1
|
Zhao A, Pan Y, Gao Y, Zhi Z, Lu H, Dong B, Zhang X, Wu M, Zhu F, Zhou S, Ma S. MUC1 promotes cervical squamous cell carcinoma through ERK phosphorylation-mediated regulation of ITGA2/ITGA3. BMC Cancer 2024; 24:559. [PMID: 38702644 PMCID: PMC11069143 DOI: 10.1186/s12885-024-12314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
In contrast to the decreasing trends in developed countries, the incidence and mortality rates of cervical squamous cell carcinoma in China have increased significantly. The screening and identification of reliable biomarkers and candidate drug targets for cervical squamous cell carcinoma are urgently needed to improve the survival rate and quality of life of patients. In this study, we demonstrated that the expression of MUC1 was greater in neoplastic tissues than in non-neoplastic tissues of the cervix, and cervical squamous cell carcinoma patients with high MUC1 expression had significantly worse overall survival than did those with low MUC1 expression, indicating its potential for early diagnosis of cervical squamous cell carcinoma. Next, we explored the regulatory mechanism of MUC1 in cervical squamous cell carcinoma. MUC1 could upregulate ITGA2 and ITGA3 expression via ERK phosphorylation, promoting the proliferation and metastasis of cervical cancer cells. Further knockdown of ITGA2 and ITGA3 significantly inhibited the tumorigenesis of cervical cancer cells. Moreover, we designed a combination drug regimen comprising MUC1-siRNA and a novel ERK inhibitor in vivo and found that the combination of these drugs achieved better results in animals with xenografts than did MUC1 alone. Overall, we discovered a novel regulatory pathway, MUC1/ERK/ITGA2/3, in cervical squamous cell carcinoma that may serve as a potential biomarker and therapeutic target in the future.
Collapse
Affiliation(s)
- Aiqin Zhao
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
| | - Yunzhi Pan
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215131, China
| | - Yingyin Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Zheng Zhi
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China
| | - Haiying Lu
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
| | - Bei Dong
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
| | - Xuan Zhang
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
| | - Meiying Wu
- Department of Tuberculosis, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215131, China
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Sufang Zhou
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, 215129, China.
| | - Sai Ma
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
- Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
2
|
Wu W, Peng Y, Xu M, Yan T, Zhang D, Chen Y, Mei K, Chen Q, Wang X, Qiao Z, Wang C, Wu S, Zhang Q. Deep-Learning-Based Nanomechanical Vibration for Rapid and Label-Free Assay of Epithelial Mesenchymal Transition. ACS NANO 2024; 18:3480-3496. [PMID: 38169507 DOI: 10.1021/acsnano.3c10811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer is a profound danger to our life and health. The classification and related studies of epithelial and mesenchymal phenotypes of cancer cells are key scientific questions in cancer research. Here, we investigated cancer cell colonies from a mechanical perspective and developed an assay for classifying epithelial/mesenchymal cancer cell colonies using the biomechanical fingerprint in the form of "nanovibration" in combination with deep learning. The classification method requires only 1 s of vibration data and has a classification accuracy of nearly 92.5%. The method has also been validated for the screening of anticancer drugs. Compared with traditional methods, the method has the advantages of being nondestructive, label-free, and highly sensitive. Furthermore, we proposed a perspective that subcellular structure influences the amplitude and spectrum of nanovibrations and demonstrated it using experiments and numerical simulation. These findings allow internal changes in the cell colony to be manifested by nanovibrations. This work provides a perspective and an ancillary method for cancer cell phenotype diagnosis and promotes the study of biomechanical mechanisms of cancer progression.
Collapse
Affiliation(s)
- Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yongpei Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Mengjun Xu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Tianhao Yan
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Kainan Mei
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Qiubo Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Xiapeng Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Zihan Qiao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Chen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| |
Collapse
|
3
|
Fujita T, Seist R, Kao SY, Soares V, Panano L, Khetani RS, Landegger LD, Batts S, Stankovic KM. miR-431 secreted by human vestibular schwannomas increases the mammalian inner ear's vulnerability to noise trauma. Front Neurol 2023; 14:1268359. [PMID: 37885485 PMCID: PMC10598552 DOI: 10.3389/fneur.2023.1268359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Vestibular schwannoma (VS) is an intracranial tumor that arises on the vestibular branch of cranial nerve VIII and typically presents with sensorineural hearing loss (SNHL). The mechanisms of this SNHL are postulated to involve alterations in the inner ear's microenvironment mediated by the genetic cargo of VS-secreted extracellular vesicles (EVs). We aimed to identify the EV cargo associated with poor hearing and determine whether its delivery caused hearing loss and cochlear damage in a mouse model in vivo. Methods VS tissue was collected from routinely resected tumors of patients with good (VS-GH) or poor (VS-PH) pre-surgical hearing measured via pure-tone average and word recognition scores. Next-generation sequencing was performed on RNA isolated from cultured primary human VS cells and EVs from VS-conditioned media, stratified by patients' hearing ability. microRNA expression levels were compared between VS-PH and VS-GH samples to identify differentially expressed candidates for packaging into a synthetic adeno-associated viral vector (Anc80L65). Viral vectors containing candidate microRNA were infused to the semicircular canals of mice to evaluate the effects on hearing, including after noise exposure. Results Differentially expressed microRNAs included hsa-miR-431-5p (enriched in VS-PH) and hsa-miR-192-5p (enriched in VS-GH). Newborn mice receiving intracochlear injection of viral vectors over-expressing hsa-miR-431-GFP, hsa-miR-192-GFP, or GFP only (control) had similar hearing 6 weeks post-injection. However, after acoustic trauma, the miR-431 group displayed significantly worse hearing, and greater loss of synaptic ribbons per inner hair cell in the acoustically traumatized cochlear region than the control group. Conclusion Our results suggest that miR-431 contributes to VS-associated hearing loss following cochlear stress. Further investigation is needed to determine whether miR-431 is a potential therapeutic target for SNHL.
Collapse
Affiliation(s)
- Takeshi Fujita
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Richard Seist
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Shyan-Yuan Kao
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Vitor Soares
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Lorena Panano
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Radhika S. Khetani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lukas D. Landegger
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Konstantina M. Stankovic
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Di Molfetta D, Cannone S, Greco MR, Caroppo R, Piccapane F, Carvalho TMA, Altamura C, Saltarella I, Tavares Valente D, Desaphy JF, Reshkin SJ, Cardone RA. ECM Composition Differentially Regulates Intracellular and Extracellular pH in Normal and Cancer Pancreatic Duct Epithelial Cells. Int J Mol Sci 2023; 24:10632. [PMID: 37445810 DOI: 10.3390/ijms241310632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Intracellular pH (pHi) regulation is a challenge for the exocrine pancreas, where the luminal secretion of bicarbonate-rich fluid is accompanied by interstitial flows of acid. This acid-base transport requires a plethora of ion transporters, including bicarbonate transporters and the Na+/H+ exchanger isoform 1 (NHE1), which are dysregulated in Pancreatic Ductal Adenocarcinoma (PDAC). PDAC progression is favored by a Collagen-I rich extracellular matrix (ECM) which exacerbates the physiological interstitial acidosis. In organotypic cultures of normal human pancreatic cells (HPDE), parenchymal cancer cells (CPCs) and cancer stem cells (CSCs) growing on matrices reproducing ECM changes during progression, we studied resting pHi, the pHi response to fluxes of NaHCO3 and acidosis and the role of NHE1 in pHi regulation. Our findings show that: (i) on the physiological ECM, HPDE cells have the most alkaline pHi, followed by CSCs and CPCs, while a Collagen I-rich ECM reverses the acid-base balance in cancer cells compared to normal cells; (ii) both resting pHi and pHi recovery from an acid load are reduced by extracellular NaHCO3, especially in HPDE cells on a normal ECM; (iii) cancer cell NHE1 activity is less affected by NaHCO3. We conclude that ECM composition and the fluctuations of pHe cooperate to predispose pHi homeostasis towards the presence of NaHCO3 gradients similar to that expected in the tumor.
Collapse
Affiliation(s)
- Daria Di Molfetta
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Stefania Cannone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Rosa Caroppo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesca Piccapane
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Diana Tavares Valente
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jean Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
5
|
Rolver MG, Holland LKK, Ponniah M, Prasad NS, Yao J, Schnipper J, Kramer S, Elingaard‐Larsen L, Pedraz‐Cuesta E, Liu B, Pardo LA, Maeda K, Sandelin A, Pedersen SF. Chronic acidosis rewires cancer cell metabolism through PPARα signaling. Int J Cancer 2023; 152:1668-1684. [PMID: 36533672 PMCID: PMC10108231 DOI: 10.1002/ijc.34404] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The mechanisms linking tumor microenvironment acidosis to disease progression are not understood. Here, we used mammary, pancreatic, and colon cancer cells to show that adaptation to growth at an extracellular pH (pHe ) mimicking acidic tumor niches is associated with upregulated net acid extrusion capacity and elevated intracellular pH at physiological pHe , but not at acidic pHe . Using metabolic profiling, shotgun lipidomics, imaging and biochemical analyses, we show that the acid adaptation-induced phenotype is characterized by a shift toward oxidative metabolism, increased lipid droplet-, triacylglycerol-, peroxisome content and mitochondrial hyperfusion. Peroxisome proliferator-activated receptor-α (PPARA, PPARα) expression and activity are upregulated, at least in part by increased fatty acid uptake. PPARα upregulates genes driving increased mitochondrial and peroxisomal mass and β-oxidation capacity, including mitochondrial lipid import proteins CPT1A, CPT2 and SLC25A20, electron transport chain components, peroxisomal proteins PEX11A and ACOX1, and thioredoxin-interacting protein (TXNIP), a negative regulator of glycolysis. This endows acid-adapted cancer cells with increased capacity for utilizing fatty acids for metabolic needs, while limiting glycolysis. As a consequence, the acid-adapted cells exhibit increased sensitivity to PPARα inhibition. We conclude that PPARα is a key upstream regulator of metabolic changes favoring cancer cell survival in acidic tumor niches.
Collapse
Affiliation(s)
- Michala G. Rolver
- Section for Cell Biology and Physiology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Lya K. K. Holland
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research CenterCopenhagenDenmark
| | - Muthulakshmi Ponniah
- Section for Cell Biology and Physiology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Nanditha S. Prasad
- Section for Cell Biology and Physiology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jiayi Yao
- The Bioinformatics Center, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Biotech Research and Innovation Center, University of CopenhagenCopenhagenDenmark
| | - Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, University of Picardie Jules VerneAmiensFrance
| | - Signe Kramer
- Section for Cell Biology and Physiology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Elena Pedraz‐Cuesta
- Section for Cell Biology and Physiology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research CenterCopenhagenDenmark
| | - Luis A. Pardo
- Oncophysiology Group, Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research CenterCopenhagenDenmark
| | - Albin Sandelin
- The Bioinformatics Center, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Biotech Research and Innovation Center, University of CopenhagenCopenhagenDenmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
Czaplinska D, Ialchina R, Andersen HB, Yao J, Stigliani A, Dannesboe J, Flinck M, Chen X, Mitrega J, Gnosa SP, Dmytriyeva O, Alves F, Napp J, Sandelin A, Pedersen SF. Crosstalk between tumor acidosis, p53 and extracellular matrix regulates pancreatic cancer aggressiveness. Int J Cancer 2023; 152:1210-1225. [PMID: 36408933 PMCID: PMC10108304 DOI: 10.1002/ijc.34367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy with minimal treatment options and a global rise in prevalence. PDAC is characterized by frequent driver mutations including KRAS and TP53 (p53), and a dense, acidic tumor microenvironment (TME). The relation between genotype and TME in PDAC development is unknown. Strikingly, when wild type (WT) Panc02 PDAC cells were adapted to growth in an acidic TME and returned to normal pH to mimic invasive cells escaping acidic regions, they displayed a strong increase of aggressive traits such as increased growth in 3-dimensional (3D) culture, adhesion-independent colony formation and invasive outgrowth. This pattern of acidosis-induced aggressiveness was observed in 3D spheroid culture as well as upon organotypic growth in matrigel, collagen-I and combination thereof, mimicking early and later stages of PDAC development. Acid-adaptation-induced gain of cancerous traits was further increased by p53 knockout (KO), but only in specific extracellular matrix (ECM) compositions. Akt- and Transforming growth factor-β (TGFβ) signaling, as well as expression of the Na+ /H+ exchanger NHE1, were increased by acid adaptation. Whereas Akt inhibition decreased spheroid growth regardless of treatment and genotype, stimulation with TGFβI increased growth of WT control spheroids, and inhibition of TGFβ signaling tended to limit growth under acidic conditions only. Our results indicate that a complex crosstalk between tumor acidosis, ECM composition and genotype contributes to PDAC development. The findings may guide future strategies for acidosis-targeted therapies.
Collapse
Affiliation(s)
- Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Berg Andersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jiayi Yao
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Johs Dannesboe
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoming Chen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jakub Mitrega
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Peter Gnosa
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Frauke Alves
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Clinic of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Joanna Napp
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Clinic of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Hu J, Li G, Liu Z, Ma H, Yuan W, Lu Z, Zhang D, Ling H, Zhang F, Liu Y, Liu C, Qiu Y. Bicarbonate transporter SLC4A7 promotes EMT and metastasis of HNSCC by activating the PI3K/AKT/mTOR signaling pathway. Mol Carcinog 2023; 62:628-640. [PMID: 36727616 DOI: 10.1002/mc.23511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 02/03/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Currently, therapeutic modalities such as surgery, chemotherapy, radiotherapy, and immunotherapy are being used to treat HNSCC. However, the treatment outcomes of most patients are dismal because they are already in middle or advanced stage by the time of diagnosis and poorly responsive to treatments. It is therefore of great interest to clarify mechanisms that contribute to the metastasis of cells to identify possible targets for therapy. In this study, we identified the Na+ -coupled bicarbonate transporter, SLC4A7, play essential roles in the metastasis of HNSCC. Our results showed that the relative expression of SLC4A7 messenger RNA was highly expressed in HNSCCs samples from TCGA, and compared with precancerous cells of human oral mucosa (DOK), SLC4A7 was highly expressed in HNSCC cell lines. In vitro and in vivo experiments showed that dysregulation of SLC4A7 had minor influence on the proliferation of HNSCC but impacted HNSCC's migration and invasion. Meanwhile, SLC4A7 could promote epithelial-mesenchymal transition (EMT) in HNSCC. RNA-seq, KEGG pathway enrichment analysis and Western blot further revealed that downregulation of SLC4A7 in HNSCC cells inhibited the PI3K/AKT pathway. These findings were further validated via rescue experiments using a small molecule inhibitor of PI3K/mTOR (GDC-0980). Our findings suggest that SLC4A7 promotes EMT and metastasis of HNSCC through the PI3K/AKT/mTOR signaling pathway, which may be a valuable predictive biomarker and potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Junli Hu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,Department of Otolaryngology Head and Neck Surgery, Yantian District People's Hospital, Shenzhen, Guangdong, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifeng Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Huiling Ma
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Wenhui Yuan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Zhaoyi Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Hang Ling
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Fengyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Targeting Na-H exchanger 1 overcomes nuclear factor kappa B-mediated tumor resistance to radiotherapy. Neoplasia 2022; 35:100862. [PMID: 36508876 PMCID: PMC9761853 DOI: 10.1016/j.neo.2022.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Intrinsic or acquired radioresistance often limits the efficacy of radiation therapy (RT), thereby leading to local control failure. Cancerous cells have abnormal pH dynamics due to high metabolic demands, but it is unclear how pH dynamics contribute to radioresistance. In this study, we investigated the role of Na-H exchange 1 (NHE1), the major intracellular pH (pHi) regulator, in RT response. We observed that RT increased NHE1 expression and modulated pHi in MDA-MB-231 human breast cancer cells. When combined with RT, pharmacological NHE1 inhibition by 5-(N-Ethyl-N-isopropyl)amiloride (EIPA) reduced pHi and clonogenic survival. EIPA attenuated radiation-damaged DNA repair, increasing G2/M cell cycle arrest. The combination of EIPA and RT increased apoptotic cell death while decreasing phosphorylation of NF-κB p65. Similarly, the knockdown of NHE1 increased radiosensitivity with lower pHi and increased apoptosis. Consistent with in vitro data, the EIPA plus RT inhibited the growth of MDA-MB-231 xenograft tumors in mice to a greater extent than either EIPA or RT alone. EIPA abrogated the RT-induced increase in NHE1 and phospho-NF-κB p65 expression in tumor tissues. Such coincidence of increased NHE1 level, pHi, and NF-κB activation was also found in radioresistant MDA-MB-231 cells, which were reversed by EIPA treatment. Bioinformatics analysis of RNA sequencing data revealed that inhibiting NHE1 reversed three core gene networks that were up-regulated in radioresistant cells and correlated with high NHE1 expression in patient samples: NF-κB, senescence, and extracellular matrix. Taken together, our findings suggest that NHE1 contributes to RT resistance via NF-κB-mediated signaling networks, and NHE1 may be a promising target for improving RT outcomes.
Collapse
|
9
|
Smorodina E, Diankin I, Tao F, Qing R, Yang S, Zhang S. Structural informatic study of determined and AlphaFold2 predicted molecular structures of 13 human solute carrier transporters and their water-soluble QTY variants. Sci Rep 2022; 12:20103. [PMID: 36418372 PMCID: PMC9684436 DOI: 10.1038/s41598-022-23764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Solute carrier transporters are integral membrane proteins, and are important for diverse cellular nutrient transports, metabolism, energy demand, and other vital biological activities. They have recently been implicated in pancreatic cancer and other cancer metastasis, angiogenesis, programmed cell death and proliferation, cell metabolism and chemo-sensitivity. Here we report the study of 13 human solute carrier membrane transporters using the highly accurate AlphaFold2 predictions of 3D protein structures. In the native structures, there are hydrophobic amino acids leucine (L), isoleucine (I), valine (V) and phenylalanine (F) in the transmembrane alpha-helices. These hydrophobic amino acids L, I, V, F are systematically replaced by hydrophilic amino acids glutamine (Q), threonine (T) and tyrosine (Y), thus the QTY code. Therefore, these QTY variant transporters become water-soluble without requiring detergents. We present the superposed structures of these native solute carrier transporters and their water-soluble QTY variants. The superposed structures show remarkable similarity with RMSD ~ 1 Å-< 3 Å despite > 46% protein sequence substitutions in transmembrane alpha-helices. We also show the differences of surface hydrophobicity between the native solute carrier transporters and their QTY variants. Our study may further stimulate designs of water-soluble transmembrane proteins and other aggregated proteins for drug discovery and biotechnological applications.
Collapse
Affiliation(s)
- Eva Smorodina
- Laboratory for Computational and Systems Immunology, Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Igor Diankin
- Department of Computer Science, American University of Armenia, Yerevan, Armenia
| | - Fei Tao
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Rui Qing
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Steve Yang
- PT Metiska Farma, Daerah Khusus Ibukota, Jakarta, 12220, Indonesia
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Hou J, Kang N, Liu NN, Tan D, Zhang S, Liu J, Xie Y. Proscillaridin A induces mitochondrial damage and autophagy in pancreatic cancer and reduces the stability of SMAD4 in Panc-1 cells. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:820. [PMID: 36034984 PMCID: PMC9403942 DOI: 10.21037/atm-22-1085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022]
Abstract
Background Pancreatic cancer (PC) is a highly metastatic and lethal cancer with a very low overall 5-year survival rate. There is an urgent need for identifying new therapeutic agents for this deadly disease. Cardiac glycosides (CGs) have been traditionally used for their potent cardiovascular activities and have also recently been reported to exhibit anti-tumor effects. Proscillaridin A (Pro A), a natural CG, has been shown to display anti-tumor effects on multiple cancer types. Methods The cytotoxic effect of Pro A on PC cells was determined using cell viability assay, colony formation assay and transwell assay in vitro. Cell apoptosis, cell cycle, reactive oxygen species (ROS) generation, intracellular Ca2+ levels and mitochondrial membrane potential (MMP) were assayed by flow cytometry. Panc-1-xenografted mice model was used to evaluate Pro A’s effect in tumor growth. Mitochondria morphology was observed by transmission electron microscopy. LC3 aggregation was assessed by GFP-LC3 fluorescence microscopy. Gene expression was assayed by western blot or real-time quantitative polymerase chain reaction (qPCR). Results Pro A inhibits the proliferation, migration and invasion of Panc-1, BxPC-3 and AsPC-1 PC cells in vitro, and Panc-1 cells display the highest sensitivity with an IC50 at the nano-molar level. In vivo, Pro A treatment inhibits tumor progression in Panc-1 xenograft nude mice. Pro A treatment promotes both cell apoptosis and autophagy, and Pro A-treated PC cells display characteristics of mitochondrial damage including increased ROS generation, intracellular Ca2+ levels and disruption of MMP. In addition, high sensitivity towards Pro A of Panc-1 cells compared to BxPC-3 and AsPC-1 cells could be partially attributed to the loss of endogenous SMAD4 expression in the latter. Conclusions Our findings suggest that Pro A constitutes a promising therapeutic candidate for certain types of PC.
Collapse
Affiliation(s)
- Jia Hou
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning Kang
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nan-Nan Liu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Tan
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.,Children's Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Chen W, Zhang Z, Yung KKL, Ko JKS. MUC1 is responsible for the pro-metastatic potential of calycosin in pancreatic ductal adenocarcinoma. Am J Cancer Res 2022; 12:3242-3258. [PMID: 35968328 PMCID: PMC9360244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a prominent type of pancreatic cancer. We have recently unveiled that the anti-tumor adjuvant calycosin concurrently possesses growth-inhibitory and pro-metastatic potential in PDAC development by regulating transforming growth factor β (TGF-β), which plays dual roles as both tumor suppressor and tumor promoter. Hence, we are interested to explore if the pro-metastatic property of the drug could be attenuated for effective treatment of PDAC. Through network pharmacology, MUC1 had been identified as the most common drug target of herbal Astragalus constituents (including calycosin) in treating PDAC. Following MUC1 gene silencing, the drug effects of calycosin on migratory activity, growth and metabolic regulation of PDAC cells were assessed by using immunofluorescence microscopy, quantitative real-time polymerase chain reaction (qRT-PCR), Western immunoblotting, co-immunoprecipitation (Co-IP), wound healing assay and flow cytometry, respectively. Through in vivo experiments, we further validated the working relationship between MUC1 and TGF-β. Results have elucidated that MUC1 gene suppression could switch off the migratory and pro-metastatic drive of calycosin while retaining its growth-inhibitory power by inducing apoptosis and cell cycle arrest, as well as facilitating autophagy and metabolic regulation. The underlying mechanism involves downregulation of TGF-β that acts via modulation of AMP-activated protein kinase (AMPK), Sirtuin 1 (Sirt1) and fibroblast growth factor 21 (FGF21) signaling. These findings have provided new insights in the safe and target-specific treatment of PDAC.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Biology, Hong Kong Baptist UniversityHong Kong SAR, China
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist UniversityHong Kong SAR, China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist UniversityHong Kong SAR, China
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist UniversityHong Kong SAR, China
| | - Joshua Ka-Shun Ko
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist UniversityHong Kong SAR, China
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist UniversityHong Kong SAR, China
| |
Collapse
|
12
|
Li Z, Yang D, Guo T, Lin M. Advances in MUC1-Mediated Breast Cancer Immunotherapy. Biomolecules 2022; 12:biom12070952. [PMID: 35883508 PMCID: PMC9313386 DOI: 10.3390/biom12070952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer (BRCA) is the leading cause of death from malignant tumors among women. Fortunately, however, immunotherapy has recently become a prospective BRCA treatment with encouraging achievements and mild safety profiles. Since the overexpression and aberrant glycosylation of MUC1 (human mucin) are closely associated with BRCA, it has become an ideal target for BRCA immunotherapies. In this review, the structure and function of MUC1 are briefly introduced, and the main research achievements in different kinds of MUC1-mediated BRCA immunotherapy are highlighted, from the laboratory to the clinic. Afterward, the future directions of MUC1-mediated BRCA immunotherapy are predicted, addressing, for example, urgent issues in regard to how efficient immunotherapeutic strategies can be generated.
Collapse
Affiliation(s)
- Zhifeng Li
- Medical School of Nantong University, Nantong 226019, China; (Z.L.); (D.Y.)
| | - Dazhuang Yang
- Medical School of Nantong University, Nantong 226019, China; (Z.L.); (D.Y.)
| | - Ting Guo
- Research Center of Clinical Medicine, Jiangsu Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou 225300, China;
| | - Mei Lin
- Research Center of Clinical Medicine, Jiangsu Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou 225300, China;
- Correspondence:
| |
Collapse
|
13
|
Li M, Zhou Q, Xiao Y. Mir-29a Promotes the Migration of Bone Marrow Mesenchymal Stem Cells to Oral Squamous Cell Carcinoma Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a tumor in the oral cavity and around oral mucosa. Mir-29a level was differentially expressed in OSCC patients. However, whether its exact role and function in OSCC remains to be further elucidated. Our study investigated the effect of Mir-29a
on the migration of bone marrow mesenchymal stem cells (BMSCs) to oral squamous cell carcinoma cells (OSCCs). Mir-29a level was measured in OSCCs and BMSCs by real-time quantitative PCR and its relationship with Panc-1 was verified by dual luciferase reporter gene. After up-regulation of Mir-29a
or treatment with Panc-1 siRNA, BMSCs migration to OSCCs was assessed by transwell assay and Panc-1 and Mir-29a were measure. Mir-29a level was downregualted in OSCCs and Panc-1 was upregulated in BMSCs. Panc-1 and Mir-29a was negatively correlated and Mir-29a could bind and target Panc-1.
Down-regulation of Panc-1 inhibited the migration of BMSCs to OSCCs and elevated Mir-29a level promoted cell migration. After co-transfection of Mir-29a inhibitor and Panc-1 siRNA, the inhibited cell migration function can be restored. In conclusion, Mir-29a promotes the migration of BMSCs
to OSCCs through targeting Panc-1.
Collapse
Affiliation(s)
- Min Li
- Department of Stomatology, Wuhan Fifth Hospital, Wuhan, Hubei, 430050, China
| | - Quanying Zhou
- Department of Stomatology, Wuhan Ninth Hospital, Wuhan, Hubei, 430080, China
| | - Yi Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Wuhan Fifth Hospital, Wuhan, Hubei, 430050, China
| |
Collapse
|
14
|
Jang SD, Song J, Kim HA, Im CN, Khawar IA, Park JK, Kuh HJ. Anti-Cancer Activity Profiling of Chemotherapeutic Agents in 3D Co-Cultures of Pancreatic Tumor Spheroids with Cancer-Associated Fibroblasts and Macrophages. Cancers (Basel) 2021; 13:5955. [PMID: 34885065 PMCID: PMC8656537 DOI: 10.3390/cancers13235955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Activated pancreatic stellate cells (aPSCs) and M2 macrophages modulate tumor progression and therapeutic efficacy in pancreatic ductal adenocarcinoma (PDAC) via epithelial-mesenchymal transition (EMT). Here, our aim was to analyze the anti-invasion effects of anti-cancer agents where EMT-inducing cancer-stroma interaction occurs under three-dimensional (3D) culture conditions. We used microfluidic channel chips to co-culture pancreatic tumor spheroids (TSs) with aPSCs and THP-1-derived M2 macrophages (M2 THP-1 cells) embedded in type I collagen. Under stromal cell co-culture conditions, PANC-1 TSs displayed elevated expression of EMT-related proteins and increased invasion and migration. When PANC-1 TSs were exposed to gemcitabine, 5-fluorouracil, oxaliplatin, or paclitaxel, 30-50% cells were found unaffected, with no significant changes in the dose-response profiles under stromal cell co-culture conditions. This indicated intrinsic resistance to these drugs and no further induction of drug resistance by stromal cells. Paclitaxel had a significant anti-invasion effect; in contrast, oxaliplatin did not show such effect despite its specific cytotoxicity in M2 THP-1 cells. Overall, our findings demonstrate that the TS-stroma co-culture model of PDAC is useful for activity profiling of anti-cancer agents against cancer and stromal cells, and analyzing the relationship between anti-stromal activity and anti-invasion effects.
Collapse
Affiliation(s)
- So-Dam Jang
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeeyeun Song
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun-Ah Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Chang-Nim Im
- Graduate Program for Future Medical Research Leaders, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Iftikhar Ali Khawar
- Graduate Program for Future Medical Research Leaders, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
15
|
Mo L, Xu L, Jia M, Su B, Hu Y, Hu Z, Li H, Zhao C, Zhao Z, Li J. Shikonin suppresses the epithelial-to-mesenchymal transition by downregulating NHE1 in bladder cancer cells. J Cancer 2021; 12:6814-6824. [PMID: 34659570 PMCID: PMC8518005 DOI: 10.7150/jca.63429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/19/2021] [Indexed: 12/01/2022] Open
Abstract
Shikonin (SK) is the major bioactive component extracted from the roots of Lithospermum erythrorhizon with anticancer activity. SK could inhibit the epithelial-to-mesenchymal transition (EMT) of cancer cells. However, the underlying mechanism is elusive. In the present study, the inhibitory activities of SK on proliferation, invasion and migration were examined in bladder cancer (BC) cells. SK potently decreased the viabilities of BC cells but showed less cytotoxicity to normal bladder epithelial cells. Moreover, SK reversed the EMT, suppressed the migration and invasion of BC cells. Intriguingly, NHE1, the major proton efflux pump, was dramatically down-regulated by SK. The EMT-inhibitory effect of SK was mediated by NHE1 down-regulation, as NHE1-overexpress alleviated while Cariporide (NHE1 inhibitor) enhanced this effect. Further, enforced alkalinization of intracellular pH (pHi) reversed the EMT-inhibitory effect of SK, indicating a key role of acidic pHi in this process. Finally, elevated NHE1 expression was observed in human bladder cancer tissues. Collectively, this research reveals a supportive effect of NHE1 and alkaline pHi on EMT. SK can suppress EMT through inhibiting NHE1 and hence inducing an acidic pHi.
Collapse
Affiliation(s)
- Lijun Mo
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.,Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, 14 Jinhui Road, Shenzhen 518118, People's Republic of China
| | - Lili Xu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.,Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, 14 Jinhui Road, Shenzhen 518118, People's Republic of China
| | - Min Jia
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, 14 Jinhui Road, Shenzhen 518118, People's Republic of China.,Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bijia Su
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.,Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, 14 Jinhui Road, Shenzhen 518118, People's Republic of China
| | - Yaolong Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenye Zhao
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, 14 Jinhui Road, Shenzhen 518118, People's Republic of China
| | - Zhenlin Zhao
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, 14 Jinhui Road, Shenzhen 518118, People's Republic of China
| | - Jinlong Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.,Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, 14 Jinhui Road, Shenzhen 518118, People's Republic of China
| |
Collapse
|
16
|
Chen W, Zhang Z, Zhang S, Zhu P, Ko JKS, Yung KKL. MUC1: Structure, Function, and Clinic Application in Epithelial Cancers. Int J Mol Sci 2021; 22:ijms22126567. [PMID: 34207342 PMCID: PMC8234110 DOI: 10.3390/ijms22126567] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
The transmembrane glycoprotein mucin 1 (MUC1) is a mucin family member that has different functions in normal and cancer cells. Owing to its structural and biochemical properties, MUC1 can act as a lubricant, moisturizer, and physical barrier in normal cells. However, in cancer cells, MUC1 often undergoes aberrant glycosylation and overexpression. It is involved in cancer invasion, metastasis, angiogenesis, and apoptosis by virtue of its participation in intracellular signaling processes and the regulation of related biomolecules. This review introduces the biological structure and different roles of MUC1 in normal and cancer cells and the regulatory mechanisms governing these roles. It also evaluates current research progress and the clinical applications of MUC1 in cancer therapy based on its characteristics.
Collapse
Affiliation(s)
- Wenqing Chen
- Division of Teaching and Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Shiqing Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Joshua Ka-Shun Ko
- Division of Teaching and Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
- Correspondence: (J.K.-S.K.); (K.K.-L.Y.); Tel.: +852-3411-2907 (J.K.-S.K.); +852-3411-7060 (K.K.-L.Y.); Fax: +852-3411-2461 (J.K.-S.K.); +852-3411-5995 (K.K.-L.Y.)
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
- Correspondence: (J.K.-S.K.); (K.K.-L.Y.); Tel.: +852-3411-2907 (J.K.-S.K.); +852-3411-7060 (K.K.-L.Y.); Fax: +852-3411-2461 (J.K.-S.K.); +852-3411-5995 (K.K.-L.Y.)
| |
Collapse
|
17
|
Gromisch CM, Tan GLA, Pasion KA, Moran AM, Gromisch MS, Grinstaff MW, Carr FJ, Herrera VLM, Ruiz-Opazo N. Humanized anti-DEspR IgG4 S228P antibody increases overall survival in a pancreatic cancer stem cell-xenograft peritoneal carcinomatosis rat nu/nu model. BMC Cancer 2021; 21:407. [PMID: 33853558 PMCID: PMC8048286 DOI: 10.1186/s12885-021-08107-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pancreatic peritoneal carcinomatosis (PPC), with the worst median overall-survival (mOS), epitomizes the incurability of metastatic cancer. Cancer stem cells (CSCs) underpin this incurability. However, inhibitors of CSC-stemness fail to increase mOS in cancer patients despite preclinical tumor-reduction. This shortfall reinforces that preclinical efficacy should be defined by increased mOS in the presence of cancer comorbidities, CSC-heterogeneity and plasticity. The primary objectives of this study are: to test the dual endothelin-1/signal peptide receptor, DEspR, as a nodal therapeutic target in PPC, given DEspR induction in anoikis-resistant pancreatic CSCs, and to validate humanized anti-DEspR antibody, hu-6g8, as a potential therapeutic for PPC. METHODS We used heterogeneous pools of CSCs selected for anoikis resistance from reprogrammed Panc1 and MiaPaCa2 tumor cells (TCs), and adherent TCs reprogrammed from CSCs (cscTCs). We used multiple anti-DEspR blocking antibodies (mAbs) with different epitopes, and a humanized anti-DEspR recombinant mAb cross-reactive in rodents and humans, to test DEspR inhibition effects. We measured DEspR-inhibition efficacy on multiple prometastatic CSC-functions in vitro, and on tumorigenesis and overall survival in a CSC-derived xenograft (CDX) nude rat model of PPC with comorbidities. RESULTS Here we show that DEspR, a stress-survival receptor, is present on subsets of PDAC Panc1-TCs, TC-derived CSCs, and CSC-differentiated TCs (cscTCs), and that DESpR-inhibition decreases apoptosis-resistance and pro-metastatic mesenchymal functions of CSCs and cscTCs in vitro. We resolve the DNA-sequence/protein-function discordance by confirming ADAR1-RNA editing-dependent DEspR-protein expression in Panc1 and MiaPaCa2 TCs. To advance DEspR-inhibition as a nodal therapeutic approach for PPC, we developed and show improved functionality of a recombinant, humanized anti-DEspR IgG4S228P antibody, hu-6g8, over murine precursor anti-DEspR mabs. Hu-6g8 internalizes and translocates to the nucleus colocalized with cyto-nuclear shuttling galectins-1/3, and induces apoptotic cell changes. DEspR-inhibition blocks transperitoneal dissemination and progression to peritoneal carcinomatosis of heterogeneous DEspR±/CD133 ± Panc1-derived CSCs in xenografted nude rats, improving mOS without chemotherapy-like adverse effects. Lastly, we show DEspR expression in Stage II-IV primary and invasive TCs in the stroma in PDAC-patient tumor arrays. CONCLUSION Collectively, the data support humanized anti-DEspR hu-6g8 as a potential targeted antibody-therapeutic with promising efficacy, safety and prevalence profiles for PPC patients.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/pharmacology
- Immunohistochemistry
- Immunophenotyping
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Pancreatic Neoplasms/pathology
- Peritoneal Neoplasms/drug therapy
- Peritoneal Neoplasms/secondary
- Rats
- Receptor, Endothelin A
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Christopher M Gromisch
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Glaiza L A Tan
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Khristine Amber Pasion
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ann-Marie Moran
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Matthew S Gromisch
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Abtelum Biomedical, Inc., now NControl Therapeutics, Inc., Boston, MA, USA
| | | | - Francis J Carr
- Abtelum Biomedical, Inc., now NControl Therapeutics, Inc., Boston, MA, USA
| | - Victoria L M Herrera
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
- Abtelum Biomedical, Inc., now NControl Therapeutics, Inc., Boston, MA, USA.
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
- Abtelum Biomedical, Inc., now NControl Therapeutics, Inc., Boston, MA, USA.
| |
Collapse
|
18
|
Wu Z, Xu J, Liang C, Meng Q, Hua J, Wang W, Zhang B, Liu J, Yu X, Shi S. Emerging roles of the solute carrier family in pancreatic cancer. Clin Transl Med 2021; 11:e356. [PMID: 33783998 PMCID: PMC7989705 DOI: 10.1002/ctm2.356] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a gastrointestinal tumor with a high mortality rate, and advances in surgical procedures have only resulted in limited improvements in the prognosis of patients. Solute carriers (SLCs), which rank second among membrane transport proteins in terms of abundance, regulate cellular functions, including tumor biology. An increasing number of studies focusing on the role of SLCs in tumor biology have indicated their relationship with pancreatic cancer. The mechanism of SLC transporters in tumorigenesis has been explored to identify more effective therapies and improve survival outcomes. These transporters are significant biomarkers for pancreatic cancer, the functions of which include mainly proliferative signaling, cell death, angiogenesis, tumor invasion and metastasis, energy metabolism, chemotherapy sensitivity and other functions in tumor biology. In this review, we summarize the different roles of SLCs and explain their potential applications in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Zijian Wu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Jin Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Chen Liang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Qingcai Meng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Jie Hua
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wei Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Bo Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Jiang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Si Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|