1
|
Abd-Elmawla MA, Abdel Mageed SS, Al-Noshokaty TM, Elballal MS, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Midan HM, Rizk NI, Elrebehy MA, Sayed GA, Tabaa MME, Salman A, Mohammed OA, Ashraf A, Khidr EG, Khaled R, El-Dakroury WA, Helal GK, Moustafa YM, Doghish AS. Melodic maestros: Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of malignant pleural mesothelioma. Pathol Res Pract 2023; 250:154817. [PMID: 37713736 DOI: 10.1016/j.prp.2023.154817] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Di Mauro G, Frontini F, Torreggiani E, Iaquinta MR, Caselli A, Mazziotta C, Esposito V, Mazzoni E, Libener R, Grosso F, Maconi A, Martini F, Bononi I, Tognon M. Epigenetic investigation into circulating microRNA 197-3p in sera from patients affected by malignant pleural mesothelioma and workers ex-exposed to asbestos. Sci Rep 2023; 13:6501. [PMID: 37081052 PMCID: PMC10119131 DOI: 10.1038/s41598-023-33116-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
The epigenetic role of microRNAs is established at both physiological and pathological levels. Dysregulated miRNAs and their targets appear to be a promising approach for innovative anticancer therapies. In our previous study, circulating miR-197-3p tested dysregulated in workers ex-exposed to asbestos (WEA). Herein, an epigenetic investigation on this circulating miRNA was carried out in sera from malignant pleural mesothelioma (MPM) patients. MiR-197-3p was quantified in MPM (n = 75) sera and comparatively analyzed to WEA (n = 75) and healthy subject (n = 75) sera, using ddPCR and RT-qPCR techniques. Clinicopathological characteristics, occupational, non-occupational information and overall survival (OS) were evaluated in correlation studies. MiR-197-3p levels, analyzed by ddPCR, were significantly higher in MPM than in WEA cohort, with a mean copies/µl of 981.7 and 525.01, respectively. Consistently, RT-qPCR showed higher miR-197-3p levels in sera from MPM with a mean copies/µl of 603.7, compared to WEA with 336.1 copies/µl. OS data were significantly associated with histologic subtype and pleurectomy. Circulating miR-197-3p is proposed as a new potential biomarker for an early diagnosis of the MPM onset. Indeed, miR-197-3p epigenetic investigations along with chest X-ray, computed tomography scan and spirometry could provide relevant information useful to reach an early and effective diagnosis for MPM.
Collapse
Affiliation(s)
- Giulia Di Mauro
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Francesca Frontini
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Andrea Caselli
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Valentina Esposito
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Roberta Libener
- Research Training and Innovation Infrastructure - Department of Integrated Research and Innovation Activities (DAIRI), AO SS. Antonio e Biagio e Cesare Arrigo, 15121, Alessandria, Italy
| | - Federica Grosso
- Mesothelioma Unit, AO SS. Antonio e Biagio e Cesare Arrigo, 15121, Alessandria, Italy
| | - Antonio Maconi
- Research Training and Innovation Infrastructure - Department of Integrated Research and Innovation Activities (DAIRI), AO SS. Antonio e Biagio e Cesare Arrigo, 15121, Alessandria, Italy
| | - Fernanda Martini
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Ilaria Bononi
- Department of Translational Medicine and for Romagna, University of Ferrara, 70, Fossato di Mortara Street, 44121, Ferrara, Italy.
| | - Mauro Tognon
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64B, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
3
|
Cherchi R, Cusano R, Orrù S, Ferrari PA, Massidda M, Fotia G, De Matteis S, Cocco P. Next Generation Sequencing for miRNA Detection on the Exhaled Breath Condensate: A Pilot Study. Epigenet Insights 2023; 16:25168657231160985. [PMID: 37025420 PMCID: PMC10070752 DOI: 10.1177/25168657231160985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Exhaled breath condensate (EBC) sampling has been suggested as a less-invasive and cost-effective method to detect biological macromolecules, including miRNA. To explore the feasibility of its use as a biomarker of early effects of asbestos exposure, we conducted a preliminary test on male volunteers by comparing the miRNA profile in the EBC and the plasma using 2 different sequencing platforms. Methods: Six male volunteers, all retired and unexposed to dust or fumes, participated in the test. RNA was extracted from 200 μL EBC samples and same-size plasma samples. Sample aliquots were processed in 2 laboratories using 2 different sequencing platforms: a MiSeq Illumina® platform and a more performing HiSeq Illumina® platform. Results: The HiSeq3000® sequencing platform identified twice as many unique molecular indexes (UMI)-validated miRNA as the MiSeq® platform. The Spearman’s correlation coefficient between EBC counts and plasma counts was significant in 5/6 subjects with either platform (MiSeq® = 0.128-0.508, P = .026-<.001; HiSeq® = 0.156-0.412, P = .001-<.001). The intraclass correlation coefficient confirmed the consistency of the miRNA profile over the 6 participants with both biospecimens. Exploring the agreement between the EBC and plasma samples with Bland-Altman plots showed that using the HiSeq3000® platform substantially improved the EBC miRNA detection rate. Conclusion: Our preliminary study confirms that, when using the HiSeq® sequencing platform, EBC sampling is a suitable, non-invasive method to detect the miRNA profile in healthy subjects.
Collapse
Affiliation(s)
- Roberto Cherchi
- Operative Unit of Thoracic Surgery, Hospital G. Brotzu, Cagliari, Italy
| | - Roberto Cusano
- CRS4-NGS Core, POLARIS Research Park, Pula—Cagliari, Italy
| | - Sandro Orrù
- Operative Unit of Medical Genetics, Health Agency of Sardinia, Hospital Binaghi, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato—Cagliari, Italy
- Orrù S, Unit of Medical Genetics, Health Agency of Sardinia, Hospital Binaghi, Via Is Guadazzonis 3, Cagliari 09126, Italy.
| | - Paolo A Ferrari
- Operative Unit of Thoracic Surgery, Hospital G. Brotzu, Cagliari, Italy
| | | | - Giorgio Fotia
- CRS4-NGS Core, POLARIS Research Park, Pula—Cagliari, Italy
| | - Sara De Matteis
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato—Cagliari, Italy
| | - Pierluigi Cocco
- Centre for Occupational and Environmental Health, Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Allione A, Viberti C, Cotellessa I, Catalano C, Casalone E, Cugliari G, Russo A, Guarrera S, Mirabelli D, Sacerdote C, Gentile M, Eichelmann F, Schulze MB, Harlid S, Eriksen AK, Tjønneland A, Andersson M, Dollé MET, Van Puyvelde H, Weiderpass E, Rodriguez-Barranco M, Agudo A, Heath AK, Chirlaque MD, Truong T, Dragic D, Severi G, Sieri S, Sandanger TM, Ardanaz E, Vineis P, Matullo G. Blood cell DNA methylation biomarkers in preclinical malignant pleural mesothelioma: The EPIC prospective cohort. Int J Cancer 2023; 152:725-737. [PMID: 36305648 DOI: 10.1002/ijc.34339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer mainly caused by asbestos exposure. Specific and sensitive noninvasive biomarkers may facilitate and enhance screening programs for the early detection of cancer. We investigated DNA methylation (DNAm) profiles in MPM prediagnostic blood samples in a case-control study nested in the European Prospective Investigation into Cancer and nutrition (EPIC) cohort, aiming to characterise DNAm biomarkers associated with MPM. From the EPIC cohort, we included samples from 135 participants who developed MPM during 20 years of follow-up and from 135 matched, cancer-free, controls. For the discovery phase we selected EPIC participants who developed MPM within 5 years from enrolment (n = 36) with matched controls. We identified nine differentially methylated CpGs, selected by 10-fold cross-validation and correlation analyses: cg25755428 (MRI1), cg20389709 (KLF11), cg23870316, cg13862711 (LHX6), cg06417478 (HOOK2), cg00667948, cg01879420 (AMD1), cg25317025 (RPL17) and cg06205333 (RAP1A). Receiver operating characteristic (ROC) analysis showed that the model including baseline characteristics (age, sex and PC1wbc) along with the nine MPM-related CpGs has a better predictive value for MPM occurrence than the baseline model alone, maintaining some performance also at more than 5 years before diagnosis (area under the curve [AUC] < 5 years = 0.89; AUC 5-10 years = 0.80; AUC >10 years = 0.75; baseline AUC range = 0.63-0.67). DNAm changes as noninvasive biomarkers in prediagnostic blood samples of MPM cases were investigated for the first time. Their application can improve the identification of asbestos-exposed individuals at higher MPM risk to possibly adopt more intensive monitoring for early disease identification.
Collapse
Affiliation(s)
| | - Clara Viberti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Chiara Catalano
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Alessia Russo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simonetta Guarrera
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Dario Mirabelli
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates "G. Scansetti", University of Turin, Turin, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | | | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Sophia Harlid
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Anne Kirstine Eriksen
- Danish Cancer Society Research Center, Diet, Genes and Environment, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Genes and Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Martin Andersson
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Martijn E T Dollé
- Centre for Health Protection National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Heleen Van Puyvelde
- International Agency for Research on Cancer, World Health Organisation, Lyon, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organisation, Lyon, France
| | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, L'Hospitalet de Llobregat, Barcelona, Spain
- Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - María-Dolores Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Thérèse Truong
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Paris, France
| | - Dzevka Dragic
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Paris, France
- Centre de Recherche sur le Cancer de l'Université Laval, Département de Médecine Sociale et Préventive, Faculté de Médecine, Québec, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Paris, France
- Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano Via Venezian, Milan, Italy
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eva Ardanaz
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Paolo Vineis
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates "G. Scansetti", University of Turin, Turin, Italy
- Medical Genetics Unit, AOU Città della Salute e Della Scienza, Turin, Italy
| |
Collapse
|
5
|
Casalone E, Birolo G, Pardini B, Allione A, Russo A, Catalano C, Mencoboni M, Ferrante D, Magnani C, Sculco M, Dianzani I, Grosso F, Mirabelli D, Filiberti RA, Rena O, Sacerdote C, Rodriguez-Barranco M, Smith-Byrne K, Panico S, Agnoli C, Johnson T, Kaaks R, Tumino R, Huerta JM, Riboli E, Heath AK, Trobajo-Sanmartín C, Schulze MB, Saieva C, Amiano P, Agudo A, Weiderpass E, Vineis P, Matullo G. Serum Extracellular Vesicle-Derived microRNAs as Potential Biomarkers for Pleural Mesothelioma in a European Prospective Study. Cancers (Basel) 2022; 15:125. [PMID: 36612122 PMCID: PMC9817828 DOI: 10.3390/cancers15010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with a dismal prognosis. Early therapeutic interventions could improve patient outcomes. We aimed to identify a pattern of microRNAs (miRNAs) as potential early non-invasive markers of MPM. In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition cohort, we screened the whole miRNome in serum extracellular vesicles (EVs) of preclinical MPM cases. In a subgroup of 20 preclinical samples collected five years prior MPM diagnosis, we observed an upregulation of miR-11400 (fold change (FC) = 2.6, adjusted p-value = 0.01), miR-148a-3p (FC = 1.5, p-value = 0.001), and miR-409-3p (FC = 1.5, p-value = 0.04) relative to matched controls. The 3-miRNA panel showed a good classification capacity with an area under the receiver operating characteristic curve (AUC) of 0.81 (specificity = 0.75, sensitivity = 0.70). The diagnostic ability of the model was also evaluated in an independent retrospective cohort, yielding a higher predictive power (AUC = 0.86). A signature of EV miRNA can be detected up to five years before MPM; moreover, the identified miRNAs could provide functional insights into the molecular changes related to the late carcinogenic process, preceding MPM development.
Collapse
Affiliation(s)
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine, IIGM, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | | | - Alessia Russo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Catalano
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Manlio Mencoboni
- Medical Oncology, ASL 3 Genovese, Villa Scassi Hospital, 16149 Genoa, Italy
| | - Daniela Ferrante
- Unit of Medical Statistics, Department of Translational Medicine, University of Eastern Piedmont and Cancer Epidemiology, CPO Piemonte, 28100 Novara, Italy
| | - Corrado Magnani
- Unit of Medical Statistics, Department of Translational Medicine, University of Eastern Piedmont and Cancer Epidemiology, CPO Piemonte, 28100 Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Interdepartmental Center for Studies on Asbestos and other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
| | - Federica Grosso
- Mesothelioma Unit, AO SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Dario Mirabelli
- Unit of Cancer Epidemiology, Città della Salute e della Scienza, University-Hospital and Center for Cancer Prevention (CPO), 10126 Turin, Italy
| | | | - Ottavio Rena
- Unit of Thoracic Surgery, University of Novara, 28100 Novara, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza, University-Hospital and Center for Cancer Prevention (CPO), 10126 Turin, Italy
| | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Salvatore Panico
- EPIC Centre of Naples, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80100 Napoli, Italy
| | - Claudia Agnoli
- Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Center for Lung Research (DZL), Translational Lung Research Center (TLRC), 69120 Heidelberg, Germany
| | - Rosario Tumino
- Hyblean Association for Epidemiology Research AIRE ONLYS, 97100 Ragusa, Italy
| | - José María Huerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 30008 Murcia, Spain
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London W2 1PG, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London W2 1PG, UK
| | - Camino Trobajo-Sanmartín
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Navarra Public Health Institute, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Calogero Saieva
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology—ICO, 08908 L’Hospitalet de Llobregat, Spain
- Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London W2 1PG, UK
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Interdepartmental Center for Studies on Asbestos and other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza, 10126 Turin, Italy
- Department of Medical Sciences, Via Santena 19, 10126 Torino, Italy
| |
Collapse
|
6
|
Wang JJ, Yan L. Serum diagnostic markers for malignant pleural mesothelioma: a narrative review. Transl Cancer Res 2022; 11:4434-4440. [PMID: 36644178 PMCID: PMC9834602 DOI: 10.21037/tcr-22-2873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Background and Objective The prognosis of patients with malignant pleural mesothelioma (MPM) is poor, and early diagnosis is key to improving the prognosis. Pleural biopsy is the gold reference for diagnosing MPM, but it is an invasive method that can cause operation-related complications such as bleeding and infection. Serum biomarkers, with the advantages of mini-invasiveness, short turnaround time and objectiveness, represent a promising diagnostic tool for MPM. Methods We searched the PubMed database to identify clinical studies published between 1990 to July 2022 that investigated the diagnostic accuracy of serum biomarkers for MPM. The major findings of the verified studies were summarized. Key Content and Findings Currently, there are many available serum markers for MPM, including mesothelin, soluble mesothelin-related peptides, osteopontin, fibulin-3, high mobility group box 1, and microRNA. Systematic review and meta-analysis evidence indicates that the sensitivity and specificity of these serum markers are less than 0.90. In addition, a large portion of previous studies have limitations, especially the representativeness of the study cohort. Conclusions The diagnostic accuracy of currently available serum biomarkers is unsatisfactory, and further studies are needed to investigate novel serum biomarkers.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
7
|
Ferrari L, Iodice S, Cantone L, Dallari B, Dioni L, Bordini L, Palleschi A, Mensi C, Pesatori AC. Identification of a new potential plasmatic biomarker panel for the diagnosis of malignant pleural mesothelioma. LA MEDICINA DEL LAVORO 2022; 113:e2022052. [PMID: 36475505 PMCID: PMC9766837 DOI: 10.23749/mdl.v113i6.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare highly aggressive tumor strongly associated with asbestos exposure and characterized by poor prognosis. Currently, diagnosis is based on invasive techniques, thus there is a need of identifying non-invasive biomarkers for early detection of the disease among asbestos-exposed subjects. In the present study, we measured the plasmatic concentrations of Mesothelin, Fibulin-3, and HMGB1 protein biomarkers, and of hsa-miR-30e-3p and hsa-miR-103a-3p Extracellular-Vesicles- embedded micro RNAs (EV-miRNAs). We tested the ability of these biomarkers to discriminate between MPM and PAE subjects alone and in combination. METHODS the study was conducted on a population of 26 patients with MPM and 54 healthy subjects with previous asbestos exposure (PAE). Mesothelin, Fibulin-3, and HMGB1 protein biomarkers were measured by the enzyme-linked immunosorbent assay (ELISA) technique; the levels of hsa-miR-30e-3p and hsa-miR-103a-3p EV-miRNAs was assessed by quantitative real-time PCR (qPCR). RESULTS the most discriminating single biomarker resulted to be Fibulin-3 (AUC 0.94 CI 95% 0.88-1.0; Sensitivity 88%; Specificity 87%). After investigating the different possible combinations, the best performance was obtained by the three protein biomarkers Mesothelin, Fibulin-3, and HMGB1 (AUC 0.99 CI 95% 0.97-1.0; Sensitivity 96%; Specificity 93%). CONCLUSIONS the results obtained contribute to identifying new potential non-invasive biomarkers for the early diagnosis of MPM in high-risk asbestos-exposed subjects. Further studies are needed to validate the evidence obtained, in order to assess the reliability of the proposed biomarker panel.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Iodice
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Cantone
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Barbara Dallari
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Dioni
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bordini
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Palleschi
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Carolina Mensi
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Cersosimo F, Barbarino M, Lonardi S, Vermi W, Giordano A, Bellan C, Giurisato E. Mesothelioma Malignancy and the Microenvironment: Molecular Mechanisms. Cancers (Basel) 2021; 13:cancers13225664. [PMID: 34830817 PMCID: PMC8616064 DOI: 10.3390/cancers13225664] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported that cellular and soluble components of the tumor microenvironment (TME) play a key role in cancer-initiation and progression. Considering the relevance and the complexity of TME in cancer biology, recent research has focused on the investigation of the TME content, in terms of players and informational exchange. Understanding the crosstalk between tumor and non-tumor cells is crucial to design more beneficial anti-cancer therapeutic strategies. Malignant pleural mesothelioma (MPM) is a complex and heterogenous tumor mainly caused by asbestos exposure with few treatment options and low life expectancy after standard therapy. MPM leukocyte infiltration is rich in macrophages. Given the failure of macrophages to eliminate asbestos fibers, these immune cells accumulate in pleural cavity leading to the establishment of a unique inflammatory environment and to the malignant transformation of mesothelial cells. In this inflammatory landscape, stromal and immune cells play a driven role to support tumor development and progression via a bidirectional communication with tumor cells. Characterization of the MPM microenvironment (MPM-ME) may be useful to understand the complexity of mesothelioma biology, such as to identify new molecular druggable targets, with the aim to improve the outcome of the disease. In this review, we summarize the known evidence about the MPM-ME network, including its prognostic and therapeutic relevance.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +39-057-723-2125
| |
Collapse
|
9
|
Yeo D, Castelletti L, van Zandwijk N, Rasko JEJ. Hitting the Bull's-Eye: Mesothelin's Role as a Biomarker and Therapeutic Target for Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:3932. [PMID: 34439085 PMCID: PMC8391149 DOI: 10.3390/cancers13163932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited treatment options and poor prognosis. MPM originates from the mesothelial lining of the pleura. Mesothelin (MSLN) is a glycoprotein expressed at low levels in normal tissues and at high levels in MPM. Many other solid cancers overexpress MSLN, and this is associated with worse survival rates. However, this association has not been found in MPM, and the exact biological role of MSLN in MPM requires further exploration. Here, we discuss the current research on the diagnostic and prognostic value of MSLN in MPM patients. Furthermore, MSLN has become an attractive immunotherapy target in MPM, where better treatment strategies are urgently needed. Several MSLN-targeted monoclonal antibodies, antibody-drug conjugates, immunotoxins, cancer vaccines, and cellular therapies have been tested in the clinical setting. The biological rationale underpinning MSLN-targeted immunotherapies and their potential to improve MPM patient outcomes are reviewed.
Collapse
Affiliation(s)
- Dannel Yeo
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW 2050, Australia; (D.Y.); (L.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, NSW 2050, Australia
| | - Laura Castelletti
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW 2050, Australia; (D.Y.); (L.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, NSW 2050, Australia
| | - Nico van Zandwijk
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, NSW 2050, Australia
- Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, NSW 2139, Australia
| | - John E. J. Rasko
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW 2050, Australia; (D.Y.); (L.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, NSW 2050, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
10
|
Hiltbrunner S, Mannarino L, Kirschner MB, Opitz I, Rigutto A, Laure A, Lia M, Nozza P, Maconi A, Marchini S, D’Incalci M, Curioni-Fontecedro A, Grosso F. Tumor Immune Microenvironment and Genetic Alterations in Mesothelioma. Front Oncol 2021; 11:660039. [PMID: 34249695 PMCID: PMC8261295 DOI: 10.3389/fonc.2021.660039] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and fatal disease of the pleural lining. Up to 80% of the MPM cases are linked to asbestos exposure. Even though its use has been banned in the industrialized countries, the cases continue to increase. MPM is a lethal cancer, with very little survival improvements in the last years, mirroring very limited therapeutic advances. Platinum-based chemotherapy in combination with pemetrexed and surgery are the standard of care, but prognosis is still unacceptably poor with median overall survival of approximately 12 months. The genomic landscape of MPM has been widely characterized showing a low mutational burden and the impairment of tumor suppressor genes. Among them, BAP1 and BLM are present as a germline inactivation in a small subset of patients and increases predisposition to tumorigenesis. Other studies have demonstrated a high frequency of mutations in DNA repair genes. Many therapy approaches targeting these alterations have emerged and are under evaluation in the clinic. High-throughput technologies have allowed the detection of more complex molecular events, like chromotripsis and revealed different transcriptional programs for each histological subtype. Transcriptional analysis has also paved the way to the study of tumor-infiltrating cells, thus shedding lights on the crosstalk between tumor cells and the microenvironment. The tumor microenvironment of MPM is indeed crucial for the pathogenesis and outcome of this disease; it is characterized by an inflammatory response to asbestos exposure, involving a variety of chemokines and suppressive immune cells such as M2-like macrophages and regulatory T cells. Another important feature of MPM is the dysregulation of microRNA expression, being frequently linked to cancer development and drug resistance. This review will give a detailed overview of all the above mentioned features of MPM in order to improve the understanding of this disease and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Stefanie Hiltbrunner
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Mannarino
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | | | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Angelica Rigutto
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Laure
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Michela Lia
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Paolo Nozza
- Department of Pathology, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Antonio Maconi
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Sergio Marchini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Grosso
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| |
Collapse
|
11
|
Lorenzini E, Ciarrocchi A, Torricelli F. Molecular Fingerprints of Malignant Pleural Mesothelioma: Not Just a Matter of Genetic Alterations. J Clin Med 2021; 10:jcm10112470. [PMID: 34199544 PMCID: PMC8199660 DOI: 10.3390/jcm10112470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a clinical emergency of our time. Being strongly associated with asbestos exposure, incidence of this cancer is ramping up these days in many industrialized countries and it will soon start to increase in many developing areas where the use of this silicate derivate is still largely in use. Deficiency of reliable markers for the early identification of these tumors and the limited efficacy of the currently available therapeutic options are the basis of the impressive mortality rate of MPM. These shortcomings reflect the very poor information available about the molecular basis of this disease. Results of the recently released deep profiling studies point to the epigenome as a central element in MPM development and progression. First, MPM is characterized by a low mutational burden and a highly peculiar set of mutations that hits almost exclusively epigenetic keepers or proteins controlling chromatin organization and function. Furthermore, asbestos does not seem to be associated with a distinctive mutational signature, while the precise mapping of epigenetic changes caused by this carcinogen has been defined, suggesting that alterations in epigenetic features are the driving force in the development of this disease. Last but not least, consistent evidence also indicates that, in the setting of MPM, chromatin rewiring and epigenetic alterations of cancer cells heavily condition the microenvironment, including the immune response. In this review we aim to point to the relevance of the epigenome in MPM and to highlight the dependency of this tumor on chromatin organization and function. We also intend to discuss the opportunity of targeting these mechanisms as potential therapeutic options for MPM.
Collapse
Affiliation(s)
- Eugenia Lorenzini
- Laboratory of Translational Research, Azienda USL—IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (E.L.); (A.C.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL—IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (E.L.); (A.C.)
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL—IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (E.L.); (A.C.)
- Correspondence:
| |
Collapse
|
12
|
Barbarino M, Giordano A. Assessment of the Carcinogenicity of Carbon Nanotubes in the Respiratory System. Cancers (Basel) 2021; 13:cancers13061318. [PMID: 33804168 PMCID: PMC7998467 DOI: 10.3390/cancers13061318] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
In 2014, the International Agency for Research on Cancer (IARC) classified the first type of carbon nanotubes (CNTs) as possibly carcinogenic to humans, while in the case of other CNTs, it was not possible to ascertain their toxicity due to lack of evidence. Moreover, the physicochemical heterogeneity of this group of substances hamper any generalization on their toxicity. Here, we review the recent relevant toxicity studies produced after the IARC meeting in 2014 on an homogeneous group of CNTs, highlighting the molecular alterations that are relevant for the onset of mesothelioma. Methods: The literature was searched on PubMed and Web of Science for the period 2015-2020, using different combinations keywords. Only data on normal cells of the respiratory system after exposure to fully characterized CNTs for their physico-chemical characteristics were included. Recent studies indicate that CNTs induce a sustained inflammatory response, oxidative stress, fibrosis and histological alterations. The development of mesothelial hyperplasia, mesothelioma, and lungs tumors have been also described in vivo. The data support a strong inflammatory potential of CNTs, similar to that of asbestos, and provide evidence that CNTs exposure led to molecular alterations known to have a key role in mesothelioma onset. These evidences call for an urgent improvement of studies on exposed human populations and adequate systems for monitoring the health of workers exposed to this putative carcinogen.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
13
|
Baird AM, Finn SP, Gray SG, Sheils O. Epigenetic Modifier UHRF1 May Be a Potential Target in Malignant Pleural Mesothelioma. J Thorac Oncol 2021; 16:14-16. [PMID: 33384056 DOI: 10.1016/j.jtho.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Anne-Marie Baird
- School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Dublin, Ireland.
| | - Stephen P Finn
- School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Dublin, Ireland; Department of Histopathology. St. James's Hospital, Dublin, Ireland
| | - Steven G Gray
- School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Dublin, Ireland; LabMed Directorate, St. James's Hospital, Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Dublin, Ireland
| |
Collapse
|
14
|
Yoshikawa Y, Kuribayashi K, Minami T, Ohmuraya M, Kijima T. Epigenetic Alterations and Biomarkers for Immune Checkpoint Inhibitors-Current Standards and Future Perspectives in Malignant Pleural Mesothelioma Treatment. Front Oncol 2020; 10:554570. [PMID: 33381446 PMCID: PMC7767988 DOI: 10.3389/fonc.2020.554570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is strongly associated with occupational or environmental asbestos exposure and arises from neoplastic transformation of mesothelial cells in the pleural cavity. The only standard initial treatment for unresectable MPM is combination chemotherapy with cisplatin (CDDP) and pemetrexed (PEM). Further, CDDP/PEM is the only approved regimen with evidence of prolonged overall survival (OS), although the median OS for patients treated with this regimen is only 12 months after diagnosis. Thus, the development of new therapeutic strategies has been investigated for approximately 20 years. In contrast to recent advances in personalized lung cancer therapies, diagnostic and prognostic biomarker research has just started in mesothelioma. Epigenetic alterations include DNA methylation, histone modifications, and other chromatin-remodeling events. These processes are involved in numerous cellular processes including differentiation, development, and tumorigenesis. Epigenetic modifications play an important role in gene expression and regulation related to malignant MPM phenotypes and histological subtypes. An immune checkpoint PD-1 inhibitor, nivolumab, was approved as second-line therapy for patients who had failed initial chemotherapy, based on the results of the MERIT study. Various clinical immunotherapy trials are ongoing in patients with advanced MPM. In this review, we describe recent knowledge on epigenetic alterations, which might identify candidate therapeutic targets and immunotherapeutic regimens under development for MPM.
Collapse
Affiliation(s)
- Yoshie Yoshikawa
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kozo Kuribayashi
- Department of Respiratory Medicine and Hematology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshiyuki Minami
- Department of Respiratory Medicine and Hematology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Hematology, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
15
|
Cugliari G, Catalano C, Guarrera S, Allione A, Casalone E, Russo A, Grosso F, Ferrante D, Viberti C, Aspesi A, Sculco M, Pirazzini C, Libener R, Mirabelli D, Magnani C, Dianzani I, Matullo G. DNA Methylation of FKBP5 as Predictor of Overall Survival in Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:cancers12113470. [PMID: 33233407 PMCID: PMC7700347 DOI: 10.3390/cancers12113470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with median survival of 12 months and limited effective treatments. The scope of this study was to study the relationship between blood DNA methylation (DNAm) and overall survival (OS) aiming at a noninvasive prognostic test. We investigated a cohort of 159 incident asbestos exposed MPM cases enrolled in an Italian area with high incidence of mesothelioma. Considering 12 months as a cut-off for OS, epigenome-wide association study (EWAS) revealed statistically significant (p value = 7.7 × 10-9) OS-related differential methylation of a single-CpG (cg03546163), located in the 5'UTR region of the FKBP5 gene. This is an independent marker of prognosis in MPM patients with a better performance than traditional inflammation-based scores such as lymphocyte-to-monocyte ratio (LMR). Cases with DNAm < 0.45 at the cg03546163 had significantly poor survival compared with those showing DNAm ≥ 0.45 (mean: 243 versus 534 days; p value< 0.001). Epigenetic changes at the FKBP5 gene were robustly associated with OS in MPM cases. Our results showed that blood DNA methylation levels could be promising and dynamic prognostic biomarkers in MPM.
Collapse
Affiliation(s)
- Giovanni Cugliari
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
- Correspondence: (G.C.); (G.M.)
| | - Chiara Catalano
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, IIGM, 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Alessandra Allione
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
| | - Elisabetta Casalone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
| | - Alessia Russo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
| | - Federica Grosso
- Division of Medical Oncology, SS. Antonio e Biagio General Hospital, 15121 Alessandria, Italy;
| | - Daniela Ferrante
- Unit of Medical Statistics, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (D.F.); (C.M.)
- Cancer Epidemiology Unit, CPO-Piemonte, 28100 Novara, Italy
| | - Clara Viberti
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
| | - Anna Aspesi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.S.); (I.D.)
| | - Marika Sculco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.S.); (I.D.)
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Roberta Libener
- Pathology Unit, SS. Antonio e Biagio General Hospital, 15122 Alessandria, Italy;
| | - Dario Mirabelli
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
| | - Corrado Magnani
- Unit of Medical Statistics, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (D.F.); (C.M.)
- Cancer Epidemiology Unit, CPO-Piemonte, 28100 Novara, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
| | - Irma Dianzani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.S.); (I.D.)
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, AOU Città della Salute e della Scienza, 10126 Turin, Italy
- Correspondence: (G.C.); (G.M.)
| |
Collapse
|
16
|
Abbott DM, Bortolotto C, Benvenuti S, Lancia A, Filippi AR, Stella GM. Malignant Pleural Mesothelioma: Genetic and Microenviromental Heterogeneity as an Unexpected Reading Frame and Therapeutic Challenge. Cancers (Basel) 2020; 12:cancers12051186. [PMID: 32392897 PMCID: PMC7281319 DOI: 10.3390/cancers12051186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Mesothelioma is a malignancy of serosal membranes including the peritoneum, pleura, pericardium and the tunica vaginalis of the testes. Malignant mesothelioma (MM) is a rare disease with a global incidence in countries like Italy of about 1.15 per 100,000 inhabitants. Malignant Pleural Mesothelioma (MPM) is the most common form of mesothelioma, accounting for approximately 80% of disease. Although rare in the global population, mesothelioma is linked to industrial pollutants and mineral fiber exposure, with approximately 80% of cases linked to asbestos. Due to the persistent asbestos exposure in many countries, a worldwide progressive increase in MPM incidence is expected for the current and coming years. The tumor grows in a loco-regional pattern, spreading from the parietal to the visceral pleura and invading the surrounding structures that induce the clinical picture of pleural effusion, pain and dyspnea. Distant spreading and metastasis are rarely observed, and most patients die from the burden of the primary tumor. Currently, there are no effective treatments for MPM, and the prognosis is invariably poor. Some studies average the prognosis to be roughly one-year after diagnosis. The uniquely poor mutational landscape which characterizes MPM appears to derive from a selective pressure operated by the environment; thus, inflammation and immune response emerge as key players in driving MPM progression and represent promising therapeutic targets. Here we recapitulate current knowledge on MPM with focus on the emerging network between genetic asset and inflammatory microenvironment which characterize the disease as amenable target for novel therapeutic approaches.
Collapse
Affiliation(s)
- David Michael Abbott
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Chandra Bortolotto
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Silvia Benvenuti
- Candiolo Cancer Institute, FPO—IRCCS—Str. Prov.le 142, km. 3,95—10060 Candiolo (TO), Italy;
| | - Andrea Lancia
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Andrea Riccardo Filippi
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
- Correspondence:
| |
Collapse
|