1
|
Pires L, Khattak S, Pratavieira S, Calcada C, Romano R, Yucel Y, Bagnato VS, Kurachi C, Wilson BC. Femtosecond pulsed laser photodynamic therapy activates melanin and eradicates malignant melanoma. Proc Natl Acad Sci U S A 2024; 121:e2316303121. [PMID: 38551838 PMCID: PMC10998568 DOI: 10.1073/pnas.2316303121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/14/2024] [Indexed: 04/02/2024] Open
Abstract
Photodynamic therapy (PDT) relies on a series of photophysical and photochemical reactions leading to cell death. While effective for various cancers, PDT has been less successful in treating pigmented melanoma due to high light absorption by melanin. Here, this limitation is addressed by 2-photon excitation of the photosensitizer (2p-PDT) using ~100 fs pulses of near-infrared laser light. A critical role of melanin in enabling rather than hindering 2p-PDT is elucidated using pigmented and non-pigmented murine melanoma clonal cell lines in vitro. The photocytotoxicities were compared between a clinical photosensitizer (Visudyne) and a porphyrin dimer (Oxdime) with ~600-fold higher σ2p value. Unexpectedly, while the 1p-PDT responses are similar in both cell lines, 2p activation is much more effective in killing pigmented than non-pigmented cells, suggesting a dominant role of melanin 2p-PDT. The potential for clinical translational is demonstrated in a conjunctival melanoma model in vivo, where complete eradication of small tumors was achieved. This work elucidates the melanin contribution in multi-photon PDT enabling significant advancement of light-based treatments that have previously been considered unsuitable in pigmented tumors.
Collapse
Affiliation(s)
- Layla Pires
- Department of Cancer Biology and Imaging, Princess Margaret Cancer Center, University Health Network, Toronto, ONM5G 1L7, Canada
- Departamento de Fisica e Ciencia dos Materiais, São Carlos Institute of Physics, University of São Paulo, Sao Carlos13566-590, Brazil
| | - Shireen Khattak
- Departments of Ophthalmology & Vision Sciences, St. Michael’s Hospital, University of Toronto, Toronto, ONM5B 1W8, Canada
| | - Sebastiao Pratavieira
- Departamento de Fisica e Ciencia dos Materiais, São Carlos Institute of Physics, University of São Paulo, Sao Carlos13566-590, Brazil
| | - Carla Calcada
- Department of Cancer Biology and Imaging, Princess Margaret Cancer Center, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Renan Romano
- Departamento de Fisica e Ciencia dos Materiais, São Carlos Institute of Physics, University of São Paulo, Sao Carlos13566-590, Brazil
| | - Yeni Yucel
- Departments of Ophthalmology & Vision Sciences, St. Michael’s Hospital, University of Toronto, Toronto, ONM5B 1W8, Canada
- Faculty of Medicine, Department of Ophthalmology, Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BCV5Z 3N9, Canada
| | - Vanderlei S. Bagnato
- Departamento de Fisica e Ciencia dos Materiais, São Carlos Institute of Physics, University of São Paulo, Sao Carlos13566-590, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
| | - Cristina Kurachi
- Departamento de Fisica e Ciencia dos Materiais, São Carlos Institute of Physics, University of São Paulo, Sao Carlos13566-590, Brazil
| | - Brian C. Wilson
- Department of Cancer Biology and Imaging, Princess Margaret Cancer Center, University Health Network, Toronto, ONM5G 1L7, Canada
- Faculty of Medicine, Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| |
Collapse
|
2
|
Xu T, Mi L, Namulinda T, Chen D, Yan YJ, Chen ZL. Design, synthesis, and evaluation of 5,15-diaryltetranaphtho [2,3]porphyrins as photosensitizers in real-time photodynamic therapy and photodiagnosis. Eur J Med Chem 2024; 264:115980. [PMID: 38039789 DOI: 10.1016/j.ejmech.2023.115980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
In the pursuit of new potent photosensitizers (PSs) for photodynamic therapy (PDT) with better efficacy, a series of 5,15-diaryltetranaphtho [2,3]porphyrins (Ar2TNPs) with two or four carboxyalkoxy groups were designed, synthesized, and evaluated. These new compounds exhibited strong, broad and red-shifted UV-vis absorptions at 729 nm and other strong absorptions at 446, 475, 650, 659, 714 nm for tumors and other diseases of varying sizes and depths. They possess high molar extinction coefficients (0.95 × 105-1.48 × 105 M-1 cm-1), good singlet oxygen quantum yields and photodynamic antitumor effects towards Eca-109 cells in vitro. It is suggested that the extension of porphyrin with naphthalene into Ar2TNP results into remarkable improvement of photophysical characteristics, while the introduction of carboxyalkoxy groups on meso-phenyl can significantly improve the solubility and photodynamic effects in vitro and in vivo. Notably, compound II3 can localize primarily in lysosomes of Eca-109 cells and induce substantial cell apoptosis after PDT. It can also selectively accumulate in tumor tissues and be traced real-timely through in vivo fluorescence imaging with distinctive inhibition of tumor growth. Therefore, compound II3 deserves to be considered as a promising PDT drug candidate for individualized tumor real-time tracing and treatment.
Collapse
Affiliation(s)
- Tao Xu
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Le Mi
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Tabbisa Namulinda
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Danye Chen
- Department of Chemistry, Imperial College of London, London, SW7 2AZ, UK
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai 201620, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
3
|
Shu X, Su J, Zhao Y, Liu C, Chen Y, Ma X, Wang Z, Bai J, Zhang H, Ma Z. Regulation of HeLa cell proliferation and apoptosis by bovine lactoferrin. Cell Biochem Funct 2023; 41:1395-1402. [PMID: 37842864 DOI: 10.1002/cbf.3873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Cervical cancer is one of the foremost common cancers in women. Lactoferrin (LF) has many biological functions, such as antitumor. This study aimed to explore the regulatory effect of bovine lactoferrin (bLF) on the proliferation and apoptosis of cervical cancer HeLa cells and to clarify the potential mechanism of action of bLF against HeLa cells. This study used CCK-8, Trypan blue staining, and colony formation assays to verify the effect of bLF on HeLa cell proliferation. Hoechst 33258 fluorescence staining, AO/EB staining, and western blotting were used to determine the effects of bLF on apoptosis and autophagy in HeLa cells. We discovered that bLF significantly reduced the proliferation of HeLa cells in a dose- and time-dependent manner compared to the control group. Furthermore, bLF primarily induced apoptosis in HeLa cells by increasing the expression of the proapoptotic proteins p53, Bax, and Cleaved-caspase-3 and downregulating the expression of the antiapoptotic protein Bcl-2. In addition, the present study also showed that bLF treatment significantly activated autophagy-related proteins LC3B-II and Beclin I and down regulated the autophagosome transporter protein p62, indicating that bLF treatment can induce autophagy in HeLa cells. After pretreatment with the autophagy inhibitor, 3-MA, which markedly found that autophagy inhibition by 3-MA reversed bLF-induced apoptosis, indicating that bLF can induce apoptosis by activating intracellular autophagy in HeLa cells. In the present study, our results support the theory of bLF significantly inhibited the proliferation of Hela cells by promoting apoptosis and reinforcing autophagy. The study will play an important role in therapying cervical cancer.
Collapse
Affiliation(s)
- Xingfu Shu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Jinxian Su
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Yu Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Chun Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yao Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Xiaomei Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jialin Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Haixia Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
4
|
Bai Y, Wang W, Cheng Y, Yang Y. Research progress on the GRP78 gene in the diagnosis, treatment and immunity of cervical cancer. Eur J Med Res 2023; 28:447. [PMID: 37858217 PMCID: PMC10588224 DOI: 10.1186/s40001-023-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/22/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND GRP78 is a molecular chaperone protein in the endoplasmic reticulum that is involved in protein assembly and quality control, and it participates in ER stress regulation of endoplasmic reticulum stress pathways. Studies have confirmed that GRP78 gene is highly expressed in a variety of tumors and is involved in different biological functions. PURPOSE The present review highlights the involvement of the GRP78 gene in regulating the development of cervical cancer by promoting the proliferation and invasion of cervical cancer cells as well as by inhibiting apoptosis and promoting the Warburg effect. High expression of GRP78 is positively correlated with chemotherapy resistance in cervical cancer. GRP78 plays an anticancer role in cervical cancer by regulating autophagy and apoptosis. Mediated immune CD8 + T cells regulate tumor cell immunity and play a role in the application of the HPV vaccine. CONCLUSIONS GRP78 plays a multifunctional role in cervical cancer and has important therapeutic and diagnostic value.
Collapse
Affiliation(s)
- Yingying Bai
- Department of Gynecology and obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038 China
| | - Wenhua Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yongxiu Yang
- Department of Gynecology and obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038 China
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, Gansu People’s Republic of China
- No.1, Dong gang West Road, Cheng guan District, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
5
|
Anerillas C, Mazan-Mamczarz K, Herman AB, Munk R, Lam KWG, Calvo-Rubio M, Garrido A, Tsitsipatis D, Martindale JL, Altés G, Rossi M, Piao Y, Fan J, Cui CY, De S, Abdelmohsen K, de Cabo R, Gorospe M. The YAP-TEAD complex promotes senescent cell survival by lowering endoplasmic reticulum stress. NATURE AGING 2023; 3:1237-1250. [PMID: 37667102 PMCID: PMC11369890 DOI: 10.1038/s43587-023-00480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023]
Abstract
Sublethal cell damage can trigger senescence, a complex adaptive program characterized by growth arrest, resistance to apoptosis and a senescence-associated secretory phenotype (SASP). Here, a whole-genome CRISPR knockout screen revealed that proteins in the YAP-TEAD pathway influenced senescent cell viability. Accordingly, treating senescent cells with a drug that inhibited this pathway, verteporfin (VPF), selectively triggered apoptotic cell death largely by derepressing DDIT4, which in turn inhibited mTOR. Reducing mTOR function in senescent cells diminished endoplasmic reticulum (ER) biogenesis, triggering ER stress and apoptosis due to high demands on ER function by the SASP. Importantly, VPF treatment decreased the numbers of senescent cells in the organs of old mice and mice exhibiting doxorubicin-induced senescence. Moreover, VPF treatment reduced immune cell infiltration and pro-fibrotic transforming growth factor-β signaling in aging mouse lungs, improving tissue homeostasis. We present an alternative senolytic strategy that eliminates senescent cells by hindering ER activity required for SASP production.
Collapse
Affiliation(s)
- Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kwan-Wood Gabriel Lam
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel Calvo-Rubio
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amanda Garrido
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gisela Altés
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Chu PC, Dokla EME, Hu JL, Weng JR. Induction of apoptosis using ATN as a novel Yes-associated protein inhibitor in human oral squamous cell carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1404-1412. [PMID: 35212453 DOI: 10.1002/tox.23493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Oral squamous cell carcinoma (OSCC) represents a clinical challenge due to the lack of effective therapy to improve prognosis. Hippo/Yes-associated protein (YAP) signaling has emerged as a promising therapeutic target for squamous cell carcinoma treatment. In this study, we investigated the antitumor activity and underlying mechanisms of {[N-(4-(5-(3-(3-(4-acetamido-3-(trifluoromethyl)phenyl)ureido)phenyl)-1,2,4-oxadiazol-3-yl)-3-chlorophenyl)-nicotinamide]} (ATN), a novel YAP inhibitor, in OSCC cells. ATN exhibited differential antiproliferative efficacy against OSCC cells (IC50 as low as 0.29 μM) versus nontumorigenic human fibroblast cells (IC50 = 1.9 μM). Moreover, ATN effectively suppressed the expression of YAP and YAP-related or downstream targets, including Akt, p-AMPK, c-Myc, and cyclin D1, which paralleled the antiproliferative efficacy of ATN. Supporting the roles of YAP in regulating cancer cell survival and migration, ATN not only induced caspase-dependent apoptosis, but also suppressed migration activity in OSCC. Mechanistically, the antitumor activity of ATN in OSCC was attributed, in part, to its ability to regulate Mcl-1 expression. Together, these findings suggest a translational potential of YAP inhibitors, represented by ATN as anticancer therapy for OSCC.
Collapse
Affiliation(s)
- Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jing-Lan Hu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Wang H, Chiang C, Xue C, Zhou L, Li S, Zhou Y, Zhang Z, Xie M, Xiao T, Hu H, Zhu L, Long C, Zou Y, Wang T, Zheng D. Dezocine induces apoptosis in human cervical carcinoma Hela cells via the endoplasmic reticulum stress pathway. Toxicol Res (Camb) 2022; 11:498-510. [PMID: 35782639 PMCID: PMC9244724 DOI: 10.1093/toxres/tfac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 11/12/2022] Open
Abstract
Dezocine, a dual agonist and antagonist of the μ-opioid receptor and κ-opioid receptor, is widely used as an analgesic in China. At present, there are few studies on anti-tumor effects of dezocine, most of which are used to treat cancer pain. However, it has recently been reported that dezocine can induce apoptosis of triple negative breast cancer cells. Dezocine may have some anti-tumor activity, but the effect and potential mechanism of dezocine in the treatment of other types of cancer remain to be fully studied. The purpose of the present study was to investigate the effect of dezocine on human Hela cervical carcinoma cells, and to elucidate the underlying molecular mechanisms. We performed CCK-8 assays, clone formation assays, xenograft, flow cytometry analysis, western blot and RNA-seq analysis to evaluate the effects of dezocine on Hela cells. In addition, the role of endoplasmic reticulum (ER) stress in dezocine-induced apoptosis was investigated using qPCR and western blot analysis. Dezocine inhibited Hela cell viability in dose-dependent and time-dependent manners, and notably did not achieve this effect by targeting the opioid receptors. Further mechanistic studies demonstrated that dezocine activated ER stress by upregulating the expression of GRP78, IRE1 and p-JNK, and that dezocine-induced apoptosis was attenuated when the ER stress pathway was blocked. Our results provide a foundation to support the redefinition of dezocine as a novel, adjuvant treatment for patients with cervical cancer, although further research will be required to support its application in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Shuaihu Li
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Yaqi Zhou
- Department of Otolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhucheng Zhang
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Meng Xie
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Tian Xiao
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Hongyi Hu
- Department of Otolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lizhi Zhu
- Institute of Translation Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Cheng Long
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yongdong Zou
- Correspondence address: Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, A7-450, Shenzhen University, Xili Campus, Nanshan District, Shenzhen 518055, P.R. China. Tel: 86-755-86674681;
| | - Ting Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Duo Zheng
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
8
|
Liu C, Li L, Yang B, Zhao Y, Dong X, Zhu L, Ren X, Huang B, Yue J, Jin L, Zhang H, Wang L. Transcriptome-wide N6-methyladenine methylation in granulosa cells of women with decreased ovarian reserve. BMC Genomics 2022; 23:240. [PMID: 35346019 PMCID: PMC8961905 DOI: 10.1186/s12864-022-08462-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
The emerging epitranscriptome plays an essential role in female fertility. As the most prevalent internal mRNA modification, N6-methyladenine (m6A) methylation regulate mRNA fate and translational efficiency. However, whether m6A methylation was involved in the aging-related ovarian reserve decline has not been investigated. Herein, we performed m6A transcriptome-wide profiling in the ovarian granulosa cells of younger women (younger group) and older women (older group).
Results
m6A methylation distribution was highly conserved and enriched in the CDS and 3’UTR region. Besides, an increased number of m6A methylated genes were identified in the older group. Bioinformatics analysis indicated that m6A methylated genes were enriched in the FoxO signaling pathway, adherens junction, and regulation of actin cytoskeleton. A total of 435 genes were differently expressed in the older group, moreover, 58 of them were modified by m6A. Several specific genes, including BUB1B, PHC2, TOP2A, DDR2, KLF13, and RYR2 which were differently expressed and modified by m6A, were validated using qRT-PCR and might be involved in the decreased ovarian functions in the aging ovary.
Conclusions
Hence, our finding revealed the transcriptional significance of m6A modifications and provide potential therapeutic targets to promote fertility reservation for aging women.
Collapse
|