1
|
Xie JY, Wang WJ, Wang N, Dong Q, Han H, Feng YP, Yuan Y, Feng J, Chen K. A novel immune-related gene signature correlated with serum IL33 expression in acute myeloid leukemia prognosis. Am J Transl Res 2023; 15:4332-4344. [PMID: 37434810 PMCID: PMC10331686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE To identify and validate the immune-related gene signature in patients with acute myeloid leukemia (AML). METHODS Differentially expressed genes (DEGs) profiles and survival data were obtained from The Cancer Genome Atlas (TCGA), following screened immune-associated genes from the InnateDB database. Subsequently, the weighted gene co-expression network analysis (WGCNA) was used to detect functional modules, and survival analysis was performed. The least absolute shrinkage and selection operator (LASSO) regression model combined with a partial likelihood-based Cox proportional hazard regression model was applied to select prognostic genes, and the ESTIMATE algorithm was used to construct an immune score-based risk assessment model. Finally, two independent datasets from the Gene Expression Omnibus (GEO) and our clinical data were used for external validation. Moreover, a subpopulation of the immune microenvironment cells was analyzed by the CIBERSORT algorithm, and its related serum indicator was identified by the enzyme-linked immunosorbent assay (ELISA) in clinical samples. RESULTS Finally, CTSD, GNB2, CDK6, and WAS were identified as the immune-related gene signature, and the risk stratification model was validated in both the GSE12417 database and our clinical cohort. Furthermore, the fraction of activated mast cells was identified. CIBERSORT algorithm showed that these cells have a positive association with prognosis. In addition, mast cell stimulator IL-33 was markedly decreased in AML patients with poor prognoses. CONCLUSION A novel immune-related gene signature (CTSD, GNB2, CDK6 and WAS) and its associated plasma indicator (mast cells activator, IL-33) were found to have prognostic value in AML patients.
Collapse
Affiliation(s)
- Jin-Ye Xie
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Wei-Jia Wang
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
- Department of Medical Research, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Nan Wang
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Qian Dong
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Hui Han
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Yan-Pin Feng
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Yong Yuan
- Department of Cardiovascular Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
- Department of Medical Research, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Juan Feng
- School of Medicine, Foshan UniversityFoshan 528225, Guangdong, China
| | - Kang Chen
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| |
Collapse
|
2
|
Chen P, Cao J, Chen L, Gao G, Xu Y, Jia P, Li Y, Li Y, Du J, Zhang S, Zhang J. Prognostic value of an eighteen-genes panel in acute myeloid leukemia by analyzing TARGET and TCGA databases. Cancer Biomark 2023; 36:287-298. [PMID: 36938728 DOI: 10.3233/cbm-220179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) has a poor prognosis, and the current 5-year survival rate is less than 30%. OBJECTIVE The present study was designed to identify the significant genes closely related to AML prognosis and predict the prognostic value by constructing a risk model based on their expression. METHODS Using bioinformatics (Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, univariate and multivariate Cox regression analysis, Kaplan-Meier survival analysis, and receiver operating characteristic (ROC) analysis) to identify a prognostic gene signature for AML. Finally, The Cancer Genome Atlas (TCGA) database was used to validate this prognostic signature. RESULTS Based on univariate and multivariate Cox regression analysis, eighteen prognostic genes were identified, and the gene signature and risk score model were constructed. Multivariate Cox analysis showed that the risk score was an independent prognostic factor [hazard ratio (HR) = 1.122, 95% confidence interval (CI) = 1.067-1.180, P< 0.001]. ROC analysis showed a high predictive value of the risk model with an area under the curve (AUC) of 0.705. CONCLUSIONS This study evaluated a potential prognostic signature with eighteen genes and constructed a risk model significantly related to the prognosis of AML patients.
Collapse
Affiliation(s)
- Panpan Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaming Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lingling Chen
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guanfei Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanlin Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Peijun Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yating Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingxin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Up-Regulation of SH3TC2 Induced by YTHDF1 Predicts Poor Outcome and Facilitates Cell-Cycle Progress in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1600611. [PMID: 36568637 PMCID: PMC9780001 DOI: 10.1155/2022/1600611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
N6-methyladenosine (m6A) modification plays a crucial role in determining the fate and function of RNA transcripts in tumor cells. Nevertheless, how m6A regulates the expression of key molecules and coordinates its involvement in the development of colorectal cancer (CRC) remains largely unclear. Here, we report that the m6A reading protein YTHDF1-mediated up-regulation of SH3TC2 promotes CRC growth both in vitro and in vivo. In a pan-cancer analysis across more than thirty types of cancer, we found that SH3TC2 was dysregulated in nine cancers, including BLCA, CHOL, COAD, LAML, PAAD, READ, SKCM, BRCA, and TGCT, and was closely associated with patient prognosis in four cancers, including COAD, MESO, PAAD, and READ. In particular, SH3TC2 was overexpressed in CRC as confirmed by six independent study cohorts. Clinically, high expression of SH3TC2 predicted worse disease-free survival (DFS) in CRC patients. SH3TC2 showed fascinating diagnostic value and was correlated with immunosuppression in CRC. Functionally, RNA-sequencing combined with experiments revealed that knockdown of SH3TC3 significantly inhibited cell-cycle progress of CRC, impairing cell growth. Mechanistically, YTHDF1 protein directly binds with SH3TC2 mRNA and promotes its elevation in an m6A-dependent manner. Thus, our findings provide a mechanism to target the YTHDF1/SH3TC2 axis for CRC therapy.
Collapse
|
4
|
Xie J, Chen K, Han H, Dong Q, Wang W. Establishment of tumor protein p53 mutation-based prognostic signatures for acute myeloid leukemia. Curr Res Transl Med 2022; 70:103347. [PMID: 35483237 DOI: 10.1016/j.retram.2022.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE The tumor protein p53 gene (TP53) mutations are associated with poor prognosis of patients with acute myeloid leukemia (AML). This study aimed to establish TP53 mutation-based prognostic risk signatures. PATIENTS AND METHODS The transcriptomes and clinical characteristics of AML patients were acquired from The Cancer Genome Atlas database, including 11 TP53-mutant samples and 114 TP53-wildtype samples. Differentially expressed mRNAs and long non-coding RNAs (lncRNA) in TP53-mutant samples were identified. Weighted gene correlation network analysis was performed to generate survival-associated co-expression modules. LASSO regression analysis was conducted to build mRNA- and lncRNA-based prognostic risk signatures. Kaplan-Meier curve analysis and multivariate regression analysis were carried out to assess the prognostic values of the risk signatures. Receiver operating characteristic (ROC) analysis was performed to evaluate the accuracy of the signatures. RESULTS Based on the co-expression modules, a 5-mRNA risk signature and a 13-lncRNA risk signature were constructed to predict the overall survival for AML patients. Kaplan-Meier curves revealed that the high-risk patients had significantly shorter overall survival than the low-risk patients. ROC analysis yielded 1-, 3-, and 5-year AUCs of 0.681, 0.783, and 0.827 for mRNA signature and 0.85, 0.835, and 0.908 for lncRNA signature. Multivariate regression analysis revealed that both mRNA (HR = 1.45, P< 0.001) and lncRNA (HR = 1.19, P< 0.001) risk scores were independent prognostic factors for AML patients. CONCLUSION We provided a potential patients stratification tool for AML prognosis prediction and management, which established by effective TP53 mutation-related gene signatures.
Collapse
Affiliation(s)
- Jinye Xie
- Department of Clinical Laboratory, Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528403, China
| | - Kang Chen
- Department of Clinical Laboratory, Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528403, China
| | - Hui Han
- Department of Clinical Laboratory, Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528403, China
| | - Qian Dong
- Department of Clinical Laboratory, Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528403, China
| | - Weijia Wang
- Department of Clinical Laboratory, Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528403, China.
| |
Collapse
|
5
|
Eshibona N, Giwa A, Rossouw SC, Gamieldien J, Christoffels A, Bendou H. Upregulation of FHL1, SPNS3, and MPZL2 predicts poor prognosis in pediatric acute myeloid leukemia patients with FLT3-ITD mutation. Leuk Lymphoma 2022; 63:1897-1906. [PMID: 35249471 DOI: 10.1080/10428194.2022.2045594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
Chromosomal translocations and gene mutations are characteristics of the genomic profile of acute myeloid leukemia (AML). We aim to identify a gene signature associated with poor prognosis in AML patients with FLT3-ITD compared to AML patients with NPM1/CEBPA mutations. RNA-sequencing (RNA-Seq) count data were downloaded from the UCSC Xena browser. Samples were grouped by their mutation status into high and low-risk groups. Differential gene expression (DGE), machine learning (ML) and survival analyses were performed. A total of 471 differentially expressed genes (DEGs) were identified, of which 16 DEGs were used as features for the prediction of mutation status. An accuracy of 92% was obtained from the ML model. FHL1, SPNS3, and MPZL2 were found to be associated with overall survival in FLT3-ITD samples. FLT3-ITD mutation confers an indicative gene expression profile different from NPM1/CEBPA mutation, and the expression of FHL1, SPSN3, and MPZL2 can serve as prognostic indicators of unfavorable disease.
Collapse
Affiliation(s)
- Nasr Eshibona
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Abdulazeez Giwa
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Sophia Catherine Rossouw
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Junaid Gamieldien
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Hocine Bendou
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
6
|
Huang C, Yi H, Zhou Y, Zhang Q, Yao X. Pan-Cancer Analysis Reveals SH3TC2 as an Oncogene for Colorectal Cancer and Promotes Tumorigenesis via the MAPK Pathway. Cancers (Basel) 2022; 14:3735. [PMID: 35954399 PMCID: PMC9367385 DOI: 10.3390/cancers14153735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/11/2022] Open
Abstract
SH3 domain and tetrapeptide repeat 2 (SH3TC2) is a protein-encoding gene and has previously been described as a critical signaling hub for neurological disorders. Although increasing evidence supports a vital role of SH3TC2 in the tumorigenesis of various kinds of cancer, no systematic analysis of SH3TC2 is available. The function and mechanism of SH3TC2 in other cancers remain unknown. Thus, this study aimed to analyze SH3TC2 in various kinds of cancer to find its tumorigenic role in one or more specific cancers. In the current study, we analyzed the expression level and prognostic value of SH3TC2 in different tumors in the TCGA-GTEx pan-cancer dataset. Subsequently, the prognostic role and mechanism of SH3TC2 in colorectal cancer (CRC) were further explored via clinical samples and in vitro and in vivo experiments. We observed differential expression of SH3TC2 in colon adenocarcinoma (COAD), acute myeloid leukemia (LAML), READ (rectum adenocarcinoma), SKCM (skin cutaneous melanoma), and TGCT (testicular germ cell tumors). Subsequently, SH3TC2 showed a significant effect on the clinical stage and prognostic value in CRC, LAML, and SKCM. Moreover, we found in the TCGA database and seven GEO datasets that SH3TC2 was significantly highly expressed in tumor tissue. Through enrichment analysis of SH3TC2 and its co-expressed genes, we found that SH3TC2 may play a role in the MAPK signaling pathway. Correlation analysis indicated that SH3TC2 was significantly associated with multiple key factors in the MAPK signaling pathway. Additionally, higher expression of SH3TC2 was found in tumor tissue in our cohort including 40 CRC patients. Overexpression of SH3TC2 may imply poor prognosis. Knockdown of SH3TC2 significantly inhibited tumor invasion, migration, and proliferation. More importantly, knockdown of SH3TC2 inhibited tumor growth in a CRC mouse model. The study preliminarily conducted a pan-cancer study of SH3TC2 and further explored the mechanism of SH3TC2 in CRC. Our research revealed that higher expression of SH3TC2 may promote CRC progression and invasion via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Chengzhi Huang
- School of Medicine, South China University of Technology, Guangzhou 510006, China;
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (H.Y.); (Y.Z.)
- Department of General Surgery, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
| | - Hui Yi
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (H.Y.); (Y.Z.)
- Department of General Surgery, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Department of Pharmacology, The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Yue Zhou
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (H.Y.); (Y.Z.)
- Department of General Surgery, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- Department of Gastrointestinal and Anorectal Surgery, The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou 510006, China;
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (H.Y.); (Y.Z.)
- Department of General Surgery, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Mishra S, Liu J, Chai L, Tenen DG. Diverse functions of long noncoding RNAs in acute myeloid leukemia: emerging roles in pathophysiology, prognosis, and treatment resistance. Curr Opin Hematol 2022; 29:34-43. [PMID: 34854833 PMCID: PMC8647777 DOI: 10.1097/moh.0000000000000692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Advancements in the next-generation sequencing technologies have identified rare transcripts of long noncoding RNAs (lncRNAs) in the genome of cancers, including in acute myeloid leukemia (AML). The purpose of this review is to highlight the contribution of lncRNAs in AML pathogenesis, prognosis, and chemoresistance. RECENT FINDINGS Several studies have recently reported that deregulated lncRNAs are novel key players in the development of AML and are associated with AML pathophysiology and may serve as prognostic indicators. A few aberrantly expressed lncRNAs that correlated with the recurrent genetic mutations in AML such as NPM1 and RUNX1 have recently been characterized. Moreover, a few lncRNAs in MLL-rearranged leukemia have been described. Additionally, the involvement of lncRNAs in AML chemoresistance has been postulated. SUMMARY Investigating the functional roles of the noncoding regions including lncRNAs, may provide novel insights into the pathophysiology, refine the prognostic schema, and provide novel therapeutic treatment strategies in AML.
Collapse
Affiliation(s)
- Srishti Mishra
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Jun Liu
- Department of Pathology, Brigham & Women's Hospital
| | - Li Chai
- Department of Pathology, Brigham & Women's Hospital
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ren W, Li Y, Chen X, Hu S, Cheng W, Cao Y, Gao J, Chen X, Xiong D, Li H, Wang P. RYR2 mutation in non-small cell lung cancer prolongs survival via down-regulation of DKK1 and up-regulation of GS1-115G20.1: A weighted gene Co-expression network analysis and risk prognostic models. IET Syst Biol 2021; 16:43-58. [PMID: 34877784 PMCID: PMC8965387 DOI: 10.1049/syb2.12038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/18/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
RYR2 mutation is clinically frequent in non-small cell lung cancer (NSCLC) with its function being elusive. We downloaded lung squamous cell carcinoma and lung adenocarcinoma samples from the TCGA database, split the samples into RYR2 mutant group (n = 337) and RYR2 wild group (n = 634), and established Kaplan-Meier curves. The results showed that RYR2 mutant group lived longer than the wild group (p = 0.027). Weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) yielded prognosis-related genes. Five mRNAs and 10 lncRNAs were selected to build survival prognostic models with other clinical features. The AUCs of 2 models are 0.622 and 0.565 for predicting survival at 3 years. Among these genes, the AUCs of DKK1 and GS1-115G20.1 expression levels were 0.607 and 0.560, respectively, which predicted the 3-year survival rate of NSCLC sufferers. GSEA identified an association of high DKK1 expression with TP53, MTOR, and VEGF expression. Several target miRNAs interacting with GS1-115G20.1 were observed to show the relationship with the phenotype, treatment, and survival of NSCLC. NSCLC patients with RYR2 mutation may obtain better prognosis by down-regulating DKK1 and up-regulating GS1-115G20.1.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China.,Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yongwu Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xi Chen
- Kunming Medical University, Kunming, Yunnan, China.,First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sheng Hu
- Kunming Medical University, Kunming, Yunnan, China.,Second Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wanli Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingcheng Gao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xia Chen
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Xiong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hongrong Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Bär I, Ast V, Meyer D, König R, Rauner M, Hofbauer LC, Müller JP. Aberrant Bone Homeostasis in AML Is Associated with Activated Oncogenic FLT3-Dependent Cytokine Networks. Cells 2020; 9:cells9112443. [PMID: 33182501 PMCID: PMC7697865 DOI: 10.3390/cells9112443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a haematopoietic malignancy caused by a combination of genetic and epigenetic lesions. Activation of the oncoprotein FLT3 ITD (Fms-like tyrosine kinase with internal tandem duplications) represents a key driver mutation in 25–30% of AML patients. FLT3 is a class III receptor tyrosine kinase, which plays a role in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Mutant FLT3 ITD results in an altered signalling quality, which causes cell transformation. Recent evidence indicates an effect of FLT3 ITD on bone homeostasis in addition to haematological aberrations. Using gene expression data repositories of FLT3 ITD-positive AML patients, we identified activated cytokine networks that affect the formation of the haematopoietic niche by controlling osteoclastogenesis and osteoblast functions. In addition, aberrant oncogenic FLT3 signalling of osteogenesis-specific cytokines affects survival of AML patients and may be used for prognosis. Thus, these data highlight the intimate crosstalk between leukaemic and osteogenic cells within the osteohaematopoietic niche.
Collapse
Affiliation(s)
- Isabel Bär
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany;
| | - Volker Ast
- Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany;
| | - Daria Meyer
- Center for Infectious Diseases and Infection Control, Jena University Hospital, 07745 Jena, Germany; (D.M.); (R.K.)
| | - Rainer König
- Center for Infectious Diseases and Infection Control, Jena University Hospital, 07745 Jena, Germany; (D.M.); (R.K.)
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), 07745 Jena, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technical University Dresden, 01069 Dresden, Germany;
| | - Lorenz C. Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technical University Dresden, 01069 Dresden, Germany;
- Correspondence: (L.C.H.); (J.P.M.); Tel.: +49-351-458-3173 (L.C.H.); +49-364-1939-5634 (J.P.M.)
| | - Jörg P. Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany;
- Correspondence: (L.C.H.); (J.P.M.); Tel.: +49-351-458-3173 (L.C.H.); +49-364-1939-5634 (J.P.M.)
| |
Collapse
|