1
|
Segatto I, Mattevi MC, Rampioni Vinciguerra GL, Crestan N, Musco L, Favero A, Dall'Acqua A, Di Giustino G, Mungo G, D'Andrea S, Gava C, Ruggiero F, Dugo M, Gerratana L, Puglisi F, Massarut S, Bomben R, Callari M, Perin T, Baldassarre G, Belletti B. A comprehensive luminal breast cancer patient-derived xenografts (PDX) library to capture tumor heterogeneity and explore the mechanisms of resistance to CDK4/6 inhibitors. J Pathol 2024. [PMID: 39449657 DOI: 10.1002/path.6358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Breast cancer (BC) is marked by significant genetic, morphological and clinical heterogeneity. To capture this heterogeneity and unravel the molecular mechanisms driving tumor progression and drug resistance, we established a comprehensive patient-derived xenograft (PDX) biobank, focusing particularly on luminal (estrogen receptor, ER+) and young premenopausal patients, for whom PDX models are currently scarce. Across all BC subtypes, our efforts resulted in an overall success rate of 17% (26 established PDX lines out of 151 total attempts), specifically 15% in luminal, 12% in human epidermal growth factor receptor 2 positive (HER2+) and 35% in triple negative BC. These PDX mirrored morphologic and genetic features of BC from which they originated, serving as a reliable tool to investigate drug resistance and test therapeutic strategies. We focused on understanding resistance to CDK4/6 inhibitors (CDK4/6i), which are crucial in the treatment of patients with advanced luminal BC. Treating a sensitive luminal BC PDX with the CDK4/6i palbociclib revealed that, despite initial tumor shrinkage, some tumors might eventually regrow under drug treatment. RNA sequencing, followed by gene set enrichment analyses, unveiled that these PDXs have become refractory to CDK4/6i, both at biological and molecular levels, displaying significant enrichment in proliferation pathways, such as MTORC1, E2F and MYC. Using organoids derived from these PDX (PDxO), we observed that acquisition of CDK4/6i resistance conferred cross-resistance to endocrine therapy and that targeting MTORC1 was a successful strategy to overcome CDK4/6i resistance. Considered together, these results indicate that our PDX models may serve as robust tools to elucidate the molecular basis of BC disease progression and, by providing the possibility to simultaneously test different therapies on the same tumor, to surmount treatment resistance. While this approach is of course not feasible in the clinic, its exploitation in PDX may expedite the identification and development of more successful therapies for patients with advanced luminal BC. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ilenia Segatto
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Maria Chiara Mattevi
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Gian Luca Rampioni Vinciguerra
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome 'Sapienza', Santo Andrea Hospital, Rome, Italy
| | - Nicole Crestan
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Lorena Musco
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Gabriele Di Giustino
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Giorgia Mungo
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Sara D'Andrea
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Chiara Gava
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Federica Ruggiero
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | | | - Lorenzo Gerratana
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Samuele Massarut
- Unit of Breast Surgery, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Riccardo Bomben
- Unit of Clinical and Experimental Onco-Hematology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | | | - Tiziana Perin
- Unit of Pathology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
2
|
Trentin L, Basile D, Lazzari E, Fietta E, Rossi A, Graziani F, Cappetta A, Simionato F, D'Amore E, Perbellini O, Aprile G. Implementation of a MSRE ddPCR method for the detection of methylated WIF1 and NPY genes in colorectal cancer patients. TUMORI JOURNAL 2024; 110:375-385. [PMID: 39101541 DOI: 10.1177/03008916241261675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
BACKGROUND Colorectal cancer is a worldwide leading cause of death accounting for high-rate mortality. Mutations in the epidermal growth factor receptor and RAS/MAPK pathways, as well as altered methylation genes profiles, have been described as molecular mechanisms promoting and sustaining tumour development and progression. Aberrant methylation is a well-known epigenetic mechanism involved in gene regulation; particularly several genes were reported as hypermethylated in CRC. Recently, it was shown that epigenetic alterations in genes such as neuropeptide y, proenkephalin and Wnt inhibitory factor 1 can be used as promising disease biomarkers. Almost all methods developed for the DNA methylation analysis combined next generation sequencing, conventional qRT-PCR or ddPCR with the prior DNA modification with sodium bisulfite. METHODS AND RESULTS We implemented a ddPCR method to assess the methylation status of Wnt inhibitory factor 1 and neuropeptide y using the methylation sensitive restriction enzyme approach that does not impact on DNA quality and guarantees the discrimination of DNA methylation independent of bisulfite conversion. CONCLUSIONS We showed that this method is robust and sensitive also allowing the monitoring of CRC disease progression when applied to circulating free DNA samples from liquid biopsies, proving to be a fast and easy to implement assay to be used for the monitoring of the methylation pattern of clinically relevant target genes.
Collapse
Affiliation(s)
- Luca Trentin
- AULSS 8 Berica Ospedale San Bortolo, Laboratory of Haematology, Vicenza, Italy
- AULSS 2 Marca Trevigiana, Histocompatibility Laboratory, Treviso, Italy
| | - Debora Basile
- AULSS 8 Berica Ospedale San Bortolo, UOC Oncologia, Vicenza, Italy
- Unit of Medical Oncology, Ospedale San Giovanni di Dio, Crotone, Italy
| | - Elena Lazzari
- AULSS 8 Berica Ospedale San Bortolo, UOC Anatomia Patologica, Vicenza, Italy
| | - Elena Fietta
- AULSS 8 Berica Ospedale San Bortolo, Laboratory of Haematology, Vicenza, Italy
| | - Alice Rossi
- AULSS 8 Berica Ospedale San Bortolo, UOC Oncologia, Vicenza, Italy
| | | | | | | | - Emanuele D'Amore
- AULSS 8 Berica Ospedale San Bortolo, UOC Anatomia Patologica, Vicenza, Italy
| | - Omar Perbellini
- AULSS 8 Berica Ospedale San Bortolo, Laboratory of Haematology, Vicenza, Italy
| | - Giuseppe Aprile
- AULSS 8 Berica Ospedale San Bortolo, UOC Oncologia, Vicenza, Italy
| |
Collapse
|
3
|
Xu J, Gao H, Guan X, Meng J, Ding S, Long Q, Yi W. Circulating tumor DNA: from discovery to clinical application in breast cancer. Front Immunol 2024; 15:1355887. [PMID: 38745646 PMCID: PMC11091288 DOI: 10.3389/fimmu.2024.1355887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Breast cancer (BC) stands out as the cancer with the highest incidence of morbidity and mortality among women worldwide, and its incidence rate is currently trending upwards. Improving the efficiency of breast cancer diagnosis and treatment is crucial, as it can effectively reduce the disease burden. Circulating tumor DNA (ctDNA) originates from the release of tumor cells and plays a pivotal role in the occurrence, development, and metastasis of breast cancer. In recent years, the widespread application of high-throughput analytical technology has made ctDNA a promising biomarker for early cancer detection, monitoring minimal residual disease, early recurrence monitoring, and predicting treatment outcomes. ctDNA-based approaches can effectively compensate for the shortcomings of traditional screening and monitoring methods, which fail to provide real-time information and prospective guidance for breast cancer diagnosis and treatment. This review summarizes the applications of ctDNA in various aspects of breast cancer, including screening, diagnosis, prognosis, treatment, and follow-up. It highlights the current research status in this field and emphasizes the potential for future large-scale clinical applications of ctDNA-based approaches.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Xinyu Guan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Jiahao Meng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Shirong Ding
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| |
Collapse
|
4
|
Zavarykina TM, Lomskova PK, Pronina IV, Khokhlova SV, Stenina MB, Sukhikh GT. Circulating Tumor DNA Is a Variant of Liquid Biopsy with Predictive and Prognostic Clinical Value in Breast Cancer Patients. Int J Mol Sci 2023; 24:17073. [PMID: 38069396 PMCID: PMC10706922 DOI: 10.3390/ijms242317073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This paper introduces the reader to the field of liquid biopsies and cell-free nucleic acids, focusing on circulating tumor DNA (ctDNA) in breast cancer (BC). BC is the most common type of cancer in women, and progress with regard to treatment has been made in recent years. Despite this, there remain a number of unresolved issues in the treatment of BC; in particular, early detection and diagnosis, reliable markers of response to treatment and for the prediction of recurrence and metastasis, especially for unfavorable subtypes, are needed. It is also important to identify biomarkers for the assessment of drug resistance and for disease monitoring. Our work is devoted to ctDNA, which may be such a marker. Here, we describe its main characteristics and potential applications in clinical oncology. This review considers the results of studies devoted to the analysis of the prognostic and predictive roles of various methods for the determination of ctDNA in BC patients. Currently known epigenetic changes in ctDNA with clinical significance are reviewed. The possibility of using ctDNA as a predictive and prognostic marker for monitoring BC and predicting the recurrence and metastasis of cancer is also discussed, which may become an important part of a precision approach to the treatment of BC.
Collapse
Affiliation(s)
- Tatiana M. Zavarykina
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Polina K. Lomskova
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
| | - Svetlana V. Khokhlova
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Marina B. Stenina
- “N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of the Russian Federation, Moscow 115522, Russia;
| | - Gennady T. Sukhikh
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| |
Collapse
|
5
|
Gerratana L, Davis AA, Velimirovic M, Clifton K, Hensing WL, Shah AN, Dai CS, Reduzzi C, D'Amico P, Wehbe F, Medford A, Wander SA, Gradishar WJ, Behdad A, Puglisi F, Ma CX, Bardia A, Cristofanilli M. Interplay between ESR1/PIK3CA codon variants, oncogenic pathway alterations and clinical phenotype in patients with metastatic breast cancer (MBC): comprehensive circulating tumor DNA (ctDNA) analysis. Breast Cancer Res 2023; 25:112. [PMID: 37784176 PMCID: PMC10546685 DOI: 10.1186/s13058-023-01718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND although being central for the biology and druggability of hormone-receptor positive, HER2 negative metastatic breast cancer (MBC), ESR1 and PIK3CA mutations are simplistically dichotomized as mutated or wild type in current clinical practice. METHODS The study analyzed a multi-institutional cohort comprising 703 patients with luminal-like MBC characterized for circulating tumor DNA through next generation sequencing (NGS). Pathway classification was defined based on previous work (i.e., RTK, RAS, RAF, MEK, NRF2, ER, WNT, MYC, P53, cell cycle, notch, PI3K). Single nucleotide variations (SNVs) were annotated for their oncogenicity through OncoKB. Only pathogenic variants were included in the models. Associations among clinical characteristics, pathway classification, and ESR1/PIK3CA codon variants were explored. RESULTS The results showed a differential pattern of associations for ESR1 and PIK3CA codon variants in terms of co-occurring pathway alterations patterns of metastatic dissemination, and prognosis. ESR1 537 was associated with SNVs in the ER and RAF pathways, CNVs in the MYC pathway and bone metastases, while ESR1 538 with SNVs in the cell cycle pathway and liver metastases. PIK3CA 1047 and 542 were associated with CNVs in the PI3K pathway and with bone metastases. CONCLUSIONS The study demonstrated how ESR1 and PIK3CA codon variants, together with alterations in specific oncogenic pathways, can differentially impact the biology and clinical phenotype of luminal-like MBC. As novel endocrine therapy agents such as selective estrogen receptor degraders (SERDS) and PI3K inhibitors are being developed, these results highlight the pivotal role of ctDNA NGS to describe tumor evolution and optimize clinical decision making.
Collapse
Affiliation(s)
- Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Andrew A Davis
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Marko Velimirovic
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katherine Clifton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Whitney L Hensing
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ami N Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Charles S Dai
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Carolina Reduzzi
- Weill Cornell Medicine, 420 E 70th St, LH 204, New York, NY, 10021, USA
| | - Paolo D'Amico
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Firas Wehbe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arielle Medford
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Seth A Wander
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Amir Behdad
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fabio Puglisi
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Cynthia X Ma
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aditya Bardia
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
6
|
Gerratana L, Davis AA, Velimirovic M, Reduzzi C, Clifton K, Bucheit L, Hensing WL, Shah AN, Pivetta T, Dai CS, D'Amico P, Wehbe F, Medford A, Wander SA, Gradishar WJ, Behdad A, Ma CX, Puglisi F, Bardia A, Cristofanilli M. Cyclin-Dependent Kinase 4/6 Inhibitors Beyond Progression in Metastatic Breast Cancer: A Retrospective Real-World Biomarker Analysis. JCO Precis Oncol 2023; 7:e2200531. [PMID: 37141549 PMCID: PMC10309576 DOI: 10.1200/po.22.00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/02/2023] [Accepted: 03/01/2023] [Indexed: 05/06/2023] Open
Abstract
PURPOSE As the continuation beyond progression (BP) of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) is becoming increasingly attractive for the treatment of patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC), the definition of resistance factors is crucial. The aim of the study was to investigate the impact of CDK 4/6i BP and to explore potential genomic stratification factors. MATERIALS AND METHODS We retrospectively analyzed a multi-institutional cohort of patients with HR-positive HER2-negative MBC characterized for circulating tumor DNA through next-generation sequencing before treatment start. Differences across subgroups were analyzed by chi-square test, and survival was tested by univariable and multivariable Cox regression. Further correction was applied by propensity score matching. RESULTS Among the 214 patients previously exposed to CDK4/6i, 172 were treated with non-CDK4/6i-based treatment (non-CDK) and 42 with CDK4/6i BP. Multivariable analysis showed a significant impact of CDK4/6i BP, TP53 single-nucleotide variants, liver involvement, and treatment line on both progression-free survival (PFS) and overall survival (OS). Propensity score matching confirmed the prognostic role of CDK4/6i BP both for PFS and OS. The favorable impact of CDK4/6i BP was consistent across all subgroups, and a differential benefit was suggested for ESR1-mutated patients. ESR1 and RB1 mutations were more represented in the CDK4/6i BP subgroup with respect to CDK4/6i upfront. CONCLUSION The study highlighted a significant prognostic impact of the CDK4/6i BP strategy with a potential added benefit in patients with ESR1 mutations suggesting the need for an extensive biomarker characterization.
Collapse
Affiliation(s)
- Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Andrew A. Davis
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Marko Velimirovic
- Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Katherine Clifton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | | | - Whitney L. Hensing
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Ami N. Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tania Pivetta
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Charles S. Dai
- Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Paolo D'Amico
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Firas Wehbe
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Arielle Medford
- Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Seth A. Wander
- Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Amir Behdad
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Cynthia X. Ma
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Fabio Puglisi
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Aditya Bardia
- Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | |
Collapse
|
7
|
Fontanella C, Giorgi CA, Russo S, Angelini S, Nicolardi L, Giarratano T, Frezzini S, Pestrin M, Palleschi D, Bolzonello S, Parolin V, Haspinger ER, De Rossi C, Greco F, Gerratana L. Optimizing CDK4/6 inhibitors in advanced HR+/HER2- breast cancer: A personalized approach. Crit Rev Oncol Hematol 2022; 180:103848. [DOI: 10.1016/j.critrevonc.2022.103848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
8
|
Valenza C, Trapani D, Curigliano G. Circulating tumour DNA dynamics for assessment of molecular residual disease and for intercepting resistance in breast cancer. Curr Opin Oncol 2022; 34:595-605. [PMID: 36083118 DOI: 10.1097/cco.0000000000000905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Longitudinal evaluation of circulating tumour DNA (ctDNA) represents a promising tool for monitoring tumour evolution. In patients with breast cancer, ctDNA dynamics for the assessment of molecular residual disease (MRD) and resistances may, respectively, help clinicians in treatment modulation of adjuvant treatments, and in anticipating resistance to ongoing treatments and switch treatments before clinical progression, to improve disease control. Anyway, the introduction of this dynamic biomarker into clinical practice requires the demonstration of analytical validity, clinical validity and clinical utility. RECENT FINDINGS In early breast cancer setting, several observational studies demonstrated the clinical validity of MRD monitoring through ctDNA in identifying patients at a higher risk of relapse, but many clinical trials evaluating the clinical utility are still ongoing, and few data resulted in inconclusive results.Instead, ctDNA dynamics for intercepting resistance have not been fully evaluated in terms of clinical validity, because monitoring schedules of most observational studies are not intensive. The only trial assessing their clinical utility (PADA-1) demonstrated a benefit in terms of progression-free survival, portraying a new landscape for clinical trials in this space. SUMMARY Rigorous clinical trials with adequate assays and patient-relevant endpoints are paramount to demonstrate the clinical utility of ctDNA dynamics and eventually increase clinical outcomes.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Haematology, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Cucciniello L, Gerratana L, Puglisi F. Liquid Biopsy, an Everchanging Balance between Clinical Utility and Emerging Technologies. Cancers (Basel) 2022; 14:4277. [PMID: 36077819 PMCID: PMC9454764 DOI: 10.3390/cancers14174277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
To date, tissue biopsy still represents the mainstay for tumor diagnosis and molecular characterization [...].
Collapse
Affiliation(s)
- Linda Cucciniello
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Lorenzo Gerratana
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
10
|
Davis AA, Gerratana L, Mina M. Editorial: Cancer evolution: From biological insights to therapeutic opportunities. Front Genet 2022; 13:984032. [PMID: 36017499 PMCID: PMC9397365 DOI: 10.3389/fgene.2022.984032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022] Open
|
11
|
Main SC, Cescon DW, Bratman SV. Liquid biopsies to predict CDK4/6 inhibitor efficacy and resistance in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:727-748. [PMID: 36176758 PMCID: PMC9511796 DOI: 10.20517/cdr.2022.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors combined with endocrine therapy have transformed the treatment of estrogen receptor-positive (ER+) and human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer. However, some patients do not respond to this treatment, and patients inevitably develop resistance, such that novel biomarkers are needed to predict primary resistance, monitor treatment response for acquired resistance, and personalize treatment strategies. Circumventing the spatial and temporal limitations of tissue biopsy, newly developed liquid biopsy approaches have the potential to uncover biomarkers that can predict CDK4/6 inhibitor efficacy and resistance in breast cancer patients through a simple blood test. Studies on circulating tumor DNA (ctDNA)-based liquid biopsy biomarkers of CDK4/6 inhibitor resistance have focused primarily on genomic alterations and have failed thus far to identify clear and clinically validated predictive biomarkers, but emerging epigenetic ctDNA methodologies hold promise for further discovery. The present review outlines recent advances and future directions in ctDNA-based biomarkers of CDK4/6 inhibitor treatment response.
Collapse
Affiliation(s)
- Sasha C Main
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Ontario, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto M5T 1P5, Ontario, Canada
| |
Collapse
|
12
|
Olmedillas-López S, Olivera-Salazar R, García-Arranz M, García-Olmo D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol Diagn Ther 2021; 26:61-87. [PMID: 34773243 DOI: 10.1007/s40291-021-00562-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 12/14/2022]
Abstract
In the era of personalized medicine and targeted therapies for the management of patients with cancer, ultrasensitive detection methods for tumor genotyping, such as next-generation sequencing or droplet digital polymerase chain reaction (ddPCR), play a significant role. In the search for less invasive strategies for diagnosis, prognosis and disease monitoring, the number of publications regarding liquid biopsy approaches using ddPCR has increased substantially in recent years. There is a long list of malignancies in which ddPCR provides a reliable and accurate tool for detection of nucleic acid-based markers derived from cell-free DNA, cell-free RNA, circulating tumor cells, extracellular vesicles or exosomes when isolated from whole blood, plasma and serum, helping to anticipate tumor relapse or unveil intratumor heterogeneity and clonal evolution in response to treatment. This updated review describes recent developments in ddPCR platforms and provides a general overview about the major applications of liquid biopsy in blood, including its utility for molecular response and minimal residual disease monitoring in hematological malignancies or the therapeutic management of patients with colorectal or lung cancer, particularly for the selection and monitoring of treatment with tyrosine kinase inhibitors. Although plasma is the main source of genetic material for tumor genomic profiling, liquid biopsy by ddPCR is being investigated in a wide variety of biologic fluids, such as cerebrospinal fluid, urine, stool, ocular fluids, sputum, saliva, bronchoalveolar lavage, pleural effusion, mucin, peritoneal fluid, fine needle aspirate, bile or pancreatic juice. The present review focuses on these "alternative" sources of genetic material and their analysis by ddPCR in different kinds of cancers.
Collapse
Affiliation(s)
- Susana Olmedillas-López
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), 28040, Madrid, Spain
| |
Collapse
|
13
|
Lianidou E. Detection and relevance of epigenetic markers on ctDNA: recent advances and future outlook. Mol Oncol 2021; 15:1683-1700. [PMID: 33942482 PMCID: PMC8169441 DOI: 10.1002/1878-0261.12978] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy, a minimally invasive approach, is a highly powerful clinical tool for the real-time follow-up of cancer and overcomes many limitations of tissue biopsies. Epigenetic alterations have a high potential to provide a valuable source of innovative biomarkers for cancer, owing to their stability, frequency, and noninvasive accessibility in bodily fluids. Numerous DNA methylation markers are now tested in circulating tumor DNA (ctDNA) as potential biomarkers, in various types of cancer. DNA methylation in combination with liquid biopsy is very powerful in identifying circulating epigenetic biomarkers of clinical importance. Blood-based epigenetic biomarkers have a high potential for early detection of cancer since DNA methylation in plasma can be detected early during cancer pathogenesis. In this review, we summarize the latest findings on DNA methylation markers in ctDNA for early detection, prognosis, minimal residual disease, risk of relapse, treatment selection, and resistance, for breast, prostate, lung, and colorectal cancer.
Collapse
Affiliation(s)
- Evi Lianidou
- Analysis of Circulating Tumor CellsLaboratory of Analytical ChemistryDepartment of ChemistryUniversity of AthensGreece
| |
Collapse
|
14
|
Migliaccio I, Leo A, Galardi F, Guarducci C, Fusco GM, Benelli M, Di Leo A, Biganzoli L, Malorni L. Circulating Biomarkers of CDK4/6 Inhibitors Response in Hormone Receptor Positive and HER2 Negative Breast Cancer. Cancers (Basel) 2021; 13:2640. [PMID: 34072070 PMCID: PMC8199335 DOI: 10.3390/cancers13112640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) and endocrine therapy are the standard treatment for patients with hormone receptor-positive and HER2 negative (HR+/HER2-) metastatic breast cancer. Patients might show intrinsic and acquired resistance, which leads to treatment failure and progression. Circulating biomarkers have the potential advantages of recognizing patients who might not respond to treatment, monitoring treatment effects and identifying markers of acquired resistance during tumor progression with a simple withdrawal of peripheral blood. Genomic alterations on circulating tumor DNA and serum thymidine kinase activity, but also circulating tumor cells, epigenetic or exosome markers are currently being tested as markers of CDK4/6i treatment response, even though none of these have been integrated into clinical practice. In this review, we discuss the recent advancements in the development of circulating biomarkers of CDK4/6i response in patients with HR+/HER2-breast cancer.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Angela Leo
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Francesca Galardi
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Giulio Maria Fusco
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy;
| | - Angelo Di Leo
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| | - Laura Biganzoli
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| | - Luca Malorni
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| |
Collapse
|
15
|
Understanding the organ tropism of metastatic breast cancer through the combination of liquid biopsy tools. Eur J Cancer 2020; 143:147-157. [PMID: 33307492 DOI: 10.1016/j.ejca.2020.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Liquid biopsy provides real-time data about prognosis and actionable mutations in metastatic breast cancer (MBC). The aim of this study was to explore the combination of circulating tumour DNA (ctDNA) analysis and circulating tumour cells (CTCs) enumeration in estimating target organs more susceptible to MBC involvement. METHODS This retrospective study analysed 88 MBC patients characterised for both CTCs and ctDNA at baseline. CTCs were isolated through the CellSearch kit, while ctDNA was analysed using the Guardant360 NGS-based assay. Sites of disease were collected on the basis of imaging. Associations were explored both through uni- and multivariate logistic regression and Fisher's exact test and the random forest machine learning algorithm. RESULTS After multivariate logistic regression, ESR1 mutation was the only significant factor associated with liver metastases (OR 8.10), while PIK3CA was associated with lung localisations (OR 3.74). CTC enumeration was independently associated with bone metastases (OR 10.41) and TP53 was associated with lymph node localisations (OR 2.98). The metastatic behaviour was further investigated through a random forest machine learning algorithm. Bone involvement was described by CTC enumeration and alterations in ESR1, GATA3, KIT, CDK4 and ERBB2, while subtype, CTC enumeration, inflammatory BC diagnosis, ESR1 and KIT aberrations described liver metastases. PIK3CA, MET, AR, CTC enumeration and TP53 were associated with lung organotropism. The model, moreover, showed that AR, CCNE1, ESR1, MYC and CTC enumeration were the main drivers in HR positive MBC metastatic pattern. CONCLUSIONS These results indicate that ctDNA and CTCs enumeration could provide useful insights regarding MBC organotropism, suggesting a possible role for future monitoring strategies that dynamically focus on high-risk organs defined by tumourbiology.
Collapse
|