1
|
Li Y, Chen K, Chen B, Zeng R, He Y, Wang C, Zhong M, Liu X, Chen X, Xiao L, Zhou H. Increased coexpression of PD-L1 and IDO1 is associated with poor overall survival in patients with NK/T-cell lymphoma. Leukemia 2024; 38:1553-1563. [PMID: 38783159 DOI: 10.1038/s41375-024-02266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Immunotherapy with programmed cell death 1 ligand 1 (PD-L1) blockade was effective in patients with NK/T-cell lymphoma. In addition to PD-L1, indoleamine 2,3-dioxygenase-1 (IDO1) is one of the most promising immunotherapeutic targets. High proportions of PD-L1 and IDO1 proteins were observed by immunohistochemistry (IHC) from 230 newly diagnosed patients with NK/T lymphoma with tissue samples from three cancer centers and were associated with poor overall survival (OS) in patients with NK/T lymphoma. Importantly, the coexpression of PD-L1 and IDO1 was related to poor OS and short restricted mean survival time in patients with NK/T lymphoma and was an independent prognostic factor in the training cohorts, and which was also validated in 58 NK/T lymphoma patients (GSE90597). Moreover, a nomogram model constructed with PD-L1 and IDO1 expression together with age could provide concise and precise predictions of OS rates and median survival time. The high-risk group in the nomogram model had a positive correlation with CD4 + T-cell infiltration in the validation cohort, as did the immunosuppressive factor level. Therefore, high PD-L1 and IDO1 expression was associated with poor OS in patients with NK/T lymphoma. PD-L1 and IDO1 might be potential targets for future immune checkpoint blockade (ICB) therapy for NK/T lymphoma.
Collapse
Affiliation(s)
- Yajun Li
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Kailin Chen
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Bihua Chen
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Ruolan Zeng
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Yizi He
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Caiqin Wang
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xiaoyan Chen
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| | - Hui Zhou
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China.
| |
Collapse
|
2
|
Anguera G, Mulet M, Zamora C, Osuna-Gómez R, Barba A, Sullivan I, Serra-López J, Cantó E, Vidal S, Majem M. Potential Role of Circulating PD-L1 + Leukocytes as a Predictor of Response to Anti-PD-(L)1 Therapy in NSCLC Patients. Biomedicines 2024; 12:958. [PMID: 38790920 PMCID: PMC11117542 DOI: 10.3390/biomedicines12050958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
PD-(L)1 inhibitors are part of the treatment strategy for non-small cell lung cancer (NSCLC) although its efficacy is limited to certain patients. Our study aimed to identify patients who might benefit from anti-PD-(L)1 inhibitors by analyzing the PD-L1 expression on circulating leukocytes and its evolution during treatment. One hundred thirteen NSCLC patients, according to their radiological response after 10-12 weeks of treatment, were classified into responders, stable, and progressive disease. Percentages of circulating PD-L1+ leukocytes, PD-L1+ platelets (PLTs), and leukocyte-PLT complexes were assessed using flow cytometry, and plasma concentrations of soluble immunomodulatory factors were quantified by ELISA. Responders exhibited significantly higher pre-treatment percentages of PD-L1+ neutrophils, PD-L1+ CD14+ cells, and PD-L1+ PLTs than progressors. The percentages of these populations decreased in responders post-treatment, contrasting with stables and progressors. PLTs notably contributed to PD-L1 expression in CD14+ cells and neutrophils. Plasma cytokine analysis revealed baseline differences only in IL-17 concentration among groups, whereas network analyses highlighted distinct association patterns between plasma molecules and PD-L1+ leukocytes after 10-12 weeks of treatment. Our findings suggest that pre-treatment assessment of circulating PD-L1+ neutrophils, PD-L1+ CD14+ cells, and PD-L1+ PLTs may be helpful in identifying NSCLC patients who are potential candidates for anti-PD-(L)1 therapy.
Collapse
Affiliation(s)
- Georgia Anguera
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (G.A.); (A.B.); (I.S.); (J.S.-L.); (M.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Maria Mulet
- Group of Inflammatory Diseases, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (C.Z.); (R.O.-G.); (E.C.); (S.V.)
| | - Carlos Zamora
- Group of Inflammatory Diseases, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (C.Z.); (R.O.-G.); (E.C.); (S.V.)
| | - Rubén Osuna-Gómez
- Group of Inflammatory Diseases, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (C.Z.); (R.O.-G.); (E.C.); (S.V.)
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Andrés Barba
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (G.A.); (A.B.); (I.S.); (J.S.-L.); (M.M.)
| | - Ivana Sullivan
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (G.A.); (A.B.); (I.S.); (J.S.-L.); (M.M.)
| | - Jorgina Serra-López
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (G.A.); (A.B.); (I.S.); (J.S.-L.); (M.M.)
| | - Elisabet Cantó
- Group of Inflammatory Diseases, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (C.Z.); (R.O.-G.); (E.C.); (S.V.)
| | - Silvia Vidal
- Group of Inflammatory Diseases, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (C.Z.); (R.O.-G.); (E.C.); (S.V.)
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Margarita Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (G.A.); (A.B.); (I.S.); (J.S.-L.); (M.M.)
| |
Collapse
|
3
|
Purushothaman A, Oliva-Ramírez J, Treekitkarnmongkol W, Sankaran D, Hurd MW, Putluri N, Maitra A, Haymaker C, Sen S. Differential Effects of Pancreatic Cancer-Derived Extracellular Vesicles Driving a Suppressive Environment. Int J Mol Sci 2023; 24:14652. [PMID: 37834100 PMCID: PMC10572854 DOI: 10.3390/ijms241914652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells display extensive crosstalk with their surrounding environment to regulate tumor growth, immune evasion, and metastasis. Recent advances have attributed many of these interactions to intercellular communication mediated by small extracellular vesicles (sEVs), involving cancer-associated fibroblasts (CAF). To explore the impact of sEVs on monocyte lineage transition as well as the expression of checkpoint receptors and activation markers, peripheral blood monocytes from healthy subjects were exposed to PDAC-derived sEVs. Additionally, to analyze the role of sEV-associated HA in immune regulation and tissue-resident fibroblasts, monocytes and pancreatic stellate cells were cultured in the presence of PDAC sEVs with or depleted of HA. Exposure of monocytes to sEVs resulted in unique phenotypic changes in HLA-DR, PD-L1, CD86 and CD64 expression, and cytokine secretion that was HA-independent except for IL-1β and MIP1β. In contrast, monocyte suppression of autologous T cell proliferation was reduced following exposure to HA-low sEVs. In addition, exposure of stellate cells to sEVs upregulated the secretion of various cytokines, including MMP-9, while removal of HA from PDAC-derived sEVs attenuated the secretion of MMP-9, demonstrating the role of sEV-associated HA in regulating expression of this pro-tumorigenic cytokine from stellate cells. This observation lends credence to the findings from the TCGA database that PDAC patients with high levels of enzymes in the HA synthesis pathway had worse survival rates compared with patients having low expression of these enzymes. PDAC-derived sEVs have an immune modulatory role affecting the activation state of monocyte subtypes. However, sEV-associated HA does not affect monocyte phenotype but alters cytokine secretion and suppression of autologous T cell proliferation and induces secretion of pro-tumorigenic factors by pancreatic stellate cells (PSC), as has been seen following the conversion of PSCs to cancer-associated fibroblasts (CAFs). Interruption of the hexosamine biosynthetic pathway, activated in PDAC producing the key substrate (UDP-GlcNAc) for HA synthesis, thus, represents a potential clinical interception strategy for PDAC patients. Findings warrant further investigations of underlying mechanisms involving larger sample cohorts.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacqueline Oliva-Ramírez
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Deivendran Sankaran
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Mark W. Hurd
- Ahmed Center for Pancreatic Cancer Research, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
- Ahmed Center for Pancreatic Cancer Research, MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cara Haymaker
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Subrata Sen
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| |
Collapse
|
4
|
Yap DRY, Lim JQ, Huang D, Ong CK, Chan JY. Emerging predictive biomarkers for novel therapeutics in peripheral T-cell and natural killer/T-cell lymphoma. Front Immunol 2023; 14:1068662. [PMID: 36776886 PMCID: PMC9909478 DOI: 10.3389/fimmu.2023.1068662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) and natural killer/T-cell lymphoma (NKTCL) are rare subtypes of non-Hodgkin's lymphoma that are typically associated with poor treatment outcomes. Contemporary first-line treatment strategies generally involve the use of combination chemoimmunotherapy, radiation and/or stem cell transplant. Salvage options incorporate a number of novel agents including epigenetic therapies (e.g. HDAC inhibitors, DNMT inhibitors) as well as immune checkpoint inhibitors. However, validated biomarkers to select patients for individualized precision therapy are presently lacking, resulting in high treatment failure rates, unnecessary exposure to drug toxicities, and missed treatment opportunities. Recent advances in research on the tumor and microenvironmental factors of PTCL and NKTCL, including alterations in specific molecular features and immune signatures, have improved our understanding of these diseases, though several issues continue to impede progress in clinical translation. In this Review, we summarize the progress and development of the current predictive biomarker landscape, highlight potential knowledge gaps, and discuss the implications on novel therapeutics development in PTCL and NKTCL.
Collapse
Affiliation(s)
- Daniel Ren Yi Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Zhang L, Wang L, Tan Y, Li C, Fang C. Identification of key genes of anti-programmed death ligand 1 for meningioma immunotherapy by bioinformatic analysis. Med Oncol 2022; 40:54. [PMID: 36538194 PMCID: PMC9768007 DOI: 10.1007/s12032-022-01869-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
Meningioma is one of the most common primary tumors in the central nervous system (CNS). A deeper understanding of its molecular characterization could provide potential therapeutic targets to reduce recurrence. In this study, we attempted to identify specific gene mutations in meningioma for immunotherapy. One GSE43290 dataset was obtained from the Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs) between meningioma tissues and normal meninges. In total, 420 DEGs were identified, including 15 up-regulated and 405 down-regulated genes. Functional enrichment analysis showed that these DEGs were mainly enriched in PI3K-Akt signaling pathway, Focal adhesion, and MAPK signaling pathway. We identified 20 hub genes by protein-protein interaction (PPI) analysis. Among the hub genes, the expression of FLT1, CXCL8, JUN, THBS1, FECAM1, CD34, and FGF13 were negatively correlated with Programmed Death Ligand-1 (PD-L1). Additionally, the expression of those genes was co-regulated by miR-155-5p. The findings suggest that miR-155-5p play an important role in the pathogenesis of meningioma and may represent potential therapeutic targets for its anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Lijian Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding City, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding City, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding City, China
| | - Luxuan Wang
- Department of Neurological Examination, Affiliated Hospital of Hebei University, Hebei University, Baoding City, China
| | - Yanli Tan
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding City, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding City, China
- Department of Pathology, Affiliated Hospital of Hebei University, Hebei University, Baoding City, China
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding City, China.
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding City, China.
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding City, China.
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding City, China.
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding City, China.
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding City, China.
| |
Collapse
|
6
|
Liu B, Yan S, Li S, Zhang Q, Yang M, Yang L, Ma J, Li X. Correlation Study of PD-L1, CD4, CD8, and PD-1 in Primary Diffuse Large B-cell Lymphoma of the Central Nervous System. Pathol Res Pract 2022; 239:154008. [DOI: 10.1016/j.prp.2022.154008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
|
7
|
Olingy C, Alimadadi A, Araujo DJ, Barry D, Gutierrez NA, Werbin MH, Arriola E, Patel SP, Ottensmeier CH, Dinh HQ, Hedrick CC. CD33 Expression on Peripheral Blood Monocytes Predicts Efficacy of Anti-PD-1 Immunotherapy Against Non-Small Cell Lung Cancer. Front Immunol 2022; 13:842653. [PMID: 35493454 PMCID: PMC9046782 DOI: 10.3389/fimmu.2022.842653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/02/2022] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related deaths globally. Immune checkpoint blockade (ICB) has transformed cancer medicine, with anti-programmed cell death protein 1 (anti-PD-1) therapy now well-utilized for treating NSCLC. Still, not all patients with NSCLC respond positively to anti-PD-1 therapy, and some patients acquire resistance to treatment. There remains an urgent need to find markers predictive of anti-PD-1 responsiveness. To this end, we performed mass cytometry on peripheral blood mononuclear cells from 26 patients with NSCLC during anti-PD-1 treatment. Patients who responded to anti-PD-1 ICB displayed significantly higher levels of antigen-presenting myeloid cells, including CD9+ nonclassical monocytes, and CD33hi classical monocytes. Using matched pre-post treatment samples, we found that the baseline pre-treatment frequencies of CD33hi monocytes predicted patient responsiveness to anti-PD-1 therapy. Moreover, some of these classical and nonclassical monocyte subsets were associated with reduced immunosuppression by T regulatory (CD4+FOXP3+CD25+) cells in the same patients. Our use of machine learning corroborated the association of specific monocyte markers with responsiveness to ICB. Our work provides a high-dimensional profile of monocytes in NSCLC and links CD33 expression on monocytes with anti-PD-1 effectiveness in patients with NSCLC.
Collapse
Affiliation(s)
- Claire Olingy
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Ahmad Alimadadi
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Daniel J. Araujo
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - David Barry
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Norma A. Gutierrez
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Max Hardy Werbin
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| | - Edurne Arriola
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
- Medical Oncology Department, Hospital del Mar-Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Barcelona, Spain
| | - Sandip Pravin Patel
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Christian H. Ottensmeier
- Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Huy Q. Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Catherine C. Hedrick
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
- *Correspondence: Catherine C. Hedrick,
| |
Collapse
|
8
|
Zhang M, Hong JA, Kunst TF, Bond CD, Kenney CM, Warga CL, Yeray J, Lee MJ, Yuno A, Lee S, Miettinen M, Ripley RT, Hoang CD, Gnjatic S, Trepel JB, Schrump DS. Randomized phase II trial of a first-in-human cancer cell lysate vaccine in patients with thoracic malignancies. Transl Lung Cancer Res 2021; 10:3079-3092. [PMID: 34430349 PMCID: PMC8350099 DOI: 10.21037/tlcr-21-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although most malignancies express cancer-testis antigens (CTA), immune responses to these proteins are limited in thoracic oncology patients. This trial was undertaken to examine if a cancer cell lysate vaccine could induce immunity to CTA, and to ascertain if metronomic cyclophosphamide and celecoxib enhances vaccine-induced immune responses. METHODS Eleven patients with primary thoracic malignancies and 10 patients with extrathoracic neoplasms metastatic to the chest rendered NED by conventional therapies were randomized to receive H1299 lung cancer cell lysates (10 mg protein/vaccine) with Iscomatrix™ adjuvant via deep intradermal injection q 4 weeks ×6 with or without daily oral metronomic cyclophosphamide/celecoxib. The primary endpoint was serologic response to purified CTA assessed 1 month after the 6th vaccination. Secondary endpoints included assessment of the effects of cyclophosphamide and celecoxib on frequency and magnitude of vaccine-induced immune responses to CTA. Exploratory endpoints included evaluation of the effects of the vaccine regimens on peripheral immune subsets. Standard of care imaging studies were obtained at baseline and 1 month after the 3rd and 6th vaccinations. RESULTS All patients exhibited local and systemic inflammatory responses lasting 72-96 hours following vaccinations. There were no dose limiting treatment related toxicities. Fourteen patients (67%) completed all six vaccinations. Eight of 14 patients (57%) exhibited serologic responses to NY-ESO-1. One patient developed antibodies to GAGE7; several patients exhibited reactivity to XAGE and MAGE-C2. Vaccine therapy decreased the percent of Tregs (P=0.0068), PD-1 expression on Tregs (P=0.0027), PD-L1 expression on CD14+ monocytes (P=0.0089), PD-L1 expression on classical monocytes (P=0.016), and PD-L1 expression on intermediate monocytes (P=0.0031). Cyclophosphamide/celecoxib did not appear to increase immune responses or enhance vaccine-induced alterations in peripheral immune subsets. CONCLUSIONS H1299 lysate vaccines with Iscomatrix™ induce immune responses to CTA and modulate peripheral immune subsets in a manner that may enhance antitumor immunity in patients with thoracic malignancies.
Collapse
Affiliation(s)
- Mary Zhang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julie A. Hong
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Tricia F. Kunst
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Colleen D. Bond
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cara M. Kenney
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cheryl L. Warga
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Javier Yeray
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Akira Yuno
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - R. Taylor Ripley
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Chuong D. Hoang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jane B. Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David S. Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
9
|
He HX, Gao Y, Fu JC, Zhou QH, Wang XX, Bai B, Li PF, Huang C, Rong QX, Ping LQ, He YX, Mao JY, Chen X, Huang HQ. VISTA and PD-L1 synergistically predict poor prognosis in patients with extranodal natural killer/T-cell lymphoma. Oncoimmunology 2021; 10:1907059. [PMID: 33889438 PMCID: PMC8032243 DOI: 10.1080/2162402x.2021.1907059] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although PD-1/PD-L1 blockade therapy confers salutary effects across cancer types, their efficacy in Extranodal Natural killer/T-cell lymphoma (ENKTCL) patients is limited and unpredictable. Here, we comprehensively evaluated the expression profile of a panel of immune-regulatory makers to identify novel prognostic biomarkers and/or therapeutic targets for this malignancy. Using immunohistochemistry and multiplex immunofluorescence, we found that the expression of VISTA (88.1%) was predominantly in CD68+ macrophages and much higher than PD-L1 expression (68.7%) in ENKTCL. B7-H4 and HHLA2 proteins were not detected in ENKTCL. B7-H3 was expressed in minority of ENKTCL patients (13.7%) and mainly colocalized with CD31. A close correlation was detected between VISTA and PD-L1, but they were not co-expressed in the same cells. High expressions of VISTA or PD-L1 were significantly associated with detrimental clinicopathological characteristics, dismal prognosis, and high density of CD8+ TILs, and high VISTA expression was also significantly associated with high density of Foxp3+ TILs. VISTA combined with PD-L1 was an independent prognostic factor for PFS and OS. Moreover, the patients with high VISTA showed a poor response to PD-1 blockades in ENKTCL. In conclusion, these findings provide a rationale for VISTA as an ideal immunotherapeutic target next to PD-L1 for ENKTCL.
Collapse
Affiliation(s)
- Hai-Xia He
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Gao
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Chang Fu
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiang-Hua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Xiao Wang
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bing Bai
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng-Fei Li
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng Huang
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi-Xiang Rong
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Qin Ping
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan-Xia He
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Ying Mao
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Qiang Huang
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
10
|
Zhang W, Qiu Y, Xie X, Fu Y, Wang L, Cai Z. B7 Family Members in Lymphoma: Promising Novel Targets for Tumor Immunotherapy? Front Oncol 2021; 11:647526. [PMID: 33869045 PMCID: PMC8044412 DOI: 10.3389/fonc.2021.647526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
T cells play a vital role in the immune responses against tumors. Costimulatory or coinhibitory molecules regulate T cell activation. Immune checkpoint inhibitors, such as programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) have shown remarkable benefits in patients with various tumor, but few patients have displayed significant immune responses against tumors after PD-1/PD-L1 immunotherapy and many have been completely unresponsive. Thus, researchers must explore novel immune checkpoints that trigger durable antitumor responses and improve clinical outcomes. In this regard, other B7 family checkpoint molecules have been identified, namely PD-L2, B7-H2, B7-H3, B7-H4 and B7-H6. The aim of the present article was to address the expression, clinical significance and roles of B7 family molecules in lymphoma, as well as in T and NK cell-mediated tumor immunity. B7 family checkpoints may offer novel and immunotherapeutic strategies for patients with lymphoma.
Collapse
Affiliation(s)
- Wei Zhang
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Yu Qiu
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Yao Fu
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Lijuan Wang
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|