1
|
Zhang X, Bian Y, Li Q, Yu C, Gao Y, Tian B, Xia W, Wang W, Xin L, Lin H, Wang L. EIF4A3-mediated oncogenic circRNA hsa_circ_0001165 advances esophageal squamous cell carcinoma progression through the miR-381-3p/TNS3 pathway. Cell Biol Toxicol 2024; 40:84. [PMID: 39382613 PMCID: PMC11481643 DOI: 10.1007/s10565-024-09927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a major clinical challenge due to its poor prognosis and the scarcity effective therapeutic targets. Circular RNAs (circRNAs) are crucial in cancer progression. In this study, high-throughput sequencing was employed to profile ESCC tissues, revealing that hsa_circ_0001165 is notably elevated in both ESCC tumor samples and cell lines, with its expression is positively associated with patients' TNM staging. Knockdown of hsa_circ_0001165 resulted in reduced malignant biological behavior of ESCC cells in vitro and also inhibited tumor growth in vivo. Mechanism experimental analysis found that hsa_circ_0001165 expression is positively enhanced by eukaryotic translation initiation factor 4A3 (EIF4A3). Hsa_circ_0001165 acts as a miRNA sponge for miR-381-3p, increasing the expression of tensin-3 (TNS3) through a series of related mechanism assays include dual-luciferase reporter gene, RNA Immunoprecipitation and RNA-pulldown. The downregulation in miR-381-3p expression was observed in ESCC tissues, and the cell proliferation, invasion, and migration of ESCC were suppressed. The upregulated expression of hsa_circ_0001165 modulates the miR-381-3p/TNS3 axis and promotes aggressive phenotypes of ESCC. Hsa_circ_0001165 is regarded as a encouraging biomarker and potential therapeutic target for ESCC, presenting innovative options for both diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yan Bian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qiuxin Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chuting Yu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bo Tian
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wenqiang Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
2
|
He Y, Ma L, Zeng X, Xie J, Ning X. Systematic identification and analysis of immune-related circRNAs of Pelteobagrus fulvidraco involved in Aeromonas veronii infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101256. [PMID: 38797004 DOI: 10.1016/j.cbd.2024.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Circular RNA (circRNA) represents a type of newly discovered non-coding RNA, distinguished by its closed loop structure formed through covalent bonds. Recent studies have revealed that circRNAs have crucial influences on host anti-pathogen responses. Yellow catfish (Pelteobagrus fulvidraco), an important aquaculture fish with great economic value, is susceptible to Aeromonas veronii, a common aquatic pathogen that can cause acute death. Here, we reported the first systematic investigation of circRNAs in yellow catfish, especially those associated with A. veronii infection at different time points. A total of 1205 circRNAs were identified, which were generated from 875 parental genes. After infection, 47 circRNAs exhibited differential expression patterns (named DEcirs). The parental genes of these DEcirs were functionally engaged in immune-related processes. Accordingly, seven DEcirs (novel_circ_000226, 278, 401, 522, 736, 843, and 975) and six corresponding parental genes (ADAMTS13, HAMP1, ANG3, APOA1, FGB, and RALGPS1) associated with immunity were obtained, and their expression was confirmed by RT-qPCR. Moreover, we found that these DEcir-gene pairs likely acted through pathways, such as platelet activation, antimicrobial humoral response, and regulation of Ral protein signal transduction, to influence host immune defenses. Additionally, integrated analysis showed that, of the 7 immune-related DEcirs, three targeted 16 miRNAs, which intertwined into circRNA-miRNA networks. These findings revealed that circRNAs, by targeting genes or miRNAs are highly involved in anti-bacterial responses in yellow catfish. Our study comprehensively illustrates the roles of circRNAs in yellow catfish immune defenses. The identified DEcirs and the circRNA-miRNA network will contribute to the further investigations on the molecular mechanisms underlying yellow catfish immune responses.
Collapse
Affiliation(s)
- Yongxin He
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lina Ma
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xueyu Zeng
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jingjing Xie
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
3
|
Skryabin GO, Komelkov AV, Zhordania KI, Bagrov DV, Enikeev AD, Galetsky SA, Beliaeva AA, Kopnin PB, Moiseenko AV, Senkovenko AM, Tchevkina EM. Integrated miRNA Profiling of Extracellular Vesicles from Uterine Aspirates, Malignant Ascites and Primary-Cultured Ascites Cells for Ovarian Cancer Screening. Pharmaceutics 2024; 16:902. [PMID: 39065600 PMCID: PMC11280431 DOI: 10.3390/pharmaceutics16070902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Extracellular vesicles (EVs) are of growing interest in the context of screening for highly informative cancer markers. We have previously shown that uterine aspirate EVs (UA EVs) are a promising source of ovarian cancer (OC) diagnostic markers. In this study, we first conducted an integrative analysis of EV-miRNA profiles from UA, malignant ascitic fluid (AF), and a conditioned medium of cultured ascites cells (ACs). Using three software packages, we identified 79 differentially expressed miRNAs (DE-miRNAs) in UA EVs from OC patients and healthy individuals. To narrow down this panel and select miRNAs most involved in OC pathogenesis, we aligned these molecules with the DE-miRNA sets obtained by comparing the EV-miRNA profiles from OC-related biofluids with the same control. We found that 76% of the DE-miRNAs from the identified panel are similarly altered (differentially co-expressed) in AF EVs, as are 58% in AC EVs. Interestingly, the set of miRNAs differentially co-expressed in AF and AC EVs strongly overlaps (40 out of 44 miRNAs). Finally, the application of more rigorous criteria for DE assessment, combined with the selection of miRNAs that are differentially co-expressed in all biofluids, resulted in the identification of a panel of 29 miRNAs for ovarian cancer screening.
Collapse
Affiliation(s)
- Gleb O. Skryabin
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Andrei V. Komelkov
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Kirill I. Zhordania
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Dmitry V. Bagrov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Adel D. Enikeev
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Sergey A. Galetsky
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Anastasiia A. Beliaeva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Pavel B. Kopnin
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Andey V. Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Alexey M. Senkovenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Elena M. Tchevkina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| |
Collapse
|
4
|
Liu Y, Liu Y, Li Y, Wang T, Li B, Kong X, Li C. High expression of ACTL6A leads to poor prognosis of oral squamous cell carcinoma patients through promoting malignant progression. Head Neck 2024; 46:1450-1467. [PMID: 38523407 DOI: 10.1002/hed.27742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVE The aim was to research ACTL6A's role in oral squamous cell carcinoma (OSCC). METHODS OSCC and normal samples were obtained from patients and public databases. GSEA was performed. CIBERSORT was utilized to analyze immune landscape. Kaplan-Meier survival analysis and multivariate Cox regression analysis were conducted. After knocking down ACTL6A, we performed MTT assay, transwell assays, and flow cytometry to detect the impact of knockdown. RESULTS ACTL6A expressed higher in OSCC samples than normal samples. The CNV and mutation rate of TP53 was higher in ACTL6A high-expression group. TFs E2F7 and TP63 and miRNA hsa-mir-381 were significantly related to ACTL6A. ACTL6A could influence immune microenvironment of OSCC. Knockdown of ACTL6A inhibited OSCC cells' proliferation, migration, and invasion. ACTL6A was able to predict OSCC prognosis independently. CONCLUSION ACTL6A expressed higher in OSCC than normal samples and it could be used as an independent prognostic marker in OSCC patients.
Collapse
Affiliation(s)
- Yi Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Yisha Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Tong Wang
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Bolong Li
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Xianchen Kong
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Henriques DG, Lamback EB, Dezonne RS, Kasuki L, Gadelha MR. MicroRNA in Acromegaly: Involvement in the Pathogenesis and in the Response to First-Generation Somatostatin Receptor Ligands. Int J Mol Sci 2022; 23:ijms23158653. [PMID: 35955787 PMCID: PMC9368811 DOI: 10.3390/ijms23158653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Acromegaly is a chronic and systemic disease due to excessive growth hormone and insulin-like growth factor type I caused, in the vast majority of cases, by a GH-secreting pituitary adenoma. About 40% of these tumors have somatic mutations in the stimulatory G protein alpha-subunit 1 gene. The pathogenesis of the remaining tumors, however, is still not fully comprehended. Surgery is the first-line therapy for these tumors, and first-generation somatostatin receptor ligands (fg-SRL) are the most prescribed medications in patients who are not cured by surgery. MicroRNAs are small, non-coding RNAs that control the translation of many mRNAs, and are involved in the post-transcriptional regulation of gene expression. Differentially expressed miRNAs can explain differences in the pathogenesis of acromegaly and tumor resistance. In this review, we focus on the most validated miRNAs, which are mainly involved in acromegaly’s tumorigenesis and fg-SRL resistance, as well as in circulating miRNAs in acromegaly.
Collapse
Affiliation(s)
- Daniel G. Henriques
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Elisa B. Lamback
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Romulo S. Dezonne
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Endocrinology Division, Hospital Federal de Bonsucesso, Rio de Janeiro 21041-020, Brazil
| | - Monica R. Gadelha
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Correspondence:
| |
Collapse
|
6
|
Martinez-Balibrea E, Ciribilli Y. Editorial: Transcriptional Regulation as a Key Player in Cancer Cells Drug Resistance. Front Oncol 2021; 11:764506. [PMID: 34765559 PMCID: PMC8576526 DOI: 10.3389/fonc.2021.764506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eva Martinez-Balibrea
- Germans Trias i Pujol Research Institute (IGTP), ProCURE program, Catalan Institute of Oncology, Badalona, Spain
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Research, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
7
|
Li H, Li Y, Tian D, Zhang J, Duan S. miR-940 is a new biomarker with tumor diagnostic and prognostic value. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:53-66. [PMID: 34168918 PMCID: PMC8192490 DOI: 10.1016/j.omtn.2021.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miR-940 is a microRNA located on chromosome 16p13.3, which has varying degrees of expression imbalance in many diseases. It binds to the 3′ untranslated region (UTR) and affects the transcription or post-transcriptional regulation of target protein-coding genes. For a diversity of cellular processes, including cell proliferation, migration, invasion, apoptosis, epithelial-to-mesenchymal transition (EMT), cell cycle, and osteogenic differentiation, miR-940 can affect them not only by regulating protein-coding genes but also long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in pathways. Intriguingly, miR-940 participates in four pathways that affect cancer development, including the Wnt/β-catenin pathway, mitogen-activated protein kinase (MAPK) pathway, PD-1 pathway, and phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Importantly, the expression of miR-940 is intimately correlated with the diagnosis and prognosis of tumor patients, as well as to the efficacy of tumor chemotherapy drugs. In conclusion, our main purpose is to outline the expression of miR-940 in various diseases and the molecular biological and cytological functions of target genes in order to reveal its potential diagnostic and prognostic value as well as its predictive value of drug efficacy.
Collapse
Affiliation(s)
- Hongxiang Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Dongmei Tian
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaqian Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|