1
|
Chen X, Su Q, Gong R, Ling X, Xu R, Feng Q, Ke J, Liu M, Kahaerjiang G, Liu Y, Yang Y, Jiang Z, Wu H, Qi Y. LC3-associated phagocytosis and human diseases: Insights from mechanisms to therapeutic potential. FASEB J 2024; 38:e70130. [PMID: 39446073 DOI: 10.1096/fj.202402126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
LC3-associated phagocytosis (LAP) is a distinct type of autophagy that involves the sequestration of extracellular material by phagocytes. Beyond the removal of dead cells and cellular debris from eukaryotic cells, LAP is also involved in the removal of a variety of pathogens, including bacteria, fungi, and viruses. These events are integral to multiple physiological and pathological processes, such as host defense, inflammation, and tissue homeostasis. Dysregulation of LAP has been associated with the pathogenesis of several human diseases, including infectious diseases, autoimmune diseases, and neurodegenerative diseases. Thus, understanding the molecular mechanisms underlying LAP and its involvement in human diseases may provide new insights into the development of novel therapeutic strategies for these conditions. In this review, we summarize and highlight the current consensus on the role of LAP and its biological functions in disease progression to propose new therapeutic strategies. Further studies are needed to illustrate the precise role of LAP in human disease and to determine new therapeutic targets for LAP-associated pathologies.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruize Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qijia Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jialiang Ke
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Le Tallec E, Bellamri N, Lelong M, Morzadec C, Frenger Q, Ballerie A, Cazalets C, Lescoat A, Gros F, Lecureur V. Efferocytosis dysfunction in CXCL4-induced M4 macrophages: phenotypic insights in systemic sclerosis in vitro and in vivo. Front Immunol 2024; 15:1468821. [PMID: 39464886 PMCID: PMC11512447 DOI: 10.3389/fimmu.2024.1468821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Systemic sclerosis (SSc) is an autoimmune disease characterized by antinuclear antibody production, which has been linked to an excess of apoptotic cells, normally eliminated by macrophages through efferocytosis. Additionally, circulating levels of CXCL4, a novel SSc biomarker, correlate with more severe fibrotic manifestations of the disease. Considering the defective efferocytosis of macrophages in SSc and the CXCL4-related M4 macrophage phenotype, we hypothesized that CXCL4 could be involved in the alteration of phagocytic functions of macrophages in SSc, including LC3-associated phagocytosis (LAP), another phagocytic process requiring autophagy proteins and contributing to immune silencing. Methods In this study, CXCL4 levels were measured by ELISA in vitro in the serum of SSc patients, and also in vivo in the serum and lungs of C57BL/6J SSc mice induced by intradermal injections of hypochloric acid (HOCl) or Bleomycin (BLM), with evaluation of M4 markers. Circulating monocytes from healthy donors were also differentiated in vitro into M4 monocytes-derived macrophages (MDMs) in the presence of recombinant CXCL4. In M4-MDMs, phagocytosis of fluorescent beads and expression level of efferocytic receptors were evaluated by flow cytometry in vitro, while efferocytosis of pHrodo-stained apoptotic Jurkat cells was evaluated by real-time fluorescence microscopy. LAP quantification was made by fluorescence microscopy in M4-MDMs exposed to IgG-coated beads as well as apoptotic Jurkat cells. Results Our results demonstrated that efferocytosis was significantly reduced in M0-MDMs from healthy donors exposed to the CXCL4-rich plasma of SSc patients. In vivo, CXCL4 expression was increased in the lungs of both SSc-mouse models, along with elevated M4 markers, while efferocytosis of BLM-mice alveolar macrophages was decreased. In vitro, M4-MDMs exhibited reduced efferocytosis compared to M0-MDMs, notably attributable to lower CD36 receptor expression and impaired phagocytosis capacities, despite enhanced LAP. Autophagic gene expression was increased both in vitro in SSc MDMs and in vivo in BLM mice, thus acting as a potential compensatory mechanism. Discussion Altogether, our results support the role of CXCL4 on the impaired efferocytosis capacities of human macrophages from SSc patients and in SSc mice.
Collapse
Affiliation(s)
- Erwan Le Tallec
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Nessrine Bellamri
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
| | - Marie Lelong
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
| | - Claudie Morzadec
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
| | - Quentin Frenger
- INSERM UMR - S1109, Université de Strasbourg, Strasbourg, France
- Faculty of Life Sciences, Université de Strasbourg, Strasbourg, France
| | - Alice Ballerie
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Claire Cazalets
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Alain Lescoat
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Frédéric Gros
- INSERM UMR - S1109, Université de Strasbourg, Strasbourg, France
- Faculty of Life Sciences, Université de Strasbourg, Strasbourg, France
| | - Valérie Lecureur
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
| |
Collapse
|
3
|
Rajendran P, Renu K, Ali EM, Genena MAM, Veeraraghavan V, Sekar R, Sekar AK, Tejavat S, Barik P, Abdallah BM. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immun Inflamm Dis 2024; 12:e70041. [PMID: 39436197 PMCID: PMC11494898 DOI: 10.1002/iid3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Enas M. Ali
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Botany and Microbiology, Faculty of ScienceCairo UniversityCairoEgypt
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Agricultural Zoology Department, Faculty of AgricultureMansoura UniversityMansouraEgypt
| | - Vishnupriya Veeraraghavan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral MicrobiologyMeenakshi Ammal Dental College & Hospital, MAHERChennaiTamil NaduIndia
| | | | - Sujatha Tejavat
- Department of Biomedical Sciences, College of MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | | | - Basem M. Abdallah
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
4
|
Goli SH, Lim JY, Basaran-Akgul N, Templeton SP. Adiponectin pathway activation dampens inflammation and enhances alveolar macrophage fungal killing via LC3-associated phagocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600373. [PMID: 38979340 PMCID: PMC11230297 DOI: 10.1101/2024.06.24.600373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Although innate immunity is critical for antifungal host defense against the human opportunistic fungal pathogen Aspergillus fumigatus, potentially damaging inflammation must be controlled. Adiponectin (APN) is an adipokine produced mainly in adipose tissue that exerts anti-inflammatory effects in adipose-distal tissues such as the lung. We observed 100% mortality and increased fungal burden and inflammation in neutropenic mice with invasive aspergillosis (IA) that lack APN or the APN receptors AdipoR1 or AdipoR2. Alveolar macrophages (AMs), early immune sentinels that detect and respond to lung infection, express both receptors, and APN-/- AMs exhibited an inflammatory/M1 phenotype that was associated with decreased fungal killing. Pharmacological stimulation of AMs with AdipoR agonist AdipoRon partially rescued deficient killing in APN-/- AMs that was dependent on both receptors. Finally, APN-enhanced fungal killing was associated with increased activation of the non-canonical LC3 pathway of autophagy. Thus, our study identifies a novel role for APN in LC3-mediated killing of A. fumigatus.
Collapse
Affiliation(s)
- Sri Harshini Goli
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - Joo-Yeon Lim
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| | - Nese Basaran-Akgul
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| | - Steven P. Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| |
Collapse
|
5
|
Tang XX, Shimada H, Ikegaki N. A Perspective on the CD47-SIRPA Axis in High-Risk Neuroblastoma. Curr Oncol 2024; 31:3212-3226. [PMID: 38920727 PMCID: PMC11202629 DOI: 10.3390/curroncol31060243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Neuroblastoma is a pediatric cancer with significant clinical heterogeneity. Despite extensive efforts, it is still difficult to cure children with high-risk neuroblastoma. Immunotherapy is a promising approach to treat children with this devastating disease. We have previously reported that macrophages are important effector cells in high-risk neuroblastoma. In this perspective article, we discuss the potential function of the macrophage inhibitory receptor SIRPA in the homeostasis of tumor-associated macrophages in high-risk neuroblastoma. The ligand of SIRPA is CD47, known as a "don't eat me" signal, which is highly expressed on cancer cells compared to normal cells. CD47 is expressed on both tumor and stroma cells, whereas SIRPA expression is restricted to macrophages in high-risk neuroblastoma tissues. Notably, high SIRPA expression is associated with better disease outcome. According to the current paradigm, the interaction between CD47 on tumor cells and SIRPA on macrophages leads to the inhibition of tumor phagocytosis. However, data from recent clinical trials have called into question the use of anti-CD47 antibodies for the treatment of adult and pediatric cancers. The restricted expression of SIRPA on macrophages in many tissues argues for targeting SIRPA on macrophages rather than CD47 in CD47/SIRPA blockade therapy. Based on the data available to date, we propose that disruption of the CD47-SIRPA interaction by anti-CD47 antibody would shift the macrophage polarization status from M1 to M2, which is inferred from the 1998 study by Timms et al. In contrast, the anti-SIRPA F(ab')2 lacking Fc binds to SIRPA on the macrophage, mimics the CD47-SIRPA interaction, and thus maintains M1 polarization. Anti-SIRPA F(ab')2 also prevents the binding of CD47 to SIRPA, thereby blocking the "don't eat me" signal. The addition of tumor-opsonizing and macrophage-activating antibodies is expected to enhance active tumor phagocytosis.
Collapse
Affiliation(s)
- Xao X. Tang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
7
|
Sun C, Zhan J, Li Y, Zhou C, Huang S, Zhu X, Huang K. Non-apoptotic regulated cell death mediates reprogramming of the tumour immune microenvironment by macrophages. J Cell Mol Med 2024; 28:e18348. [PMID: 38652105 PMCID: PMC11037416 DOI: 10.1111/jcmm.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Yao Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Chulin Zhou
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Shuo Huang
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Xingen Zhu
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| | - Kai Huang
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| |
Collapse
|
8
|
Ramos C, Oehler R. Clearance of apoptotic cells by neutrophils in inflammation and cancer. Cell Death Discov 2024; 10:26. [PMID: 38218739 PMCID: PMC10787834 DOI: 10.1038/s41420-024-01809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
When a cell dies of apoptosis, it is eliminated either by neighbouring cells or by attracted professional phagocytes. Although it was generally believed that neutrophils also have the ability to perform efferocytosis, their contribution to the clearance of apoptotic cells was considered less important compared with macrophages. Therefore, this ability of neutrophils remained unexplored for a long time. Over the past decade, it has been shown that during inflammation, neutrophils contribute significantly to the clearance of apoptotic neutrophils that accumulate in large numbers at the site of tissue damage. This "neutrophil cannibalism" is accompanied by inhibition of pro-inflammatory activities of these cells, such as respiratory burst and formation of neutrophil extracellular traps (NETs). Furthermore, efferocytosing neutrophils secrete anti-inflammatory mediators and mitogens including hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF2), vascular endothelial growth factors (VEGF), and transforming growth factor beta (TGFβ). Thus, efferocytosis by neutrophils is involved in resolution of inflammation. Recent research indicates that it plays also a role in cancer. Many different solid tumours contain aggregates of dead tumour cells that have undergone spontaneous apoptosis. Their extent correlates with poor clinical outcome in most cancer types. These clusters of apoptotic tumour cells are strongly infiltrated by tumour-associated neutrophils (TANs) that acquired an anti-inflammatory and pro-resolving polarization state. This review summarizes the potential consequences discussed in the current literature. Although the picture of the role of efferocytosis by neutrophils in inflammation and cancer is becoming clearer, many questions are still unexplored.
Collapse
Affiliation(s)
- Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Rudolf Oehler
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Asare PF, Hurtado PR, Tran HB, Perkins GB, Roscioli E, Hodge S. Reduction in Rubicon by cigarette smoke is associated with impaired phagocytosis and occurs through lysosomal degradation pathway. Clin Exp Med 2023; 23:4041-4055. [PMID: 37310658 DOI: 10.1007/s10238-023-01105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND A common feature of COPD is a defective lung macrophage phagocytic capacity that can contribute to chronic lung inflammation and infection. The precise mechanisms remain incompletely understood, although cigarette smoke is a known contributor. We previously showed deficiency of the LC3-associated phagocytosis (LAP) regulator, Rubicon, in macrophages from COPD subjects and in response to cigarette smoke. The current study investigated the molecular basis by which cigarette smoke extract (CSE) reduces Rubicon in THP-1, alveolar and blood monocyte-derived macrophages, and the relationship between Rubicon deficiency and CSE-impaired phagocytosis. METHODOLOGY Phagocytic capacity of CSE-treated macrophages was measured by flow cytometry, Rubicon expression by Western blot and real time polymerase chain reaction, and autophagic-flux by LC3 and p62 levels. The effect of CSE on Rubicon degradation was determined using cycloheximide inhibition and Rubicon protein synthesis and half-life assessment. RESULTS Phagocytosis was significantly impaired in CSE-exposed macrophages and strongly correlated with Rubicon expression. CSE-impaired autophagy, accelerated Rubicon degradation, and reduced its half-life. Lysosomal protease inhibitors, but not proteasome inhibitors, attenuated this effect. Autophagy induction did not significantly affect Rubicon expression. CONCLUSIONS CSE decreases Rubicon through the lysosomal degradation pathway. Rubicon degradation and/or LAP impairment may contribute to dysregulated phagocytosis perpetuated by CSE.
Collapse
Affiliation(s)
- Patrick F Asare
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.
- Department of Thoracic Medicine, Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia.
| | - Plinio R Hurtado
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Renal Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Hai B Tran
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Griffith B Perkins
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Eugene Roscioli
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Sandra Hodge
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
10
|
Yamamoto K, Iwadate D, Naito E, Tateishi K, Fujishiro M. Autophagy as a critical driver of metabolic adaptation, therapeutic resistance, and immune evasion of cancer. Curr Opin Biotechnol 2023; 84:103012. [PMID: 39492353 DOI: 10.1016/j.copbio.2023.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2024]
Abstract
Autophagy is a well-conserved intracellular degradation pathway. Besides its physiological role in normal cells, autophagy is activated in various cancer types and protects cancer cells from stresses such as nutrient deprivation, therapeutic insults, and antitumor immunity. Autophagy in cancer cells as well as normal cells in the host supports tumor metabolism, allowing for tumor growth under a nutrient-limited tumor microenvironment. Autophagy also protects cancer cells from treatments such as radiation therapy, cytotoxic chemotherapy, and targeted therapy. Though the roles of autophagy in antitumor immunity are complex and highly context-dependent, accumulating evidence now supports the role of autophagy in mediating immunotherapy resistance. Based on these preclinical findings, multiple clinical trials are currently ongoing to test the therapeutic efficacy of autophagy inhibition in cancer. Here, we review recent findings on the tumor-promoting roles of autophagy in cancer and discuss advances in therapeutic approaches that target autophagy in cancer.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Dosuke Iwadate
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Naito
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki city, Kanagawa 216-8511 Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
11
|
Abstract
Maintenance of protein homeostasis and organelle integrity and function is critical for cellular homeostasis and cell viability. Autophagy is the principal mechanism that mediates the delivery of various cellular cargoes to lysosomes for degradation and recycling. A myriad of studies demonstrate important protective roles for autophagy against disease. However, in cancer, seemingly opposing roles of autophagy are observed in the prevention of early tumour development versus the maintenance and metabolic adaptation of established and metastasizing tumours. Recent studies have addressed not only the tumour cell intrinsic functions of autophagy, but also the roles of autophagy in the tumour microenvironment and associated immune cells. In addition, various autophagy-related pathways have been described, which are distinct from classical autophagy, that utilize parts of the autophagic machinery and can potentially contribute to malignant disease. Growing evidence on how autophagy and related processes affect cancer development and progression has helped guide efforts to design anticancer treatments based on inhibition or promotion of autophagy. In this Review, we discuss and dissect these different functions of autophagy and autophagy-related processes during tumour development, maintenance and progression. We outline recent findings regarding the role of these processes in both the tumour cells and the tumour microenvironment and describe advances in therapy aimed at autophagy processes in cancer.
Collapse
Affiliation(s)
- Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| | - Noor Gammoh
- MRC Institute of Genetics & Cancer, The University of Edinburgh, Edinburgh, UK.
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
12
|
Kinsella RL, Kimmey JM, Smirnov A, Woodson R, Gaggioli MR, Chavez SM, Kreamalmeyer D, Stallings CL. Autophagy prevents early proinflammatory responses and neutrophil recruitment during Mycobacterium tuberculosis infection without affecting pathogen burden in macrophages. PLoS Biol 2023; 21:e3002159. [PMID: 37319285 DOI: 10.1371/journal.pbio.3002159] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
The immune response to Mycobacterium tuberculosis infection determines tuberculosis disease outcomes, yet we have an incomplete understanding of what immune factors contribute to a protective immune response. Neutrophilic inflammation has been associated with poor disease prognosis in humans and in animal models during M. tuberculosis infection and, therefore, must be tightly regulated. ATG5 is an essential autophagy protein that is required in innate immune cells to control neutrophil-dominated inflammation and promote survival during M. tuberculosis infection; however, the mechanistic basis for how ATG5 regulates neutrophil recruitment is unknown. To interrogate what innate immune cells require ATG5 to control neutrophil recruitment during M. tuberculosis infection, we used different mouse strains that conditionally delete Atg5 in specific cell types. We found that ATG5 is required in CD11c+ cells (lung macrophages and dendritic cells) to control the production of proinflammatory cytokines and chemokines during M. tuberculosis infection, which would otherwise promote neutrophil recruitment. This role for ATG5 is autophagy dependent, but independent of mitophagy, LC3-associated phagocytosis, and inflammasome activation, which are the most well-characterized ways that autophagy proteins regulate inflammation. In addition to the increased proinflammatory cytokine production from macrophages during M. tuberculosis infection, loss of ATG5 in innate immune cells also results in an early induction of TH17 responses. Despite prior published in vitro cell culture experiments supporting a role for autophagy in controlling M. tuberculosis replication in macrophages, the effects of autophagy on inflammatory responses occur without changes in M. tuberculosis burden in macrophages. These findings reveal new roles for autophagy proteins in lung resident macrophages and dendritic cells that are required to suppress inflammatory responses that are associated with poor control of M. tuberculosis infection.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jacqueline M Kimmey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Margaret R Gaggioli
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
13
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic Changes Predict Metabolic Alterations in LC3 Associated Phagocytosis in Aged Mice. Int J Mol Sci 2023; 24:6716. [PMID: 37047689 PMCID: PMC10095460 DOI: 10.3390/ijms24076716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
LC3b (Map1lc3b) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b to promote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes, such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells, utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis, and neuroprotection. In a mouse model of retinal lipid steatosis-mice lacking LC3b (LC3b-/-), we observed increased lipid deposition, metabolic dysregulation, and enhanced inflammation. Herein, we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b-/- mice revealed 1533 DEGs, with ~73% upregulated and 27% downregulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism, and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with a potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy J. Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic changes predict metabolic alterations in LC3 associated phagocytosis in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532586. [PMID: 36993501 PMCID: PMC10054970 DOI: 10.1101/2023.03.14.532586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
LC3b ( Map1lc3b ) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b, to pro-mote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis and neuroprotection. In a mouse model of retinal lipid steatosis - mice lacking LC3b ( LC3b -/- ), we observed increased lipid deposition, metabolic dysregulation and enhanced inflammation. Herein we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b -/- mice revealed 1533 DEGs, with ~73% upregulated and 27% down-regulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
|
15
|
Dioscin ameliorates silica-aggravated systemic lupus erythematosus via suppressing apoptosis and improving LC3-associated phagocytosis in MRL/lpr mice. Int Immunopharmacol 2023; 116:109814. [PMID: 36773568 DOI: 10.1016/j.intimp.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/14/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Inhalation of silica not only directly leads to silicosis locally, but also results in various types of autoimmune diseases systemically, most commonly systemic lupus erythematosus (SLE). Little is known about the etiopathogenesis of silica-aggravated SLE to date, however, abnormal apoptosis and impaired apoptotic clearance have been reported to be closely related to the occurrence of SLE. LC3-associated phagocytosis (LAP) is a non-canonical form of autophagy, which plays a crucial role in mediating the clearance of apoptotic cells. Here we showed that the excessive accumulation of apoptotic debris in MRL/lpr mice exposed to silica might be due to the increased cell apoptosis and defective LAP caused by silica, thus accelerating the occurrence and progression of silica-aggravated SLE. Dioscin is an active ingredient in the family of Dioscoreaceae and is reported to possess multiple pharmacological activities, including anti-inflammatory, anti-apoptotic and autophagy-promoting properties. However, its role in SLE aggravated by silica exposure has not been investigated. In our study, we confirmed that dioscin decreased the accumulation of apoptotic debris by suppressing the excessive cell apoptosis and improving the LAP of immune cells in lung and spleen, leading to subsequent dramatically ameliorated lupus-like symptoms in silica-exposed MRL/lpr mice.
Collapse
|
16
|
Kumar AV, Mills J. Non-canonical autophagy in aging and age-related diseases. Front Cell Dev Biol 2023; 11:1137870. [PMID: 36910139 PMCID: PMC9995962 DOI: 10.3389/fcell.2023.1137870] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Autophagy, one of the arms of proteostasis, influences aging and age-related diseases. Recently, the discovery of additional roles of autophagy-related proteins in non-canonical degradation and secretion has revealed alternative fates of autophagic cargo. Some of these non-canonical pathways have been linked to neurodegenerative diseases and improving the understanding of this link is crucial for their potential targetability in aging and age-related diseases. This review discusses recent investigations of the involvement of non-canonical autophagy players and pathways in age-related diseases that are now beginning to be discovered. Unraveling these pathways and their relation to classical autophagy could unearth a fascinating new layer of proteostasis regulation during normal aging and in longevity.
Collapse
Affiliation(s)
- Anita V Kumar
- Molecular Biology, Cell Biology and Biochemistry Department, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Molecular Biology, Cell Biology and Biochemistry Department, Brown University, Providence, RI, United States.,Wheaton College, Biology Department, Norton, MA, United States
| |
Collapse
|
17
|
Zhang J, Ding W, Zhao M, Liu J, Xu Y, Wan J, Wang M. Mechanisms of efferocytosis in determining inflammation resolution: Therapeutic potential and the association with cardiovascular disease. Br J Pharmacol 2022; 179:5151-5171. [PMID: 36028471 DOI: 10.1111/bph.15939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Efferocytosis is defined as the clearance of apoptotic cells (ACs) in physiological and pathological states and is performed by efferocytes, such as macrophages. Efferocytosis can lead to the resolution of inflammation and restore tissue homoeostasis; however, the mechanisms of efferocytosis in determining inflammation resolution are still not completely understood, and the effects of efferocytosis on other proresolving properties need to be explored and explained. In this review, the process of efferocytosis will be summarized briefly, and then these mechanisms and effects will be thoroughly discussed. In addition, the association between the mechanisms of efferocytosis in determining inflammation resolution and cardiovascular diseases will also be reviewed, as an understanding of this association may provide information on novel treatment targets.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China.,department of radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
18
|
Chen Y, He Y, Wu X, Xu X, Gong J, Chen Y, Gong J. Rubicon promotes the M2 polarization of Kupffer cells via LC3-associated phagocytosis-mediated clearance to improve liver transplantation. Cell Immunol 2022; 378:104556. [DOI: 10.1016/j.cellimm.2022.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022]
|
19
|
Loftus LV, Amend SR, Pienta KJ. Interplay between Cell Death and Cell Proliferation Reveals New Strategies for Cancer Therapy. Int J Mol Sci 2022; 23:4723. [PMID: 35563113 PMCID: PMC9105727 DOI: 10.3390/ijms23094723] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/14/2022] Open
Abstract
Cell division and cell death are fundamental processes governing growth and development across the tree of life. This relationship represents an evolutionary link between cell cycle and cell death programs that is present in all cells. Cancer is characterized by aberrant regulation of both, leading to unchecked proliferation and replicative immortality. Conventional anti-cancer therapeutic strategies take advantage of the proliferative dependency of cancer yet, in doing so, are triggering apoptosis, a death pathway to which cancer is inherently resistant. A thorough understanding of how therapeutics kill cancer cells is needed to develop novel, more durable treatment strategies. While cancer evolves cell-intrinsic resistance to physiological cell death pathways, there are opportunities for cell cycle agnostic forms of cell death, for example, necroptosis or ferroptosis. Furthermore, cell cycle independent death programs are immunogenic, potentially licensing host immunity for additional antitumor activity. Identifying cell cycle independent vulnerabilities of cancer is critical for developing alternative strategies that can overcome therapeutic resistance.
Collapse
Affiliation(s)
- Luke V. Loftus
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (S.R.A.); (K.J.P.)
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R. Amend
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (S.R.A.); (K.J.P.)
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth J. Pienta
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (S.R.A.); (K.J.P.)
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Mahmoudi A, Moadab F, Safdarian E, Navashenaq JG, Rezaee M, Gheibihayat SM. MicroRNAs and Efferocytosis: Implications for Diagnosis and Therapy. Mini Rev Med Chem 2022; 22:2641-2660. [PMID: 35362375 DOI: 10.2174/1389557522666220330150937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/24/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
About 10-100 billion cells are generated in the human body in a day, and accordingly, 10-100 billion cells predominantly die for maintaining homeostasis. Dead cells generated by apoptosis are also rapidly engulfed by macrophages (Mθs) to be degraded. In case of the inefficient engulfment of apoptotic cells (ACs) via Mθs, they experience secondary necrosis and thus release intracellular materials, which display damage-associated molecular patterns (DAMPs) and result in diseases. Over the last decades, researchers have also reflected on the significant contribution of microRNAs (miRNAs) to autoimmune diseases through the regulation of Mθs functions. Moreover, miRNAs have shown intricate involvement with completely adjusting basic Mθs functions, such as phagocytosis, inflammation, efferocytosis, tumor promotion, and tissue repair. In this review, the mechanism of efferocytosis containing "Find-Me", "Eat-Me", and "Digest-Me" signals is summarized and the biogenesis of miRNAs is briefly described. Finally, the role of miRNAs in efferocytosis is discussed. It is concluded that miRNAs represent promising treatments and diagnostic targets in impaired phagocytic clearance, which leads to different diseases.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Iran
| | - Fatemeh Moadab
- Medical student, Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Esmat Safdarian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran Iran
| | | | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran;
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
21
|
Ge Y, Huang M, Yao YM. Efferocytosis and Its Role in Inflammatory Disorders. Front Cell Dev Biol 2022; 10:839248. [PMID: 35281078 PMCID: PMC8913510 DOI: 10.3389/fcell.2022.839248] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Efferocytosis is the effective clearance of apoptotic cells by professional and non-professional phagocytes. The process is mechanically different from other forms of phagocytosis and involves the localization, binding, internalization, and degradation of apoptotic cells. Defective efferocytosis has been demonstrated to associate with the pathogenesis of various inflammatory disorders. In the current review, we summarize recent findings with regard to efferocytosis networks and discuss the relationship between efferocytosis and different immune cell populations, as well as describe how efferocytosis helps resolve inflammatory response and modulate immune balance. Our knowledge so far about efferocytosis suggests that it may be a useful target in the treatment of numerous inflammatory diseases.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-ming Yao
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Rickman AD, Hilyard A, Heckmann BL. Dying by fire: noncanonical functions of autophagy proteins in neuroinflammation and neurodegeneration. Neural Regen Res 2022; 17:246-250. [PMID: 34269183 PMCID: PMC8463974 DOI: 10.4103/1673-5374.317958] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 11/04/2022] Open
Abstract
Neuroinflammation and neurodegeneration are key components in the establishment and progression of neurodegenerative diseases including Alzheimer's Disease (AD). Over the past decade increasing evidence is emerging for the use of components of the canonical autophagy machinery in pathways that are characterized by LC3 lipidation yet are distinct from traditional macro-autophagy. One such pathway that utilizes components of the autophagy machinery to target LC3 to endosomes, a process termed LC3-associated endocytosis (LANDO), has recently been identified and regulates neuroinflammation. Abrogation of LANDO in microglia cells results in a propensity for elevated neuroinflammatory cytokine production. Using the well-established 5xFAD model of AD to interrogate neuroinflammatory regulation, impairment of LANDO through deletion of a key upstream regulator Rubicon or other downstream autophagy components, exacerbated disease onset and severity, while deletion of microglial autophagy alone had no measurable effect. Mice presented with robust deposition of the neurotoxic AD protein β-amyloid (Aβ), microglial activation and inflammatory cytokine production, tau phosphorylation, and aggressive neurodegeneration culminating in severe memory impairment. LANDO-deficiency impaired recycling of receptors that recognize Aβ, including TLR4 and TREM2. LANDO-deficiency alone through deletion of the WD-domain of the autophagy protein ATG16L, revealed a role for LANDO in the spontaneous establishment of age-associated AD. LANDO-deficient mice aged to 2 years presented with advanced AD-like disease and pathology correlative to that observed in human AD patients. Together, these studies illustrate an important role for microglial LANDO in regulating CNS immune activation and protection against neurodegeneration. New evidence is emerging that demonstrates a putative linkage between pathways such as LANDO and cell death regulation via apoptosis and possibly necroptosis. Herein, we provide a review of the use of the autophagy machinery in non-canonical mechanisms that alter immune regulation and could have significant impact in furthering our understanding of not only CNS diseases like AD, but likely beyond.
Collapse
Affiliation(s)
- Alexis D. Rickman
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Addison Hilyard
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Morsani College of Medicine, Tampa, FL, USA
| | - Bradlee L. Heckmann
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
23
|
Grijmans BJM, van der Kooij SB, Varela M, Meijer AH. LAPped in Proof: LC3-Associated Phagocytosis and the Arms Race Against Bacterial Pathogens. Front Cell Infect Microbiol 2022; 11:809121. [PMID: 35047422 PMCID: PMC8762105 DOI: 10.3389/fcimb.2021.809121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023] Open
Abstract
Cells of the innate immune system continuously patrol the extracellular environment for potential microbial threats that are to be neutralized by phagocytosis and delivery to lysosomes. In addition, phagocytes employ autophagy as an innate immune mechanism against pathogens that succeed to escape the phagolysosomal pathway and invade the cytosol. In recent years, LC3-associated phagocytosis (LAP) has emerged as an intermediate between phagocytosis and autophagy. During LAP, phagocytes target extracellular microbes while using parts of the autophagic machinery to label the cargo-containing phagosomes for lysosomal degradation. LAP contributes greatly to host immunity against a multitude of bacterial pathogens. In the pursuit of survival, bacteria have developed elaborate strategies to disarm or circumvent the LAP process. In this review, we will outline the nature of the LAP mechanism and discuss recent insights into its interplay with bacterial pathogens.
Collapse
Affiliation(s)
| | | | - Monica Varela
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
24
|
Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct 2021; 16:23. [PMID: 34749806 PMCID: PMC8577020 DOI: 10.1186/s13062-021-00307-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting the apoptotic program in response to DNA damage. In most human cancers these processes are associated with malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-dependent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its tumor suppressive properties intact.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Svetlana Zvereva
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra Dalina
- The Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - Igor Blatov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya Zubarev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil Luppov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Romanishin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Lamak Alsoulaiman
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gerry Melino
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Ganini
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolai A Barlev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Cytology, Russian Academy of Science, Saint-Petersburg, Russia.
| |
Collapse
|
25
|
Kuo WT, Chang JM, Chen CC, Tsao N, Chang CP. Autophagy drives plasticity and functional polarization of tumor-associated macrophages. IUBMB Life 2021; 74:157-169. [PMID: 34467634 DOI: 10.1002/iub.2543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 01/11/2023]
Abstract
Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are key cells in regulating tumor development, metastasis, immune responses, inflammation, and chemoresistance. In response to TME stimulation, circulating monocytes are recruited and differentiated as TAMs. Most TAMs are defined as alternatively activated (M2) phenotype to create immunosuppressive TME and support tumor progression. In contrast, classically activated (M1) TAMs can produce pro-inflammatory cytokines and enhance immune responses against tumor development. Autophagy is a conserved catabolic process to control cellular homeostasis and biological function. Emerging evidence reveals crucial contribution of autophagy in modulating TAM plasticity and functional polarization in TME. In this review, we introduce the current understanding of autophagy-regulated TAM function in development of cancer. We focus on how autophagy modulates antigen presentation, LC3-associated phagocytosis, cytokine secretion, inflammasome regulation, recruitment, differentiation, and polarization of TAMs and suggest strategies for potential therapeutics by targeting autophagy in TAMs. We expect this review can provide a new notion of future cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Ting Kuo
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Ming Chang
- Department of Surgery, Division of Thoracic Surgery, Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chien-Chin Chen
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Nina Tsao
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Peng Chang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
26
|
Slusarczyk P, Mleczko-Sanecka K. The Multiple Facets of Iron Recycling. Genes (Basel) 2021; 12:genes12091364. [PMID: 34573346 PMCID: PMC8469827 DOI: 10.3390/genes12091364] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
The production of around 2.5 million red blood cells (RBCs) per second in erythropoiesis is one of the most intense activities in the body. It continuously consumes large amounts of iron, approximately 80% of which is recycled from aged erythrocytes. Therefore, similar to the “making”, the “breaking” of red blood cells is also very rapid and represents one of the key processes in mammalian physiology. Under steady-state conditions, this important task is accomplished by specialized macrophages, mostly liver Kupffer cells (KCs) and splenic red pulp macrophages (RPMs). It relies to a large extent on the engulfment of red blood cells via so-called erythrophagocytosis. Surprisingly, we still understand little about the mechanistic details of the removal and processing of red blood cells by these specialized macrophages. We have only started to uncover the signaling pathways that imprint their identity, control their functions and enable their plasticity. Recent findings also identify other myeloid cell types capable of red blood cell removal and establish reciprocal cross-talk between the intensity of erythrophagocytosis and other cellular activities. Here, we aimed to review the multiple and emerging facets of iron recycling to illustrate how this exciting field of study is currently expanding.
Collapse
|
27
|
MERTK-Mediated LC3-Associated Phagocytosis (LAP) of Apoptotic Substrates in Blood-Separated Tissues: Retina, Testis, Ovarian Follicles. Cells 2021; 10:cells10061443. [PMID: 34207717 PMCID: PMC8229618 DOI: 10.3390/cells10061443] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
Timely and efficient elimination of apoptotic substrates, continuously produced during one’s lifespan, is a vital need for all tissues of the body. This task is achieved by cells endowed with phagocytic activity. In blood-separated tissues such as the retina, the testis and the ovaries, the resident cells of epithelial origin as retinal pigmented epithelial cells (RPE), testis Sertoli cells and ovarian granulosa cells (GC) provide phagocytic cleaning of apoptotic cells and cell membranes. Disruption of this process leads to functional ablation as blindness in the retina and compromised fertility in males and females. To ensure the efficient elimination of apoptotic substrates, RPE, Sertoli cells and GC combine various mechanisms allowing maintenance of tissue homeostasis and avoiding acute inflammation, tissue disorganization and functional ablation. In tight cooperation with other phagocytosis receptors, MERTK—a member of the TAM family of receptor tyrosine kinases (RTK)—plays a pivotal role in apoptotic substrate cleaning from the retina, the testis and the ovaries through unconventional autophagy-assisted phagocytosis process LAP (LC3-associated phagocytosis). In this review, we focus on the interplay between TAM RTKs, autophagy-related proteins, LAP, and Toll-like receptors (TLR), as well as the regulatory mechanisms allowing these components to sustain tissue homeostasis and prevent functional ablation of the retina, the testis and the ovaries.
Collapse
|
28
|
Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, Goswami S, Allison JP. The Next Decade of Immune Checkpoint Therapy. Cancer Discov 2021; 11:838-857. [DOI: 10.1158/2159-8290.cd-20-1680] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
|