM with conditional knockout of Bap1 Basic Protocol 6: Generation of a conditional knockout model of mesothelioma.
Collapse
Affiliation(s)
- Yuwaraj Kadariya
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Xiang Hua
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Dietmar J. Kappes
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Joseph R. Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Shindyapin VV, Gubernatorova EO, Gorshkova EA, Chicherina NR, Sysonov FA, Yakovleva AS, Bogdanova DA, Demidov ON, Samsonova MV, Baklaushev VP, Yusubalieva GM, Drutskaya MS. Myeloid Cell Mobilization and Recruitment by Human Mesothelioma in NSG-SGM3 Mice. Cells 2024; 13:2135. [PMID: 39768223 PMCID: PMC11675005 DOI: 10.3390/cells13242135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Malignant pleural mesothelioma is a neoplasm that is often detected late due to nonspecific symptoms. This study utilized NSG-SGM3 mice to examine interactions between a human-derived mesothelioma reporter cell line (MZT-Luc2-mCherry) and the host's myeloid compartment. Tumor growth was assessed using optical tomography, while cytokine/chemokine production was analyzed via multiplex assay. Histological and immunohistochemical analyses validated the epithelioid mesothelioma phenotype. In vitro mesothelioma cells secreted factors associated with myeloid cell chemoattraction and functions supporting the previously reported myeloid-biased secretory phenotype. In line with this, post-engraftment analysis revealed increased neutrophil-like Ly6G+ populations and decreased Ly6C+ inflammatory monocytes in the blood of tumor-bearing mice. Significant Ly6G+ cell infiltration was observed in the tumor, while CD11b+ myeloid cells were localized primarily in the tumor periphery. Tumor lysates showed increased levels of neutrophil chemoattractants and G-CSF, suggesting a previously not reported role of neutrophils in mesothelioma progression. This novel model provides a platform for studying mesothelioma-host interactions, focusing on the myeloid compartment. It may also serve as a tool to facilitate the development of new therapeutic strategies targeting myeloid cell-mediated mechanisms in mesothelioma.
Collapse
Affiliation(s)
- Vadim V. Shindyapin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.O.G.); (E.A.G.); (F.A.S.); (A.S.Y.); (V.P.B.); (G.M.Y.)
- Department of Immunobiology and Biomedicine, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Krasnodar Krai, Russia; (N.R.C.); (D.A.B.); (O.N.D.)
| | - Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.O.G.); (E.A.G.); (F.A.S.); (A.S.Y.); (V.P.B.); (G.M.Y.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina A. Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.O.G.); (E.A.G.); (F.A.S.); (A.S.Y.); (V.P.B.); (G.M.Y.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nelya R. Chicherina
- Department of Immunobiology and Biomedicine, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Krasnodar Krai, Russia; (N.R.C.); (D.A.B.); (O.N.D.)
| | - Fedor A. Sysonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.O.G.); (E.A.G.); (F.A.S.); (A.S.Y.); (V.P.B.); (G.M.Y.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anastasia S. Yakovleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.O.G.); (E.A.G.); (F.A.S.); (A.S.Y.); (V.P.B.); (G.M.Y.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Daria A. Bogdanova
- Department of Immunobiology and Biomedicine, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Krasnodar Krai, Russia; (N.R.C.); (D.A.B.); (O.N.D.)
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Oleg N. Demidov
- Department of Immunobiology and Biomedicine, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Krasnodar Krai, Russia; (N.R.C.); (D.A.B.); (O.N.D.)
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- INSERM UMR1231, University of Burgundy, 21078 Dijon, France
| | - Mariya V. Samsonova
- Pulmonology Research Institute, Federal Medical-Biological Agency of Russian Federation, 115682 Moscow, Russia;
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.O.G.); (E.A.G.); (F.A.S.); (A.S.Y.); (V.P.B.); (G.M.Y.)
- Pulmonology Research Institute, Federal Medical-Biological Agency of Russian Federation, 115682 Moscow, Russia;
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russian Federation, 123098 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russian Federation, 117513 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.O.G.); (E.A.G.); (F.A.S.); (A.S.Y.); (V.P.B.); (G.M.Y.)
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russian Federation, 123098 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russian Federation, 117513 Moscow, Russia
| | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.O.G.); (E.A.G.); (F.A.S.); (A.S.Y.); (V.P.B.); (G.M.Y.)
- Department of Immunobiology and Biomedicine, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Krasnodar Krai, Russia; (N.R.C.); (D.A.B.); (O.N.D.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
4
|
Ebrahimi A, Ak G, Özel C, İzgördü H, Ghorbanpoor H, Hassan S, Avci H, Metintaş M. Clinical Perspectives and Novel Preclinical Models of Malignant Pleural Mesothelioma: A Critical Review. ACS Pharmacol Transl Sci 2024; 7:3299-3333. [PMID: 39539262 PMCID: PMC11555512 DOI: 10.1021/acsptsci.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Pleural mesothelioma (PM), a rare malignant tumor explicitly associated with asbestos and erionite exposures, has become a global health problem due to limited treatment options and a poor prognosis, in which the median life expectancy varies depending on the method of treatment. However, the importance of early diagnosis is emphasized, and the practical methods have not matured yet. This study provides a critical overview of PM, addressing various aspects like epidemiology, etiology, diagnosis, treatment options, and the potential use of advanced technologies like microfluidic chip-based models for research and diagnosis. It initially begins with fundamentals of clinical aspects and then discusses the identification of disease-specific biomarkers in patients' serum or plasma samples, which could potentially be used for early diagnosis. A detailed investigation of the sophisticated preclinical models is highlighted. Recent three-dimensional (3D) model accomplishments, including microarchitecture modeling by transwell coculture, spheroids, organoids, 3D bioprinting constructs, and ex vivo tumor slices, are discussed comprehensively. On-chip models that imitate physiological processes, such as detection chips and therapeutic screening chips, are assessed as potential techniques. The review concludes with a critical and constructive discussion of the growing interest in the topic and its limitations and suggestions.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Güntülü Ak
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Ceren Özel
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Hüseyin İzgördü
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Hamed Ghorbanpoor
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Biomedical Engineering, Eskişehir
Osmangazi University, Eskişehir 26040, Turkey
| | - Shabir Hassan
- Department
of Biological Sciences, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Huseyin Avci
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Muzaffer Metintaş
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
5
|
Guo H, Xu X, Zhang J, Du Y, Yang X, He Z, Zhao L, Liang T, Guo L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals (Basel) 2024; 17:1048. [PMID: 39204153 PMCID: PMC11357454 DOI: 10.3390/ph17081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The establishment and utilization of preclinical animal models constitute a pivotal aspect across all facets of cancer research, indispensably contributing to the comprehension of disease initiation and progression mechanisms, as well as facilitating the development of innovative anti-cancer therapeutic approaches. These models have emerged as crucial bridges between basic and clinical research, offering multifaceted support to clinical investigations. This study initially focuses on the importance and benefits of establishing preclinical animal models, discussing the different types of preclinical animal models and recent advancements in cancer research. It then delves into cancer treatment, studying the characteristics of different stages of tumor development and the development of anti-cancer drugs. By integrating tumor hallmarks and preclinical research, we elaborate on the path of anti-cancer drug development and provide guidance on personalized cancer therapy strategies, including synthetic lethality approaches and novel drugs widely adopted in the field. Ultimately, we summarize a strategic framework for selecting preclinical safety experiments, tailored to experimental modalities and preclinical animal species, and present an outlook on the prospects and challenges associated with preclinical animal models. These models undoubtedly offer new avenues for cancer research, encompassing drug development and personalized anti-cancer protocols. Nevertheless, the road ahead continues to be lengthy and fraught with obstacles. Hence, we encourage researchers to persist in harnessing advanced technologies to refine preclinical animal models, thereby empowering these emerging paradigms to positively impact cancer patient outcomes.
Collapse
Affiliation(s)
- Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| |
Collapse
|
6
|
Paternot S, Raspé E, Meiller C, Tarabichi M, Assié J, Libert F, Remmelink M, Bisteau X, Pauwels P, Blum Y, Le Stang N, Tabone‐Eglinger S, Galateau‐Sallé F, Blanquart C, Van Meerbeeck JP, Berghmans T, Jean D, Roger PP. Preclinical evaluation of CDK4 phosphorylation predicts high sensitivity of pleural mesotheliomas to CDK4/6 inhibition. Mol Oncol 2024; 18:866-894. [PMID: 36453028 PMCID: PMC10994244 DOI: 10.1002/1878-0261.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited therapeutic options. We evaluated the impact of CDK4/6 inhibition by palbociclib in 28 MPM cell lines including 19 patient-derived ones, using various approaches including RNA-sequencing. Palbociclib strongly and durably inhibited the proliferation of 23 cell lines, indicating a unique sensitivity of MPM to CDK4/6 inhibition. When observed, insensitivity to palbociclib was mostly explained by the lack of active T172-phosphorylated CDK4. This was associated with high p16INK4A (CDKN2A) levels that accompany RB1 defects or inactivation, or (unexpectedly) CCNE1 overexpression in the presence of wild-type RB1. Prolonged palbociclib treatment irreversibly inhibited proliferation despite re-induction of cell cycle genes upon drug washout. A senescence-associated secretory phenotype including various potentially immunogenic components was irreversibly induced. Phosphorylated CDK4 was detected in 80% of 47 MPMs indicating their sensitivity to CDK4/6 inhibitors. Its absence in some highly proliferative MPMs was linked to very high p16 (CDKN2A) expression, which was also observed in public datasets in tumours from short-survival patients. Our study supports the evaluation of CDK4/6 inhibitors for MPM treatment, in monotherapy or combination therapy.
Collapse
Affiliation(s)
- Sabine Paternot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Clément Meiller
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Jean‐Baptiste Assié
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
- CEpiA (Clinical Epidemiology and Ageing), EA 7376‐IMRBUniversity Paris‐Est CréteilFrance
- GRC OncoThoParisEst, Service de Pneumologie, CHI Créteil, UPECCréteilFrance
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
- BRIGHTCore, ULBBrusselsBelgium
| | - Myriam Remmelink
- Department of Pathology, Erasme HospitalUniversité Libre de BruxellesBelgium
| | - Xavier Bisteau
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE)Integrated Personalized and Precision Oncology Network (IPPON)WilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le CancerParisFrance
- Present address:
IGDR UMR 6290, CNRS, Université de Rennes 1France
| | - Nolwenn Le Stang
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
| | | | - Françoise Galateau‐Sallé
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
- Cancer Research Center INSERM U1052‐CNRS 5286RLyonFrance
| | | | | | - Thierry Berghmans
- Clinic of Thoracic OncologyInstitut Jules Bordet, Université Libre de BruxellesBrusselsBelgium
| | - Didier Jean
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| |
Collapse
|
7
|
Assié JB, Jean D. Pleural mesothelioma: a snapshot of emerging drug targets and opportunities for non-surgical therapeutic advancement. Expert Opin Ther Targets 2023; 27:1059-1069. [PMID: 37902459 DOI: 10.1080/14728222.2023.2277224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Pleural mesothelioma is a rare and aggressive cancer originating in the pleura, with a devastating prognosis and limited treatment options. There have been significant advancements in the management of this disease in recent years. Since 2021, nivolumab and ipilimumab immune checkpoint inhibitors have become the new standard of care for first-line treatment of pleural mesothelioma. AREAS COVERED While a combination of chemotherapy and immune checkpoint inhibitors appears to be the next step, targeted therapies are emerging thanks to our understanding of the oncogenesis of pleural mesothelioma. Moreover, several new strategies are currently being investigated, including viral therapy, antibody-drug conjugates, and even cell therapies with CAR-T cells or dendritic cells. In this review, we will explore the various future opportunities that could potentially transform patients' lives in light of the clinical trials that have been conducted. EXPERT OPINION Future clinical studies aim to rebiopsy patients after disease progression to identify new molecular alterations and to be associated with ancillary studies, guiding subsequent therapy decisions. Predicting and investigating treatment resistance mechanisms will lead to innovative approaches and improved treatment outcomes.
Collapse
Affiliation(s)
- Jean-Baptiste Assié
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Functional Genomics of Solid Tumors Laboratory, Paris, France
- GRC OncoThoParisEst, Service de Pneumologie, Centre Hospitalier IntercommunaI, UPEC, Créteil, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Functional Genomics of Solid Tumors Laboratory, Paris, France
| |
Collapse
|
8
|
Michael CW, Bedrossian CCWM, Sadri N, Klebe S. The cytological features of effusions with mesothelioma in situ: A report of 9 cases. Diagn Cytopathol 2023; 51:374-388. [PMID: 36942732 DOI: 10.1002/dc.25129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The diagnosis of mesothelioma in situ (MIS) is now accepted by the WHO as a pre-invasive neoplastic mesothelial proliferation and considered a diagnosis based on histologic evaluation only. Although the definition of MIS includes recurrent effusions, little is known about the cytologic features of such effusions. Since mesothelioma is usually diagnosed at an advanced stage and has a poor prognosis, early detection of a neoplastic mesothelial population in such effusions can potentially have a positive impact on the management of such a dire disease. MATERIALS AND METHODS We reviewed a total of 18 pleural effusions from nine patients with recurrent effusions. Of these, five patients had follow-up biopsies diagnosed as MIS and the remaining four cases had negative radiology and malignant cytology proven by molecular markers (BAP1, MTAP or CDKN2A deletion) and at least 1 year follow-up with no overt mass identified by radiology. RESULTS Initial effusions may mimic reactive mesothelial hyperplasia or exhibit atypia. As effusions recur, the cellularity and atypia increase and the mesothelial proliferation becomes morphologically indistinguishable from mesothelioma. Molecular alterations diagnostic of mesothelioma can be detected in these effusions, even in the initial-benign/reactive appearing ones. The cellularity and atypia detected in such effusions surpassed those noted on the biopsies, raising questions regarding the cause of such discrepancy. CONCLUSION The diagnosis of MIS can be suspected based on malignant effusion cytology supported by molecular alterations. We propose that the proliferation of neoplastic mesothelial clones represent a clinically silent "liquid phase MIS stage" corresponding to in situ stage in other organs.
Collapse
Affiliation(s)
- Claire W Michael
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University, USA
| | | | - Navid Sadri
- Department of Molecular Diagnostics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sonja Klebe
- Department of Pathology, Flinders University and SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Stern E, Caruso S, Meiller C, Mishalian I, Hirsch TZ, Bayard Q, Tadmor CT, Wald H, Jean D, Wald O. Deep dive into the immune response against murine mesothelioma permits design of novel anti-mesothelioma therapeutics. Front Immunol 2023; 13:1026185. [PMID: 36685577 PMCID: PMC9846605 DOI: 10.3389/fimmu.2022.1026185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 01/06/2023] Open
Abstract
Given the need to improve the efficacy of standard-of-care immunotherapy (anti-CTLA-4 + anti-PD-1) in human malignant pleural mesothelioma (hMPM), we thoroughly characterized the immunobiology of the AB12 murine mesothelioma (MM) model, aiming to increase its accuracy in predicting the response of hMPM to immunotherapy and in designing novel anti-hMPM treatments. Specifically, we used immunologic, transcriptomic and survival analyses, to synchronize the MM tumor growth phases and immune evolution with the histo-molecular and immunological characteristics of hMPM while also determining the anti-MM efficacy of standard-of-care anti-hMPM immunotherapy as a benchmark that novel therapeutics should meet. We report that early-, intermediate- and advanced- AB12 tumors are characterized by a bell-shaped anti-tumor response that peaks in intermediate tumors and decays in advanced tumors. We further show that intermediate- and advanced- tumors match with immune active ("hot") and immune inactive ("cold") hMPM respectively, and that they respond to immunotherapy in a manner that corresponds well with its performance in real-life settings. Finally, we show that in advanced tumors, addition of cisplatin to anti CTLA-4 + anti PD-1 can extend mice survival and invigorate the decaying anti-tumor response. Therefore, we highlight this triple combination as a worthy candidate to improve clinical outcomes in hMPM.
Collapse
Affiliation(s)
- Esther Stern
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Clément Meiller
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Inbal Mishalian
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Theo Z. Hirsch
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Carmit T. Tadmor
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Hanna Wald
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Ori Wald
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiothoracic Surgery, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Barnett SE, Herrmann A, Shaw L, Gash EN, Poptani H, Sacco JJ, Coulson JM. The Chick Embryo Xenograft Model for Malignant Pleural Mesothelioma: A Cost and Time Efficient 3Rs Model for Drug Target Evaluation. Cancers (Basel) 2022; 14:5836. [PMID: 36497318 PMCID: PMC9740959 DOI: 10.3390/cancers14235836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) has limited treatment options and poor prognosis. Frequent inactivation of the tumour suppressors BAP1, NF2 and P16 may differentially sensitise tumours to treatments. We have established chick chorioallantoic membrane (CAM) xenograft models of low-passage MPM cell lines and protocols for evaluating drug responses. Ten cell lines, representing the spectrum of histological subtypes and tumour suppressor status, were dual labelled for fluorescence/bioluminescence imaging and implanted on the CAM at E7. Bioluminescence was used to assess viability of primary tumours, which were excised at E14 for immunohistological staining or real-time PCR. All MPM cell lines engrafted efficiently forming vascularised nodules, however their size, morphology and interaction with chick cells varied. MPM phenotypes including local invasion, fibroblast recruitment, tumour angiogenesis and vascular remodelling were evident. Bioluminescence imaging could be used to reliably estimate tumour burden pre- and post-treatment, correlating with tumour weight and Ki-67 staining. In conclusion, MPM-CAM models recapitulate important features of the disease and are suitable to assess drug targets using a broad range of MPM cell lines that allow histological or genetic stratification. They are amenable to multi-modal imaging, potentially offering a time and cost-efficient, 3Rs-compliant alternative to rodent xenograft models to prioritise candidate compounds from in vitro studies.
Collapse
Affiliation(s)
- Sarah E. Barnett
- Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
- Technology, Infrastructure & Environment Directorate, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
| | - Anne Herrmann
- Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Liam Shaw
- Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Elisabeth N. Gash
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK
| | - Harish Poptani
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK
| | - Joseph J. Sacco
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK
| | - Judy M. Coulson
- Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
11
|
Offin M, Sauter JL, Tischfield SE, Egger JV, Chavan S, Shah NS, Manoj P, Ventura K, Allaj V, de Stanchina E, Travis W, Ladanyi M, Rimner A, Rusch VW, Adusumilli PS, Poirier JT, Zauderer MG, Rudin CM, Sen T. Genomic and transcriptomic analysis of a diffuse pleural mesothelioma patient-derived xenograft library. Genome Med 2022; 14:127. [PMID: 36380343 PMCID: PMC9667652 DOI: 10.1186/s13073-022-01129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diffuse pleural mesothelioma (DPM) is an aggressive malignancy that, despite recent treatment advances, has unacceptably poor outcomes. Therapeutic research in DPM is inhibited by a paucity of preclinical models that faithfully recapitulate the human disease. METHODS We established 22 patient-derived xenografts (PDX) from 22 patients with DPM and performed multi-omic analyses to deconvolute the mutational landscapes, global expression profiles, and molecular subtypes of these PDX models and compared features to those of the matched primary patient tumors. Targeted next-generation sequencing (NGS; MSK-IMPACT), immunohistochemistry, and histologic subtyping were performed on all available samples. RNA sequencing was performed on all available PDX samples. Clinical outcomes and treatment history were annotated for all patients. Platinum-doublet progression-free survival (PFS) was determined from the start of chemotherapy until radiographic/clinical progression and grouped into < or ≥ 6 months. RESULTS PDX models were established from both treatment naïve and previously treated samples and were noted to closely resemble the histology, genomic landscape, and proteomic profiles of the parent tumor. After establishing the validity of the models, transcriptomic analyses demonstrated overexpression in WNT/β-catenin, hedgehog, and TGF-β signaling and a consistent suppression of immune-related signaling in PDXs derived from patients with worse clinical outcomes. CONCLUSIONS These data demonstrate that DPM PDX models closely resemble the genotype and phenotype of parental tumors, and identify pathways altered in DPM for future exploration in preclinical studies.
Collapse
Affiliation(s)
- Michael Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jennifer L Sauter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sam E Tischfield
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacklynn V Egger
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Shweta Chavan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Nisargbhai S Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Parvathy Manoj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Katia Ventura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Viola Allaj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - William Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10065, USA
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Charles M Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Triparna Sen
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Office - 15-70 E, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Li M, Zhou X, Wang W, Ji B, Shao Y, Du Q, Yao J, Yang Y. Selecting an Appropriate Experimental Animal Model for Cholangiocarcinoma Research. J Clin Transl Hepatol 2022; 10:700-710. [PMID: 36062286 PMCID: PMC9396327 DOI: 10.14218/jcth.2021.00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/05/2021] [Accepted: 01/03/2022] [Indexed: 12/04/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive biliary tree malignancy with intrahepatic and extra-hepatic subtypes that differ in molecular pathogeneses, epidemiology, clinical manifestations, treatment, and prognosis. The overall prognosis and patient survival remains poor because of lack of early diagnosis and effective treatments. Preclinical in vivo studies have become increasingly paramount as they are helpful not only for the study of the fundamental molecular mechanisms of CCA but also for developing novel and effective therapeutic approaches of this fatal cancer. Recent advancements in cell and molecular biology have made it possible to mimic the pathogenicity of human CCA in chemical-mechanical, infection-induced inflammatory, implantation, and genetically engineered animal models. This review is intended to help investigators understand the particular strengths and weaknesses of the currently used in vivo animal models of human CCA and their related modeling techniques to aid in the selection of the one that is the best for their research needs.
Collapse
Affiliation(s)
- Man Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xueli Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yu Shao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qianyu Du
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jinghao Yao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Correspondence to: Yan Yang, Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China. ORCID: https://orcid.org/0000-0003-0887-2770. Tel: +86-552-3086178, Fax: +86-552-3074480, E-mail:
| |
Collapse
|
13
|
Kovacs I, Bugyik E, Dezso K, Tarnoki-Zach J, Mehes E, Gulyas M, Czirok A, Lang E, Grusch M, Schelch K, Hegedus B, Horvath I, Barany N, Megyesfalvi Z, Tisza A, Lohinai Z, Hoda MA, Hoetzenecker K, Pezzella F, Paku S, Laszlo V, Dome B. Malignant pleural mesothelioma nodules remodel their surroundings to vascularize and grow. Transl Lung Cancer Res 2022; 11:991-1008. [PMID: 35832452 PMCID: PMC9271443 DOI: 10.21037/tlcr-21-828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/24/2022] [Indexed: 12/03/2022]
Abstract
Background The microanatomical steps of malignant pleural mesothelioma (MPM) vascularization and the resistance mechanisms to anti-angiogenic drugs in MPM are unclear. Methods We investigated the vascularization of intrapleurally implanted human P31 and SPC111 MPM cells. We also assessed MPM cell's motility, invasion and interaction with endothelial cells in vitro. Results P31 cells exhibited significantly higher two-dimensional (2D) motility and three-dimensional (3D) invasion than SPC111 cells in vitro. In co-cultures of MPM and endothelial cells, P31 spheroids permitted endothelial sprouting (ES) with minimal spatial distortion, whereas SPC111 spheroids repealed endothelial sprouts. Both MPM lines induced the early onset of submesothelial microvascular plexuses covering large pleural areas including regions distant from tumor colonies. The development of these microvascular networks occurred due to both intussusceptive angiogenesis (IA) and ES and was accelerated by vascular endothelial growth factor A (VEGF-A)-overexpression. Notably, SPC111 colonies showed different behavior to P31 cells. P31 nodules incorporated tumor-induced capillary plexuses from the earliest stages of tumor formation. P31 cells deposited a collagenous matrix of human origin which provided "space" for further intratumoral angiogenesis. In contrast, SPC111 colonies pushed the capillary plexuses away and thus remained avascular for weeks. The key event in SPC111 vascularization was the development of a desmoplastic matrix of mouse origin. Continuously invaded by SPC111 cells, this matrix transformed into intratumoral connective tissue trunks, providing a route for ES from the diaphragm. Conclusions Here, we report two distinct growth patterns of orthotopically implanted human MPM xenografts. In the invasive pattern, MPM cells invade and thus co-opt peritumoral capillary plexuses. In the pushing/desmoplastic pattern, MPM cells induce a desmoplastic response within the underlying tissue which allows the ingrowth of a nutritive vasculature from the pleura.
Collapse
Affiliation(s)
- Ildiko Kovacs
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Edina Bugyik
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Katalin Dezso
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Elod Mehes
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Marton Gulyas
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, Hungary
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Elisabeth Lang
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Ildiko Horvath
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Nandor Barany
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Anna Tisza
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Pezzella
- Nuffield Division of Laboratory Science, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Viktoria Laszlo
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Monaco F, De Conti L, Vodret S, Zanotta N, Comar M, Manzotti S, Rubini C, Graciotti L, Fulgenzi G, Bovenzi M, Baralle M, Tomasetti M, Santarelli L. Force-feeding malignant mesothelioma stem-cell like with exosome-delivered miR-126 induces tumour cell killing. Transl Oncol 2022; 20:101400. [PMID: 35334283 PMCID: PMC8956928 DOI: 10.1016/j.tranon.2022.101400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022] Open
Abstract
Exosome-enriched miR-126 (exo-miR) induced mass disaggregation of MPM-derived spheroids. Exo-miR plus the inhibitor of exosome release (GW4869) accumulated miR-126 within cells. Exo-miR plus GW4869 induced MPM-stem cell like death and in vivo tumour growth arrest. MiR-126 accumulated in cells induced a protective autophagy which was inhibited by GW4869. Exo-miR plus GW4869 induced a metabolic crisis, thus promoting necroptosis activation.
Malignant pleural mesothelioma (MPM) is an aggressive tumour resistant to treatments. It has been postulated that cancer stem cells (CSCs) persist in tumours causing relapse after multimodality treatment. In the present study, a novel miRNA-based therapy approach is proposed. MPM-derived spheroids have been treated with exosome-delivered miR-126 (exo-miR) and evaluated for their anticancer effect. The exo-miR treatment increased MPM stem-cell like stemness and inhibited cell proliferation. However, at a prolonged time, the up taken miR-126 was released by the cells themselves through exosomes; the inhibition of exosome release by an exosome release inhibitor GW4869 induced miR-126 intracellular accumulation leading to massive cell death and in vivo tumour growth arrest. Autophagy is involved in these processes; miR-126 accumulation induced a protective autophagy and the inhibition of this process by GW4869 generates a metabolic crisis that promotes necroptosis, which was associated with PARP-1 over-expression and cyt-c and AIF release. Here, for the first time, we proposed a therapy against CSCs, a heterogeneous cell population involved in cancer development and relapse.
Collapse
Affiliation(s)
- Federica Monaco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy; Department of Excellence SBSP-Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Laura De Conti
- RNA biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Nunzia Zanotta
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Manola Comar
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Sandra Manzotti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Corrado Rubini
- Department of Excellence SBSP-Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Laura Graciotti
- Department of Excellence SBSP-Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Bovenzi
- Department of Medical Sciences, Clinical Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | - Marco Baralle
- RNA biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy.
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
15
|
Marazioti A, Krontira AC, Behrend SJ, Giotopoulou GA, Ntaliarda G, Blanquart C, Bayram H, Iliopoulou M, Vreka M, Trassl L, Pepe MAA, Hackl CM, Klotz LV, Weiss SAI, Koch I, Lindner M, Hatz RA, Behr J, Wagner DE, Papadaki H, Antimisiaris SG, Jean D, Deshayes S, Grégoire M, Kayalar Ö, Mortazavi D, Dilege Ş, Tanju S, Erus S, Yavuz Ö, Bulutay P, Fırat P, Psallidas I, Spella M, Giopanou I, Lilis I, Lamort A, Stathopoulos GT. KRAS signaling in malignant pleural mesothelioma. EMBO Mol Med 2022; 14:e13631. [PMID: 34898002 PMCID: PMC8819314 DOI: 10.15252/emmm.202013631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) arises from mesothelial cells lining the pleural cavity of asbestos-exposed individuals and rapidly leads to death. MPM harbors loss-of-function mutations in BAP1, NF2, CDKN2A, and TP53, but isolated deletion of these genes alone in mice does not cause MPM and mouse models of the disease are sparse. Here, we show that a proportion of human MPM harbor point mutations, copy number alterations, and overexpression of KRAS with or without TP53 changes. These are likely pathogenic, since ectopic expression of mutant KRASG12D in the pleural mesothelium of conditional mice causes epithelioid MPM and cooperates with TP53 deletion to drive a more aggressive disease form with biphasic features and pleural effusions. Murine MPM cell lines derived from these tumors carry the initiating KRASG12D lesions, secondary Bap1 alterations, and human MPM-like gene expression profiles. Moreover, they are transplantable and actionable by KRAS inhibition. Our results indicate that KRAS alterations alone or in accomplice with TP53 alterations likely play an important and underestimated role in a proportion of patients with MPM, which warrants further exploration.
Collapse
|
16
|
Lofiego MF, Cannito S, Fazio C, Piazzini F, Cutaia O, Solmonese L, Marzani F, Chiarucci C, Di Giacomo AM, Calabrò L, Coral S, Maio M, Covre A. Epigenetic Immune Remodeling of Mesothelioma Cells: A New Strategy to Improve the Efficacy of Immunotherapy. EPIGENOMES 2021; 5:epigenomes5040027. [PMID: 34968251 PMCID: PMC8715476 DOI: 10.3390/epigenomes5040027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a severe prognosis, and with a long-standing need for more effective therapeutic approaches. However, treatment with immune checkpoint inhibitors is becoming an increasingly effective strategy for MPM patients. In this scenario, epigenetic modifications may negatively regulate the interplay between immune and malignant cells within the tumor microenvironment, thus contributing to the highly immunosuppressive contexture of MPM that may limit the efficacy of immunotherapy. Aiming to further improve prospectively the clinical efficacy of immunotherapeutic approaches in MPM, we investigated the immunomodulatory potential of different classes of epigenetic drugs (i.e., DNA hypomethylating agent (DHA) guadecitabine, histone deacetylase inhibitors VPA and SAHA, or EZH2 inhibitors EPZ-6438) in epithelioid, biphasic, and sarcomatoid MPM cell lines, by cytofluorimetric and real-time PCR analyses. We also characterized the effects of the DHA, guadecitabine, on the gene expression profiles (GEP) of the investigated MPM cell lines by the nCounter platform. Among investigated drugs, exposure of MPM cells to guadecitabine, either alone or in combination with VPA, SAHA and EPZ-6438 demonstrated to be the main driver of the induction/upregulation of immune molecules functionally crucial in host-tumor interaction (i.e., HLA class I, ICAM-1 and cancer testis antigens) in all three MPM subtypes investigated. Additionally, GEP demonstrated that treatment with guadecitabine led to the activation of genes involved in several immune-related functional classes mainly in the sarcomatoid subtype. Furthermore, among investigated MPM subtypes, DHA-induced CDH1 expression that contributes to restoring the epithelial phenotype was highest in sarcomatoid cells. Altogether, our results contribute to providing the rationale to develop new epigenetically-based immunotherapeutic approaches for MPM patients, potentially tailored to the specific histologic subtypes.
Collapse
Affiliation(s)
- Maria Fortunata Lofiego
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
| | - Sara Cannito
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Carolina Fazio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Francesca Piazzini
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Ornella Cutaia
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Laura Solmonese
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Francesco Marzani
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Carla Chiarucci
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Luana Calabrò
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Sandra Coral
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Correspondence:
| | | |
Collapse
|
17
|
Johnson BW, Takahashi K, Cheng YY. Preclinical Models and Resources to Facilitate Basic Science Research on Malignant Mesothelioma - A Review. Front Oncol 2021; 11:748444. [PMID: 34900693 PMCID: PMC8660093 DOI: 10.3389/fonc.2021.748444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma is an aggressive cancer with poor prognosis, predominantly caused by human occupational exposure to asbestos. The global incidence of mesothelioma is predicted to increase as a consequence of continued exposure to asbestos from a variety of sources, including construction material produced in the past in developed countries, as well as those currently being produced in developing countries. Mesothelioma typically develops after a long latency period and consequently it is often diagnosed in the clinic at an advanced stage, at which point standard care of treatment, such as chemo- and radio-therapy, are largely ineffective. Much of our current understanding of mesothelioma biology, particularly in relation to disease pathogenesis, diagnosis and treatment, can be attributed to decades of preclinical basic science research. Given the postulated rising incidence in mesothelioma cases and the limitations of current diagnostic and treatment options, continued preclinical research into mesothelioma is urgently needed. The ever-evolving landscape of preclinical models and laboratory technology available to researchers have made it possible to study human disease with greater precision and at an accelerated rate. In this review article we provide an overview of the various resources that can be exploited to facilitate an enhanced understanding of mesothelioma biology and their applications to research aimed to improve the diagnosis and treatment of mesothelioma. These resources include cell lines, animal models, mesothelioma-specific biobanks and modern laboratory techniques/technologies. Given that different preclinical models and laboratory technologies have varying limitations and applications, they must be selected carefully with respect to the intended objectives of the experiments. This review therefore aims to provide a comprehensive overview of the various preclinical models and technologies with respect to their advantages and limitations. Finally, we will detail about a highly valuable preclinical laboratory resource to curate high quality mesothelioma biospecimens for research; the biobank. Collectively, these resources are essential to the continued advancement of precision medicine to curtail the increasing health burden caused by malignant mesothelioma.
Collapse
Affiliation(s)
| | - Ken Takahashi
- Asbestos Diseases Research Institute, Sydney, NSW, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute, Sydney, NSW, Australia
| |
Collapse
|
18
|
Rapisarda V, Broggi G, Caltabiano R, Lombardo C, Castorina S, Trovato A, Ledda C, Filetti V, Loreto C. ATG7 immunohistochemical expression in malignant pleural mesothelioma. A preliminary report. Histol Histopathol 2021; 36:1301-1308. [PMID: 34761371 DOI: 10.14670/hh-18-396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Literature evidence has demonstrated a high incidence of asbestos-related malignant pleural mesothelioma (MPM) in a Sicilian town (Biancavilla, Italy), where fluoro-edenite (FE) fibers were discovered some decades ago. As ATG7 immunohistochemical analysis has been ascribed as a prognostic tool of improved survival, we decided to investigate, in MPM patients, exposed and not exposed to FE fibers, the immunohistochemical expression of this autophagy-related protein named ATG7. We analyzed the correlation between ATG7 immunohistochemical level and clinicopathological parameters. Twenty MPM tissue samples, from patients with available clinical and follow-up data, were included in paraffin and processed for immunohistochemistry. The immunohistochemical results confirmed activation of the autophagic process in MPM. Densitometric and morphometric expressions of ATG7 were significantly increased in MPMs when compared to the control tissues. A significant association of a high level of ATG7 with increased survival was demonstrated, with a mean overall survival (OS) of 12.5 months for patients with high expression vs. a mean OS of 4.5 months for patients with low ATG7 expression. In addition, a significant correlation between ATG7 expression and the survival time of MPM patients was observed. This study represents a starting point to hypothesize the prognostic role of ATG7 which could be a reliable prognostic indicator in MPM.
Collapse
Affiliation(s)
- Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Anatomic Pathology, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Anatomic Pathology, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, University of Catania, Catania, Italy
| | - Claudia Lombardo
- Human Anatomy, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Sergio Castorina
- Human Anatomy, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Angela Trovato
- Department of Prevention, Provincial Health Authority of Catania, Catania, Italy
- Protection and Prevention Service, Health Surveillance, Provincial Health Authority of Catania, Catania, Italy
| | - Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Veronica Filetti
- Anatomy, Histology and Movement Sciences, Department of Biomedical Sciences and Biotechnologies, University of Catania, Catania, Italy.
| | - Carla Loreto
- Anatomy, Histology and Movement Sciences, Department of Biomedical Sciences and Biotechnologies, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Optimization of tumor spheroid model in mesothelioma and lung cancers and anti-cancer drug testing in H2052/484 spheroids. Oncotarget 2021; 12:2375-2387. [PMID: 34853659 PMCID: PMC8629400 DOI: 10.18632/oncotarget.28134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/10/2021] [Indexed: 01/08/2023] Open
Abstract
Advanced lung cancers and mesothelioma remain incurable diseases. Despite some promising new therapy strategies, predicting whether an individual patient will be sensitive to a given therapy is challenging. The purpose of this study is to establish and evaluate the efficiency of a three-dimensional spheroid model of human thoracic cancer in predicting the efficacy of drugs. Human mesothelioma and lung tumor spheroids were established from cell lines and primary cells derived from the patient. The growth kinetics and cell viability of microtumors were assessed using spheroid size and intracellular ATP level. The sensitivity of the mesothelioma spheroids to the cisplatin or cisplatin/pemetrexed combination was determined. We determined that studying the kinetics of the spheroid growth for 15 days after seeding 1000 cells/well in a 96-well plate was optimal. Monitoring the growth kinetic and intracellular ATP of spheroids allowed the identification of early changes in spheroid viability. Finally, we validated this model by measuring a dose-dependent reduction in the cell viability of mesothelioma H2052/484 spheroids treated with both first-line treatments, cisplatin and the cisplatin/pemetrexed combination. In conclusion, we have developed a three-dimensional spheroid model of thoracic tumor cells useful for tailoring the medical treatment to the specific characteristics of each patient.
Collapse
|
20
|
Sidhu C, Louw A, Gary Lee YC. Malignant Pleural Mesothelioma: Updates for Respiratory Physicians. Clin Chest Med 2021; 42:697-710. [PMID: 34774176 DOI: 10.1016/j.ccm.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Calvin Sidhu
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia; Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia; School of Medical & Health Sciences, Edith Cowan University, Perth, Western Australia
| | - Amber Louw
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia; School of Medical & Health Sciences, Edith Cowan University, Perth, Western Australia; National Centre for Asbestos Related Diseases, University of Western Australia
| | - Y C Gary Lee
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia; Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia; School of Medical & Health Sciences, Edith Cowan University, Perth, Western Australia; School of Medicine, University of Western Australia, Perth, Western Australia.
| |
Collapse
|
21
|
Meiller C, Montagne F, Hirsch TZ, Caruso S, de Wolf J, Bayard Q, Assié JB, Meunier L, Blum Y, Quetel L, Gibault L, Pintilie E, Badoual C, Humez S, Galateau-Sallé F, Copin MC, Letouzé E, Scherpereel A, Zucman-Rossi J, Le Pimpec-Barthes F, Jaurand MC, Jean D. Multi-site tumor sampling highlights molecular intra-tumor heterogeneity in malignant pleural mesothelioma. Genome Med 2021; 13:113. [PMID: 34261524 PMCID: PMC8281651 DOI: 10.1186/s13073-021-00931-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a heterogeneous cancer. Better knowledge of molecular and cellular intra-tumor heterogeneity throughout the thoracic cavity is required to develop efficient therapies. This study focuses on molecular intra-tumor heterogeneity using the largest series to date in MPM and is the first to report on the multi-omics profiling of a substantial series of multi-site tumor samples. Methods Intra-tumor heterogeneity was investigated in 16 patients from whom biopsies were taken at distinct anatomical sites. The paired biopsies collected from apex, side wall, costo-diaphragmatic, or highest metabolic sites as well as 5 derived cell lines were screened using targeted sequencing. Whole exome sequencing, RNA sequencing, and DNA methylation were performed on a subset of the cohort for deep characterization. Molecular classification, recently defined histo-molecular gradients, and cell populations of the tumor microenvironment were assessed. Results Sequencing analysis identified heterogeneous variants notably in NF2, a key tumor suppressor gene of mesothelial carcinogenesis. Subclonal tumor populations were shared among paired biopsies, suggesting a polyclonal dissemination of the tumor. Transcriptome analysis highlighted dysregulation of cell adhesion and extracellular matrix pathways, linked to changes in histo-molecular gradient proportions between anatomic sites. Methylome analysis revealed the contribution of epigenetic mechanisms in two patients. Finally, significant changes in the expression of immune mediators and genes related to immunological synapse, as well as differential infiltration of immune populations in the tumor environment, were observed and led to a switch from a hot to a cold immune profile in three patients. Conclusions This comprehensive analysis reveals patient-dependent spatial intra-tumor heterogeneity at the genetic, transcriptomic, and epigenetic levels and in the immune landscape of the tumor microenvironment. Results support the need for multi-sampling for the implementation of molecular-based precision medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00931-w.
Collapse
Affiliation(s)
- Clément Meiller
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - François Montagne
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Present address: Service de Chirurgie Thoracique, Hôpital Calmette, CHRU de Lille, Lille, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Julien de Wolf
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Present address: Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Jean-Baptiste Assié
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,University Paris-Est Créteil (UPEC), CEpiA (Clinical Epidemiology and Ageing), EA 7376- IMRB, UPEC, Créteil, France.,GRC OncoThoParisEst, Service de Pneumologie, CHI Créteil, UPEC, Créteil, France
| | - Léa Meunier
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France.,Present address: IGDR UMR 6290, CNRS, Université de Rennes 1, Rennes, France
| | - Lisa Quetel
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Laure Gibault
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service d'Anatomopathologie et Cytologie, Université de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Ecaterina Pintilie
- Univ. Lille, CHU Lille, Service de Chirurgie Thoracique, Hôpital Calmette, Lille, France
| | - Cécile Badoual
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service d'Anatomopathologie et Cytologie, Université de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Sarah Humez
- Univ. Lille, CHU Lille, Institut de Pathologie, Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | | | - Marie-Christine Copin
- Univ. Lille, CHU Lille, Institut de Pathologie, Lille, France.,Present address: Département de Pathologie Cellulaire et Tissulaire, CHU d'Angers, Angers, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Arnaud Scherpereel
- Univ. Lille, CHU Lille, Service de Pneumologie et d'Oncologie Thoracique, unité INSERM 1189 OncoThAI, Lille, France.,Réseau National Expert pour le Mésothéliome Pleural Malin (NETMESO), Lille, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Françoise Le Pimpec-Barthes
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service de Chirurgie Thoracique, Hôpital Européen Georges Pompidou, Paris, France
| | - Marie-Claude Jaurand
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.
| |
Collapse
|
22
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
23
|
Seastedt KP, Pruett N, Hoang CD. Mouse models for mesothelioma drug discovery and development. Expert Opin Drug Discov 2020; 16:697-708. [PMID: 33380218 DOI: 10.1080/17460441.2021.1867530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Mesothelioma is an aggressive mesothelial lining tumor. Available drug therapies include chemotherapeutic agents, targeted molecular therapies, and immune system modulators. Mouse models were instrumental in the discovery and evaluation of such therapies, but there is need for improved understanding of the role of inflammation, tumor heterogeneity, mechanisms of carcinogenesis, and the tumor microenvironment. Novel mouse models may provide new insights and drive drug therapy discovery that improves efficacy. AREAS COVERED This review concerns available mouse models for mesothelioma drug discovery and development including the advantages and disadvantages of each. Gaps in current knowledge of mesothelioma are highlighted, and future directions for mouse model research are considered. EXPERT OPINION Soon, CRISPR-Cas gene-editing will improve understanding of mesothelioma mechanisms foundational to the discovery and testing of efficacious therapeutic targets. There are at least two likely areas of upcoming methodology development. One is concerned with precise modeling of inflammation - is it a causal process whereby inflammatory signals contribute to tumor initiation, or is it a secondary passenger process driven by asbestos exposure effects? The other area of methods improvement regards the availability of humanized immunocompromised mice harboring patient-derived xenografts. Combining human tumors in an environment with human immune cells will enable rapid innovation in immuno-oncology therapeutics.
Collapse
Affiliation(s)
- Kenneth P Seastedt
- Department of Surgery, Uniformed Services University of the Health Sciences F. Edward Hébert School of Medicine, Bethesda, Maryland, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chuong D Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Establishment and Characterization of Patient-Derived Xenografts (PDXs) of Different Histology from Malignant Pleural Mesothelioma Patients. Cancers (Basel) 2020; 12:cancers12123846. [PMID: 33419364 PMCID: PMC7766019 DOI: 10.3390/cancers12123846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Malignant pleural mesothelioma (MPM) is a rare tumor with unfavorable prognosis for which new therapeutic interventions are urgently needed. The aim of our study was to develop a preclinical model representative of the different histotypes found in human tumors that can be used as models for the discovery of new treatments and combinations. We successfully generated patient-derived xenografts (PDXs) from MPM, which strongly resembled the tumors of origin in terms of morphology and immunohistochemistry. These tumors, when growing in mice, poorly respond to cisplatin, a finding that aligned with the clinical results. From one of the PDXs, we generated 2D and 3D cultures maintaining the phenotypical characteristics of human tumors and PDXs. Altogether, these preclinical models represent a useful tool for the discovery of new targets and drug combinations. Abstract Background: Malignant pleural mesothelioma (MPM) is a very aggressive tumor originating from mesothelial cells. Although several etiological factors were reported to contribute to MPM onset, environmental exposure to asbestos is certainly a major risk factor. The latency between asbestos (or asbestos-like fibers) exposure and MPM onset is very long. MPM continues to be a tumor with poor prognosis despite the introduction of new therapies including immunotherapy. One of the major problems is the low number of preclinical models able to recapitulate the features of human tumors. This impacts the possible discovery of new treatments and combinations. Methods: In this work, we aimed to generate patient-derived xenografts (PDXs) from MPM patients covering the three major histotypes (epithelioid, sarcomatoid, and mixed) occurring in the clinic. To do this, we obtained fresh tumors from biopsies or pleurectomies, and samples were subcutaneously implanted in immunodeficient mice within 24 h. Results: We successfully isolated different PDXs and particularly concentrated our efforts on three covering the three histotypes. The tumors that grew in mice compared well histologically with the tumors of origin, and showed stable growth in mice and a low response to cisplatin, as was observed in the clinic. Conclusions: These models are helpful in testing new drugs and combinations that, if successful, could rapidly translate to the clinical setting.
Collapse
|
25
|
Optimization of a Luciferase-Expressing Non-Invasive Intrapleural Model of Malignant Mesothelioma in Immunocompetent Mice. Cancers (Basel) 2020; 12:cancers12082136. [PMID: 32752156 PMCID: PMC7465989 DOI: 10.3390/cancers12082136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is an aggressive tumor of the pleural lining that is usually identified at advanced stages and resistant to current therapies. Appropriate pre-clinical mouse tumor models are of pivotal importance to study its biology. Usually, tumor cells have been injected intraperitoneally or subcutaneously. Using three available murine mesothelioma cell lines with different histotypes (sarcomatoid, biphasic, epithelioid), we have set up a simplified model of in vivo growth orthotopically by inoculating tumor cells directly in the thorax with a minimally invasive procedure. Mesothelioma tumors grew along the pleura and spread on the superficial areas of the lungs, but no masses were found outside the thoracic cavity. As observed in human MPM, tumors were highly infiltrated by macrophages and T cells. The luciferase-expressing cells can be visualized in vivo by bioluminescent optical imaging to precisely quantify tumor growth over time. Notably, the bioluminescence signal detected in vivo correctly matched the tumor burden quantified with classical histology. In contrast, the subcutaneous or intraperitoneal growth of these mesothelioma cells was considered either non-representative of the human disease or unreliable to precisely quantify tumor load. Our non-invasive in vivo model of mesothelioma is simple and reproducible, and it reliably recapitulates the human disease.
Collapse
|
26
|
Indovina P, Forte IM, Pentimalli F, Giordano A. Targeting SRC Family Kinases in Mesothelioma: Time to Upgrade. Cancers (Basel) 2020; 12:cancers12071866. [PMID: 32664483 PMCID: PMC7408838 DOI: 10.3390/cancers12071866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant mesothelioma (MM) is a deadly tumor mainly caused by exposure to asbestos. Unfortunately, no current treatment is able to change significantly the natural history of the disease, which has a poor prognosis in the majority of patients. The non-receptor tyrosine kinase SRC and other SRC family kinase (SFK) members are frequently hyperactivated in many cancer types, including MM. Several works have indeed suggested that SFKs underlie MM cell proliferation, survival, motility, and invasion, overall affecting multiple oncogenic pathways. Consistently, SFK inhibitors effectively counteracted MM cancerous features at the preclinical level. Dasatinib, a multi-kinase inhibitor targeting SFKs, was also assessed in clinical trials either as second-line treatment for patients with unresectable MM or, more recently, as a neoadjuvant agent in patients with resectable MM. Here, we provide an overview of the molecular mechanisms implicating SFKs in MM progression and discuss possible strategies for a more successful clinical application of SFK inhibitors. Our aim is to stimulate discussion and further consideration of these agents in better designed preclinical and clinical studies to make the most of another class of powerful antitumoral drugs, which too often are lost in translation when applied to MM.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), I-80131 Naples, Italy
- Correspondence: (P.I.); (F.P.)
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
- Correspondence: (P.I.); (F.P.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| |
Collapse
|
27
|
Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Research on the toxicity of engineered carbon nanotubes (CNT) was initiated by Belgian academic chemists and toxicologists more than 15 years ago. It is now undisputed that some of these attractive nanomaterials induce serious illness such as fibrosis and cancer. The physico-chemical determinants of CNT-induced adverse effects are now elucidated and include shape, nanoscale diameter, and structural defects. Generated in vitro and in vivo data on their inflammogenic and fibrogenic activities were combined and translated in AOP (adverse outcome pathways) available for risk assessment and regulatory policies. The asbestos-like carcinogenic effect of CNT, notably their capacity to induce malignant mesothelioma (MM), remain, however, a cause of concern for public health and strongly curb the craze for CNT in industries. MM still represents a real challenge for clinicians and a highly refractory cancer to existing therapeutic strategies. By comparing mesotheliomagenic CNT (needle-like CNT-N) to non mesotheliomagenic CNT (tangled-like CNT-T), our group generated a relevant animal model that highlights immune pathways specifically associated to the carcinogenic process. Evidence indicates that only CNT-N possess the intrinsic capacity to induce a preferential, rapid, and sustained accumulation of host immunosuppressive cells that subvert immune surveillance and suppress anti-mesothelioma immunity. This new concept offers novel horizons for the clinical management of mesothelioma and represents an additional tool for predicting the mesotheliomagenic activity of newly elaborated CNT or nanoparticles.
Collapse
|