1
|
Xu HZ, Chen FX, Li K, Zhang Q, Han N, Li TF, Xu YH, Chen Y, Chen X. Anti-lung cancer synergy of low-dose doxorubicin and PD-L1 blocker co-delivered via mild photothermia-responsive black phosphorus. Drug Deliv Transl Res 2025; 15:269-290. [PMID: 38597996 DOI: 10.1007/s13346-024-01595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
We have previously identified a latent interaction mechanism between non-small cell lung cancer cells (NSCLCC) and their associated macrophages (TAM) mediated by mutual paracrine activation of the HMGB1/RAGE/NF-κB signaling. Activation of this mechanism results in TAM stimulation and PD-L1 upregulation in the NSCLCC. In the present work, we found that free DOX at a low concentration that does not cause DNA damage could activate the HMGB1/RAGE/NF-κB/PD-L1 pathway byinducing oxidative stress. It was thus proposed that a combination of low-dose DOX and a PD-L1 blocker delivered in the NSCLC tumor would achieve synergistic TAM stimulation and thereby synergetic anti-tumor potency. To prove this idea, DOX and BMS-202 (a PD-L1 blocker) were loaded to black phosphorus (BP) nanoparticles after dosage titration to yield the BMS-202/DOX@BP composites that rapidly disintegrated and released drug cargo upon mild photothermal heating at 40 °C. In vitro experiments then demonstrated that low-dose DOX and BMS-202 delivered via BMS-202/DOX@BP under mild photothermia displayed enhanced tumor cell toxicity with a potent synergism only in the presence of TAM. This enhanced synergism was due to an anti-tumor M1-like TAM phenotype that was synergistically induced by low dose DOX plus BMS-202 only in the presence of the tumor cells, indicating the damaged tumor cells to be the cardinal contributor to the M1-like TAM stimulation. In vivo, BMS-202/DOX@BP under mild photothermia exhibited targeted delivery to NSCLC graft tumors in mice and synergistic anti-tumor efficacy of delivered DOX and BMS-202. In conclusion, low-dose DOX in combination with a PD-L1 blocker is an effective strategy to turn TAM against their host tumor cells exploiting the HMGB1/RAGE/NF-κB/PD-L1 pathway. The synergetic actions involved highlight the value of TAM and the significance of modulating tumor cell-TAM cross-talk in tumor therapy. Photothermia-responsive BP provides an efficient platform to translate this strategy into targeted, efficacious tumor therapy.
Collapse
Affiliation(s)
- Hua-Zhen Xu
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Fei-Xiang Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Quan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Ning Han
- School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Hubei, 442000, China
| | - Tong-Fei Li
- School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Hubei, 442000, China
| | - Yong-Hong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China.
| | - Xiao Chen
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430072, China.
| |
Collapse
|
2
|
Qian L, Wu L, Miao X, Xu J, Zhou Y. The role of TIGIT-CD226-PVR axis in mediating T cell exhaustion and apoptosis in NSCLC. Apoptosis 2024:10.1007/s10495-024-02052-2. [PMID: 39725799 DOI: 10.1007/s10495-024-02052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
The treatment of non-small cell lung cancer (NSCLC) remains a critical challenge in oncology, primarily due to the dysfunction and exhaustion of T cells within the tumor microenvironment, which greatly limits the effectiveness of immunotherapy. This study investigates the regulatory role of the T cell immunoglobulin and ITIM domain (TIGIT)-CD226-PVR signaling axis in the exhaustion and apoptosis of cluster of differentiation (CD)27+/CD127+T cells in NSCLC. Utilizing single-cell sequencing technology, we conducted a comprehensive gene expression analysis of T cells in a mouse model of NSCLC. Bioinformatics analysis revealed that the TIGIT-CD226-PVR signaling axis is highly active in the CD27+/CD127+T cell subset and is closely associated with their functional decline and exhaustion. In vitro experiments further demonstrated that inhibiting the TIGIT-PVR pathway while activating the CD226-PVR pathway significantly restored T cell proliferation and effector function. Importantly, in vivo studies showed that targeting this axis can significantly alleviate T cell exhaustion, enhance their cytotoxicity against NSCLC cells, and promote apoptosis, thereby improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Liang Qian
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Ling Wu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Xiaohui Miao
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Jiao Xu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Yao Zhou
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China.
| |
Collapse
|
3
|
Kirthiga Devi SS, Singh S, Joga R, Patil SY, Meghana Devi V, Chetan Dushantrao S, Dwivedi F, Kumar G, Kumar Jindal D, Singh C, Dhamija I, Grover P, Kumar S. Enhancing cancer immunotherapy: Exploring strategies to target the PD-1/PD-L1 axis and analyzing the associated patent, regulatory, and clinical trial landscape. Eur J Pharm Biopharm 2024; 200:114323. [PMID: 38754524 DOI: 10.1016/j.ejpb.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Cancer treatment modalities and their progression is guided by the specifics of cancer, including its type and site of localization. Surgery, radiation, and chemotherapy are the most often used conventional treatments. Conversely, emerging treatment techniques include immunotherapy, hormone therapy, anti-angiogenic therapy, dendritic cell-based immunotherapy, and stem cell therapy. Immune checkpoint inhibitors' anticancer properties have drawn considerable attention in recent studies in the cancer research domain. Programmed Cell Death Protein-1 (PD-1) and its ligand (PD-L1) checkpoint pathway are key regulators of the interactions between activated T-cells and cancer cells, protecting the latter from immune destruction. When the ligand PD-L1 attaches to the receptor PD-1, T-cells are prevented from destroying cells that contain PD-L1, including cancer cells. The PD-1/PD-L1 checkpoint inhibitors block them, boosting the immune response and strengthening the body's defenses against tumors. Recent years have seen incredible progress and tremendous advancement in developing anticancer therapies using PD-1/PD-L1 targeting antibodies. While immune-related adverse effects and low response rates significantly limit these therapies, there is a need for research on methods that raise their efficacy and lower their toxicity. This review discusses various recent innovative nanomedicine strategies such as PLGA nanoparticles, carbon nanotubes and drug loaded liposomes to treat cancer targeting PD-1/PD-L1 axis. The biological implications of PD-1/PD-L1 in cancer treatment and the fundamentals of nanotechnology, focusing on the novel strategies used in nanomedicine, are widely discussed along with the corresponding guidelines, clinical trial status, and the patent landscape of such formulations.
Collapse
Affiliation(s)
- S S Kirthiga Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sidhartha Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sharvari Y Patil
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Vakalapudi Meghana Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sabnis Chetan Dushantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Falguni Dwivedi
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India
| | - Gautam Kumar
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani campus, Rajasthan 333031, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand 246174, India
| | - Isha Dhamija
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India.
| |
Collapse
|
4
|
Zou Z, Shen J, Xue D, Li H, Xu L, Cao W, Wang W, Fu YX, Peng H. Anti-PD-1 cis-delivery of low-affinity IL-12 activates intratumoral CD8 +T cells for systemic antitumor responses. Nat Commun 2024; 15:4701. [PMID: 38830882 PMCID: PMC11148143 DOI: 10.1038/s41467-024-49034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapies function by alleviating immunosuppression on tumor-infiltrating lymphocytes (TILs) but are often insufficient to fully reactivate these dysfunctional TILs. Although interleukin 12 (IL-12) has been used in combination with ICB to improve efficacy, this remains limited by severe toxicity associated with systemic administration of this cytokine. Here, we engineer a fusion protein composed of an anti-PD-1 antibody and a mouse low-affinity IL-12 mutant-2 (αPD1-mIL12mut2). Systemic administration of αPD1-mIL12mut2 displays robust antitumor activities with undetectable toxicity. Mechanistically, αPD1-mIL12mut2 preferentially activates tumor-infiltrating PD-1+CD8+T cells via high-affinity αPD-1 mediated cis-binding of low-affinity IL-12. Additionally, αPD1-mIL12mut2 treatment exerts an abscopal effect to suppress distal tumors, as well as metastasis. Collectively, αPD1-mIL12mut2 treatment induces robust systemic antitumor responses with reduced side effects.
Collapse
Affiliation(s)
- Zhuangzhi Zou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Diyuan Xue
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Hongjia Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Longxin Xu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weian Cao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Wenyan Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- Guangzhou Laboratory, Guangzhou, 510320, Guangdong, China.
| |
Collapse
|
5
|
Shen J, Guillén Mancina E, Chen S, Manolakou T, Gad H, Warpman Berglund U, Sanjiv K, Helleday T. Mitotic MTH1 inhibitor TH1579 induces PD-L1 expression and inflammatory response through the cGAS-STING pathway. Oncogenesis 2024; 13:17. [PMID: 38796460 PMCID: PMC11127983 DOI: 10.1038/s41389-024-00518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The mitotic MTH1 inhibitor TH1579 is a dual inhibitor that inhibits mitosis and incorporation of oxidative DNA damage and leads to cancer-specific cell death. The response to immune checkpoint inhibitor (ICI) treatment is often augmented by DNA damaging agents through the cGAS-STING pathway. This study investigates whether TH1579 can improve the efficacy of immune checkpoint blockades through its immunomodulatory properties. Various human and murine cancer cell lines were treated with mitotic MTH1i TH1579, and the expression of PD-L1 and T-cell infiltration-related chemokines was analysed by flow cytometry and real-time qPCR. Syngeneic mouse models were established to examine the combined effect of TH1579 and PD-L1 blockade. In our investigation, we found that TH1579 upregulates PD-L1 expression at both the protein and mRNA levels in human cancer cell lines. However, in murine cell lines, the increase was less pronounced. An in vivo experiment in a syngeneic mouse melanoma model showed that TH1579 treatment significantly increased the efficacy of atezolizumab, an anti-PD-L1 antibody, compared to vehicle or atezolizumab monotherapy. Furthermore, TH1579 exhibited immune-modulatory properties, elevating cytokines such as IFN-β and chemokines including CCL5 and CXCL10, in a cGAS-STING pathway-dependent manner. In conclusion, TH1579 has the potential to improve ICI treatment by modulating immune checkpoint-related proteins and pathways.
Collapse
Affiliation(s)
- Jianyu Shen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emilio Guillén Mancina
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shenyu Chen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Theodora Manolakou
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, 11334, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Medical School, S10 2RX, Sheffield, UK.
| |
Collapse
|
6
|
Ma S, Nie H, Wei C, Jin C, Wang L. Association between immune-related adverse events and prognosis in patients with advanced non-small cell lung cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1402017. [PMID: 38779082 PMCID: PMC11109391 DOI: 10.3389/fonc.2024.1402017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background The emergence of immune checkpoint inhibitors (ICIs) provides a variety of options for patients with advanced non-small-cell lung cancer (NSCLC). After the application of ICIs, the immune system of patients was highly activated, and immune-related adverse events (irAEs) could occur in some organ systems, and irAEs seemed to be associated with the survival prognosis of patients. Therefore, we evaluated the association between survival outcomes and irAEs in NSCLC patients and conducted a systematic review and meta-analysis. Methods We conducted systematic reviews of PubMed, Embase, Cochrane, and Web of Science databases until December 2021. The forest map was constructed by combining the hazard ratio (HR) and 95% confidence interval (CI). I2 estimated the heterogeneity between studies. A meta-analysis was performed using R 4.2.1 software. Results Eighteen studies included 4808 patients with advanced NSCLC. In pooled analysis, the occurrence of irAEs was found to be a favorable factor for improved prognosis (PFS: HR: 0.48, 95% CI: 0.41-0.55, P <0.01; OS: HR: 0.46, 95% CI: 0.42-0.52, P <0.01). In subgroup analyses, cutaneous irAE, gastrointestinal irAE, endocrine irAE and grade ≥3 irAEs were associated with improvements in PFS and OS, but pulmonary and hepatic irAEs were not. Conclusion Existing evidence suggests that the occurrence of irAEs may be a prognostic biomarker for advanced NSCLC. However, further research is needed to explore the prospect of irAEs as a prognostic biomarker in patients undergoing immunotherapy. Systematic review registration https://www.crd.york.ac.uk/PROSPEROFILES/405333_STRATEGY_20240502.pdf, identifier CRD42023405333.
Collapse
Affiliation(s)
- Shixin Ma
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - He Nie
- Graduate School, Xi ‘an Medical University, Xi ‘an, Shanxi, China
| | - Chaoyu Wei
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Cailong Jin
- Department of Thoracic Surgery, Qingdao Women, And Children Hospital (Women and Children’s Hospital Affiliated to Qingdao University), Qingdao, China
| | - Lunqing Wang
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
7
|
Pernot S, Tomé M, Galeano-Otero I, Evrard S, Badiola I, Delom F, Fessart D, Smani T, Siegfried G, Villoutreix BO, Khatib AM. Sulconazole inhibits PD-1 expression in immune cells and cancer cells malignant phenotype through NF-κB and calcium activity repression. Front Immunol 2024; 14:1278630. [PMID: 38250065 PMCID: PMC10796450 DOI: 10.3389/fimmu.2023.1278630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
The overexpression of the immunoinhibitory receptor programmed death-1 (PD1) on T-cells is involved in immune evasion in cancer. The use of anti-PD-1/PDL-1 strategy has deeply changed the therapies of cancers and patient survival. However, their efficacy diverges greatly along with tumor type and patient populations. Thereby, novel treatments are needed to interfere with the anti-tumoral immune responses and propose an adjunct therapy. In the current study, we found that the antifungal drug Sulconazole (SCZ) inhibits PD-1 expression on activated PBMCs and T cells at the RNA and protein levels. SCZ repressed NF-κB and calcium signaling, both, involved in the induction of PD-1. Further analysis revealed cancer cells treatment with SCZ inhibited their proliferation, and migration and ability to mediate tumor growth in zebrafish embryos. SCZ found also to inhibit calcium mobilization in cancer cells. These results suggest the SCZ therapeutic potential used alone or as adjunct strategy to prevent T-cell exhaustion and promotes cancer cell malignant phenotype repression in order to improve tumor eradication.
Collapse
Affiliation(s)
- Simon Pernot
- Reprograming tumor activitY and associaTed MicroenvironmEnt (Rytme), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, Université of Bordeaux, Pessac, France
- Institut Bergonié, Bordeaux, France
| | - Mercedes Tomé
- Reprograming tumor activitY and associaTed MicroenvironmEnt (Rytme), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, Université of Bordeaux, Pessac, France
| | - Isabel Galeano-Otero
- Reprograming tumor activitY and associaTed MicroenvironmEnt (Rytme), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, Université of Bordeaux, Pessac, France
| | - Serge Evrard
- Reprograming tumor activitY and associaTed MicroenvironmEnt (Rytme), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, Université of Bordeaux, Pessac, France
- Institut Bergonié, Bordeaux, France
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Frederic Delom
- Reprograming tumor activitY and associaTed MicroenvironmEnt (Rytme), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, Université of Bordeaux, Pessac, France
- Institut Bergonié, Bordeaux, France
| | - Delphine Fessart
- Reprograming tumor activitY and associaTed MicroenvironmEnt (Rytme), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, Université of Bordeaux, Pessac, France
- Institut Bergonié, Bordeaux, France
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain
| | - Geraldine Siegfried
- Reprograming tumor activitY and associaTed MicroenvironmEnt (Rytme), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, Université of Bordeaux, Pessac, France
- Institut Bergonié, Bordeaux, France
| | - Bruno O. Villoutreix
- Integrative Computational Pharmacology and Data Mining, INSERM UMR 1141, Rob-ert-Debré Hospital, Paris, France
| | - Abdel-Majid Khatib
- Reprograming tumor activitY and associaTed MicroenvironmEnt (Rytme), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, Université of Bordeaux, Pessac, France
- Institut Bergonié, Bordeaux, France
| |
Collapse
|
8
|
Chen J, Madina BR, Ahmadi E, Yarovinsky TO, Krady MM, Meehan EV, Wang IC, Ye X, Pitmon E, Ma XY, Almassian B, Nakaar V, Wang K. Cancer immunotherapy with enveloped self-amplifying mRNA CARG-2020 that modulates IL-12, IL-17 and PD-L1 pathways to prevent tumor recurrence. Acta Pharm Sin B 2024; 14:335-349. [PMID: 38261838 PMCID: PMC10792965 DOI: 10.1016/j.apsb.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 01/25/2024] Open
Abstract
Targeting multiple immune mechanisms may overcome therapy resistance and further improve cancer immunotherapy for humans. Here, we describe the application of virus-like vesicles (VLV) for delivery of three immunomodulators alone and in combination, as a promising approach for cancer immunotherapy. VLV vectors were designed to deliver single chain interleukin (IL)-12, short-hairpin RNA (shRNA) targeting programmed death ligand 1 (PD-L1), and a dominant-negative form of IL-17 receptor A (dn-IL17RA) as a single payload or as a combination payload. Intralesional delivery of the VLV vector expressing IL-12 alone, as well as the trivalent vector (designated CARG-2020) eradicated large established tumors. However, only CARG-2020 prevented tumor recurrence and provided long-term survival benefit to the tumor-bearing mice, indicating a benefit of the combined immunomodulation. The abscopal effects of CARG-2020 on the non-injected contralateral tumors, as well as protection from the tumor cell re-challenge, suggest immune-mediated mechanism of protection and establishment of immunological memory. Mechanistically, CARG-2020 potently activates Th1 immune mechanisms and inhibits expression of genes related to T cell exhaustion and cancer-promoting inflammation. The ability of CARG-2020 to prevent tumor recurrence and to provide survival benefit makes it a promising candidate for its development for human cancer immunotherapy.
Collapse
Affiliation(s)
- Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | | | - Elham Ahmadi
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
- CaroGen Corporation, Farmington, CT 06030, USA
| | | | | | - Eileen Victoria Meehan
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Isabella China Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
- The Loomis Chaffee School, Windsor, CT 06095, USA
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Elise Pitmon
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
9
|
Guo Z, Su Z, Wei Y, Zhang X, Hong X. Pyroptosis in glioma: Current management and future application. Immunol Rev 2024; 321:152-168. [PMID: 38063042 DOI: 10.1111/imr.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Glioma, the predominant form of central nervous system (CNS) malignancies, presents a significant challenge due to its high prevalence and low 5-year survival rate. The efficacy of current treatment methods is limited by the presence of the blood-brain barrier, the immunosuppressive microenvironment, and other factors. Immunotherapy has emerged as a promising approach, as it can overcome the blood-brain barrier. A tumor's immune privilege, which is induced by an immunosuppressive environment, constricts immunotherapy's clinical impact in glioma. Pyroptosis, a programmed cell death mechanism facilitated by gasdermins, plays a significant role in the management of glioma. Its ability to initiate and regulate tumor occurrence, progression, and metastasis is well-established. However, it is crucial to note that uncontrolled or excessive cell death can result in tissue damage, acute inflammation, and cytokine release syndrome, thereby potentially promoting tumor advancement or recurrence. This paper aims to elucidate the molecular pathways involved in pyroptosis and subsequently discuss its induction in cancer therapy. In addition, the current treatment methods of glioma and the use of pyroptosis in these treatments are introduced. It is hoped to provide more ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhenjin Su
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Meira DD, de Castro e Caetano MC, Casotti MC, Zetum ASS, Gonçalves AFM, Moreira AR, de Oliveira AH, Pesente F, Santana GM, de Almeida Duque D, Pereira GSC, de Castro GDSC, Pavan IP, Chagas JPS, Bourguignon JHB, de Oliveira JR, Barbosa KRM, Altoé LSC, Louro LS, Merigueti LP, Alves LNR, Machado MRR, Roque MLRO, Prates PS, de Paula Segáua SH, dos Santos Uchiya T, Louro TES, Daleprane VE, Guaitolini YM, Vicente CR, dos Reis Trabach RS, de Araújo BC, dos Santos EDVW, de Paula F, Lopes TJS, de Carvalho EF, Louro ID. Prognostic Factors and Markers in Non-Small Cell Lung Cancer: Recent Progress and Future Challenges. Genes (Basel) 2023; 14:1906. [PMID: 37895255 PMCID: PMC10606762 DOI: 10.3390/genes14101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer is a highly aggressive neoplasm and, despite the development of recent therapies, tumor progression and recurrence following the initial response remains unsolved. Several questions remain unanswered about non-small cell lung cancer (NSCLC): (1) Which patients will actually benefit from therapy? (2) What are the predictive factors of response to MAbs and TKIs? (3) What are the best combination strategies with conventional treatments or new antineoplastic drugs? To answer these questions, an integrative literature review was carried out, searching articles in PUBMED, NCBI-PMC, Google Academic, and others. Here, we will examine the molecular genetics of lung cancer, emphasizing NSCLC, and delineate the primary categories of inhibitors based on their molecular targets, alongside the main treatment alternatives depending on the type of acquired resistance. We highlighted new therapies based on epigenetic information and a single-cell approach as a potential source of new biomarkers. The current and future of NSCLC management hinges upon genotyping correct prognostic markers, as well as on the evolution of precision medicine, which guarantees a tailored drug combination with precise targeting.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Clara de Castro e Caetano
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Felipe Monteiro Gonçalves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Rodrigues Moreira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Augusto Henrique de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gierleson Santos Cangussu Pereira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Giulia de Souza Cupertino de Castro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Isabele Pagani Pavan
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - João Pedro Sarcinelli Chagas
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - José Henrique Borges Bourguignon
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Juliana Ribeiro de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Marlon Ramos Rosado Machado
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Luísa Rodrigues Oliveira Roque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Pedro Santana Prates
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Sayuri Honorio de Paula Segáua
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Taissa dos Santos Uchiya
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Curso de Medicina, Vitória 29027-502, Brazil
| | - Vinicius Eduardo Daleprane
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória 29090-040, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Eldamária de Vargas Wolfgramm dos Santos
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Flávia de Paula
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Tiago José S. Lopes
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| |
Collapse
|
11
|
Hodson D, Mistry H, Yates J, Farrington P, Staniszewska A, Guzzetti S, Davies M, Aarons L, Ogungbenro K. Radiation in Combination with Immune Checkpoint Blockade and DNA Damage Response Inhibitors in Mice: Dosage Optimization in MC38 Syngeneic Tumors via Modelling and Simulation. J Pharmacol Exp Ther 2023; 387:44-54. [PMID: 37348964 DOI: 10.1124/jpet.122.001572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Clinical trials assessing the impact of radiotherapy (RT) in combination with DNA damage response pathway inhibitors (DDRis) and/or immune checkpoint blockade are currently ongoing. However, current methods for optimizing dosage and schedule are limited. A mathematical model was developed to capture the impacts of RT in combination with DDRi and/or anti-PD-L1 [immune checkpoint inhibitor (ICI)] on tumor immune interactions in the MC38 syngeneic tumor model. The model was fitted to datasets that assessed the impact of RT in combination with the DNA protein kinase inhibitor (DNAPKi) AZD7648. The model was further fitted to datasets from studies that were used to assess both RT/ICI combinations as well as RT/ICI combinations followed by concurrent administration of the poly ADP ribose polymerase inhibitor (PARPi) olaparib. Nonlinear mixed-effects modeling was performed followed by internal validation with visual predictive checks (VPC). Simulations of alternative dosage regimens and scheduling were performed to identify optimal candidate dosage regimens of RT/DNAPKi and RT/PARPi/ICI. Model fits and VPCs confirmed a successful internal validation for both datasets and demonstrated very small differences in the median, lower, and upper percentile values of tumor diameters between RT/ICI and RT/PARPi/ICI, which indicated that the triple combination of RT/PARPi/ICI at the given dosage and schedule does not provide additional benefit compared with ICI in combination with RT. Simulation of alternative dosage regimens indicated that lowering the dosage of ICI to between 2 and 4 mg/kg could induce similar benefits to the full dosage regimen, which could be of translational benefit. SIGNIFICANCE STATEMENT: This work provides a mixed-effects model framework to quantify the effects of combination radiotherapy/DNA damage response pathway inhibitors/immune checkpoint inhibitors in preclinical tumor models and identify optimal dosage regimens, which could be of translational benefit.
Collapse
Affiliation(s)
- David Hodson
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom (D.H., H.M., L.A., K.O.); DMPK (S.G., J.Y.) and Biosciences (P.F., A.S.), Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom; and DMPK, Research and Early Development, Neuroscience R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
| | - Hitesh Mistry
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom (D.H., H.M., L.A., K.O.); DMPK (S.G., J.Y.) and Biosciences (P.F., A.S.), Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom; and DMPK, Research and Early Development, Neuroscience R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
| | - James Yates
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom (D.H., H.M., L.A., K.O.); DMPK (S.G., J.Y.) and Biosciences (P.F., A.S.), Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom; and DMPK, Research and Early Development, Neuroscience R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
| | - Paul Farrington
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom (D.H., H.M., L.A., K.O.); DMPK (S.G., J.Y.) and Biosciences (P.F., A.S.), Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom; and DMPK, Research and Early Development, Neuroscience R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
| | - Anna Staniszewska
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom (D.H., H.M., L.A., K.O.); DMPK (S.G., J.Y.) and Biosciences (P.F., A.S.), Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom; and DMPK, Research and Early Development, Neuroscience R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
| | - Sofia Guzzetti
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom (D.H., H.M., L.A., K.O.); DMPK (S.G., J.Y.) and Biosciences (P.F., A.S.), Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom; and DMPK, Research and Early Development, Neuroscience R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
| | - Michael Davies
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom (D.H., H.M., L.A., K.O.); DMPK (S.G., J.Y.) and Biosciences (P.F., A.S.), Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom; and DMPK, Research and Early Development, Neuroscience R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
| | - Leon Aarons
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom (D.H., H.M., L.A., K.O.); DMPK (S.G., J.Y.) and Biosciences (P.F., A.S.), Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom; and DMPK, Research and Early Development, Neuroscience R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
| | - Kayode Ogungbenro
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom (D.H., H.M., L.A., K.O.); DMPK (S.G., J.Y.) and Biosciences (P.F., A.S.), Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom; and DMPK, Research and Early Development, Neuroscience R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
| |
Collapse
|
12
|
Brennan S, O'Neill J, Kennedy S. Verification and validation of the anti-PD-L1 antibody, Clone 22C 3 on a laboratory-developed test. J Clin Pathol 2023; 76:678-683. [PMID: 35820775 DOI: 10.1136/jclinpath-2022-208353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
AIMS The first aim of this study is to compare and validate the performance of the programmed death receptor ligand 1 (PD-L1) IHC 22C3 pharmDx assay kit processed via Dako Omnis platform with the Dako Autostainer Link 48. The second aim is to examine the concordance of scoring by pathologists using the same immunohistochemistry (IHC) assay on the Dako Omnis platform and the Dako Autostainer Link 48. METHODS Fourty-seven formalin-fixed, paraffin-embedded tissue blocks of head and neck squamous cell carcinoma tumour were stained with the PD-L1 IHC 22C3 pharmDx assay kit processed via the Dako Autostainer Link 48 and the Dako Omnis platform. Combined positive score (CPS) was ascribed by two scoring pathologists, with discordant cases provided with an agreed score. RESULTS First, identical staining patterns were identified. Second, high agreement of PD-L1 scores when a CPS cut-off of 1 was implemented illustrated an overall agreement of 94%, positive agreement of 100% and negative agreement of 88%. Finally, results highlight an intraexaminer concordance of 89% and interexaminer concordance of 85% and 92%. CONCLUSIONS In conclusion, we propose to open for discussion the deconstruction of the current practice of a compulsory companion diagnostic test (CDT) for a particular PD-L1 immunohistochemical assay. The implementation of laboratory developed tests as an alternative to the CDT poses as a novel and readily available method to surmount limitations posed to pathology laboratories.
Collapse
Affiliation(s)
| | | | - Susan Kennedy
- Pathology, Saint Vincent's, Dublin, Ireland
- Pathology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| |
Collapse
|
13
|
Mahrous M, Omar Jebriel A, Allehebi A, Shafik A, El Karak F, Venturini F, Alhusaini H, Meergans M, Ali Nahit Sendur M, Ouda M, Al-Nassar M, Kilickap S, Al Turki S, Al-Fayea T, Abdel Kader Y. Consensus Recommendations for the Diagnosis, Biomarker Testing, and Clinical Management of Advanced or Metastatic Non-small Cell Lung Cancer With Mesenchymal-Epithelial Transition Exon 14 Skipping Mutations in the Middle East, Africa, and Russia. Cureus 2023; 15:e41992. [PMID: 37492039 PMCID: PMC10365828 DOI: 10.7759/cureus.41992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
Mesenchymal-epithelial transition exon 14 (METex14) skipping mutations occur in about 3%-4% of patients with non-small cell lung cancer (NSCLC). This is an aggressive subtype associated with poor prognosis. METex14 skipping is a potentially targetable mutation. Targeted therapy is a promising treatment modality for patients with advanced/metastatic METex14-mutant NSCLC. Performing systematic molecular testing to detect the driver mutation is essential for initiating targeted therapy. However, there is a lack of guidelines on molecular testing for assessing the eligibility of patients for targeted therapy. Therefore, a multidisciplinary panel consisting of experts from the Middle East, Africa, and Russia convened via a virtual advisory board meeting to provide their insights on various molecular testing techniques for the diagnosis of METex14 skipping mutation, management of patients with targeted therapies, and developing consensus recommendations for improving the processes. The expert panel emphasized performing molecular testing and liquid biopsy before treatment initiation and tissue re-biopsy for patients with failed molecular testing. Liquid biopsy was recommended as complementary to tissue biopsy for disease monitoring and prognosis. Selective MET inhibitors were recommended as the first and subsequent lines of therapy. These consensus recommendations will facilitate the management of METex14 skipping NSCLC in routine practice and warrant optimum outcomes for these patients.
Collapse
Affiliation(s)
- Mervat Mahrous
- Oncology, Minia University, Minia, EGY
- Oncology, Prince Sultan Military Medical City, Riyadh, SAU
| | | | - Ahmed Allehebi
- Oncology, King Faisal Specialist Hospital & Research Center, Jeddah, SAU
| | - Amr Shafik
- Oncology, Faculty of Medicine, Ain Shams University, Cairo, EGY
| | - Fadi El Karak
- Oncology, Saint Joseph University of Beirut, School of Medicine, Beirut, LBN
- Oncology, Hôtel-Dieu de France, Beirut, LBN
- Oncology, Clemenceau Medical Center, Dubai, ARE
| | | | - Hamed Alhusaini
- Oncology, King Faisal Specialist Hospital & Research Center, Riyadh, SAU
| | | | | | - Mohamed Ouda
- Oncology, Merck Serono Middle East FZ-Ltd., Dubai, ARE
| | | | | | | | - Turki Al-Fayea
- Oncology, King Fahad Medical City - Ministry of National Guard, Jeddah, SAU
- Oncology, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | | |
Collapse
|
14
|
Li SY, Guo YL, Tian JW, Zhang HJ, Li RF, Gong P, Yu ZL. Anti-Tumor Strategies by Harnessing the Phagocytosis of Macrophages. Cancers (Basel) 2023; 15:2717. [PMID: 37345054 DOI: 10.3390/cancers15102717] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Macrophages are essential for the human body in both physiological and pathological conditions, engulfing undesirable substances and participating in several processes, such as organism growth, immune regulation, and maintenance of homeostasis. Macrophages play an important role in anti-bacterial and anti-tumoral responses. Aberrance in the phagocytosis of macrophages may lead to the development of several diseases, including tumors. Tumor cells can evade the phagocytosis of macrophages, and "educate" macrophages to become pro-tumoral, resulting in the reduced phagocytosis of macrophages. Hence, harnessing the phagocytosis of macrophages is an important approach to bolster the efficacy of anti-tumor treatment. In this review, we elucidated the underlying phagocytosis mechanisms, such as the equilibrium among phagocytic signals, receptors and their respective signaling pathways, macrophage activation, as well as mitochondrial fission. We also reviewed the recent progress in the area of application strategies on the basis of the phagocytosis mechanism, including strategies targeting the phagocytic signals, antibody-dependent cellular phagocytosis (ADCP), and macrophage activators. We also covered recent studies of Chimeric Antigen Receptor Macrophage (CAR-M)-based anti-tumor therapy. Furthermore, we summarized the shortcomings and future applications of each strategy and look into their prospects with the hope of providing future research directions for developing the application of macrophage phagocytosis-promoting therapy.
Collapse
Affiliation(s)
- Si-Yuan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yong-Lin Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jia-Wen Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - He-Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rui-Fang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
15
|
Freitas JDAS, Bendicho MT, Júnior ADFS. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease: An integrative review. J Oncol Pharm Pract 2023:10781552231171881. [PMID: 37161281 DOI: 10.1177/10781552231171881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Checkpoint inhibitors (PCI) have reached an important place in the pharmaceutical market in the treatment of various types of cancer. However, due to immune-related adverse events (IRAE) to the treatment, patients with preexisting autoimmune diseases (PAD) are excluded from clinical studies, leading to a large gap in knowledge on this topic. This study aims to discuss the use of PCI in the patients with cancer and PAD by an integrative review. METHODS For this integrative review we carried out research from 2013 to 2022 using database platforms for observational studies reporting data from safety and efficacy of PCI in patients with cancer and PAD. RESULTS The search resulted in 161 articles and after applying the exclusion criteria, 15 clinical studies that adopted a retrospective observational design were selected and analyzed. The age range of patients was 54-71 years, with 19-68% male. The proportion of patients clinically active or receiving immunosuppressants who were initiated on PCI ranged from 0% to 57% and 14% to 73%, respectively. The mean reported follow-up time ranged from 8.0 to 16.8 months. The occurrence of an outbreak or the new IRAE had an average of 32.6%. CONCLUSION IRAE are frequent in patients who use PCI and have cancer and PAD, carrying discontinuation of therapy. However, the multidisciplinary team needs to be aligned to manage these situations in the best way.
Collapse
|
16
|
Zhao J, Yu X, Huang D, Ma Z, Gao B, Cui J, Chu Q, Zhou Q, Sun M, Day D, Wu J, Pan H, Wang L, Voskoboynik M, Wang Z, Liu Y, Li H, Zhang J, Peng Y, Wu YL. SAFFRON-103: a phase 1b study of the safety and efficacy of sitravatinib combined with tislelizumab in patients with locally advanced or metastatic non-small cell lung cancer. J Immunother Cancer 2023; 11:jitc-2022-006055. [PMID: 36808075 PMCID: PMC9944269 DOI: 10.1136/jitc-2022-006055] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Some patients with locally advanced/metastatic non-small cell lung cancer (NSCLC) respond poorly to anti-programmed cell death protein 1 (PD-1)/anti-programmed death-ligand 1 (PD-L1) treatments. Combination with other agents may improve the outcomes. This open-label, multicenter, phase 1b trial investigated the combination of sitravatinib, a spectrum-selective tyrosine kinase inhibitor, plus anti-PD-1 antibody tislelizumab. METHODS Patients with locally advanced/metastatic NSCLC were enrolled (Cohorts A, B, F, H, and I; N=22-24 per cohort). Cohorts A and F included patients previously treated with systemic therapy, with anti-PD-(L)1-resistant/refractory non-squamous (cohort A) or squamous (cohort F) disease. Cohort B included patients previously treated with systemic therapy, with anti-PD-(L)1-naïve non-squamous disease. Cohorts H and I included patients without prior systemic therapy for metastatic disease, no prior anti-PD-(L)1/immunotherapy, with PD-L1-positive non-squamous (cohort H) or squamous (cohort I) histology. Patients received sitravatinib 120 mg orally one time per day plus tislelizumab 200 mg intravenously every 3 weeks, until study withdrawal, disease progression, unacceptable toxicity, or death. The primary endpoint was safety/tolerability among all treated patients (N=122). Secondary endpoints included investigator-assessed tumor responses and progression-free survival (PFS). RESULTS Median follow-up was 10.9 months (range: 0.4-30.6). Treatment-related adverse events (TRAEs) occurred in 98.4% of the patients, with ≥Grade 3 TRAEs in 51.6%. TRAEs led to discontinuation of either drug in 23.0% of the patients. Overall response rate was 8.7% (n/N: 2/23; 95% CI: 1.1% to 28.0%), 18.2% (4/22; 95% CI: 5.2% to 40.3%), 23.8% (5/21; 95% CI: 8.2% to 47.2%), 57.1% (12/21; 95% CI: 34.0% to 78.2%), and 30.4% (7/23; 95% CI: 13.2% to 52.9%) in cohorts A, F, B, H, and I, respectively. Median duration of response was not reached in cohort A and ranged from 6.9 to 17.9 months across other cohorts. Disease control was achieved in 78.3-90.9% of the patients. Median PFS ranged from 4.2 (cohort A) to 11.1 months (cohort H). CONCLUSIONS In patients with locally advanced/metastatic NSCLC, sitravatinib plus tislelizumab was tolerable for most patients, with no new safety signals and overall safety profiles consistent with known profiles of these agents. Objective responses were observed in all cohorts, including in patients naïve to systemic and anti-PD-(L)1 treatments, or with anti-PD-(L)1 resistant/refractory disease. Results support further investigation in selected NSCLC populations. TRIAL REGISTRATION NUMBER NCT03666143.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xinmin Yu
- Department of Medical Oncology, Cancer Hospital of University of Chinese Academy of Sciences & Zhejiang Cancer Hospital, Hangzhou, China
| | - Dingzhi Huang
- Department of Thoracic Medical Oncology, Tianjin Cancer Hospital, Tianjin, China
| | - Zhiyong Ma
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University; Henan Cancer Hospital, Zhengzhou, China
| | - Bo Gao
- Blacktown Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Wuhan, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Daphne Day
- Medical Oncology, Monash Health and Monash University, Melbourne, Victoria, Australia
| | - Jingxun Wu
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | | | - Mark Voskoboynik
- Medical Oncology, Nucleus Network, Melbourne, VIC, Australia and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Zhehai Wang
- Department of Internal Medicine - Oncology, Shandong Cancer Hospital & Institute, Jinan, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Hui Li
- BeiGene (Shanghai) Co., Ltd, Shanghai, China
| | - Juan Zhang
- BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Yanyan Peng
- BeiGene (Shanghai) Co., Ltd, Shanghai, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
17
|
Laschtowitz A, Roderburg C, Tacke F, Mohr R. Preoperative Immunotherapy in Hepatocellular Carcinoma: Current State of the Art. J Hepatocell Carcinoma 2023; 10:181-191. [PMID: 36789252 PMCID: PMC9922501 DOI: 10.2147/jhc.s347944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy that requires multidisciplinary evaluation to develop individualized and tailored treatment concepts. While liver resection and transplantation represent the mainstay of curative treatment in patients with early-stage HCC, disease recurrence remains an important burden. Immune checkpoint inhibitors (ICI) have become standard of care in the palliative setting, achieving promising response rates with overall good tolerability. Accordingly, ICIs are being evaluated in (neo)adjuvant concepts in order to improve survival. Nevertheless, neoadjuvant therapies are not recommended by current guidelines as they have not been proven to improve the outcome in large Phase III trials yet. Especially in the context of liver transplantation (LT), perioperative ICI usage is in need of a particularly critical risk-benefit assessment, as the immunotherapy may significantly increase the risk of rejection. In this review, we summarize available data on ICI-based perioperative treatment strategies in HCC. We discuss current drawbacks and challenges of this treatment concept and specifically highlight the risk of allograft rejection when ICI are given in patients (subsequently) considered for liver transplantation.
Collapse
Affiliation(s)
- Alena Laschtowitz
- Department of Hepatology and Gastroenterology, Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany,Correspondence: Raphael Mohr, Department of Hepatology and Gastroenterology, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany, Email
| |
Collapse
|
18
|
The Blessed Union of Glycobiology and Immunology: A Marriage That Worked. MEDICINES (BASEL, SWITZERLAND) 2023; 10:medicines10020015. [PMID: 36827215 PMCID: PMC9967969 DOI: 10.3390/medicines10020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
In this article, we discuss the main aspects regarding the recognition of cell surface glycoconjugates and the immunomodulation of responses against the progression of certain pathologies, such as cancer and infectious diseases. In the first part, we talk about different aspects of glycoconjugates and delve deeper into the importance of N-glycans in cancer immunotherapy. Then, we describe two important lectin families that have been very well studied in the last 20 years. Examples include the sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), and galectins. Finally, we discuss a topic that needs to be better addressed in the field of glycoimmunology: the impact of oncofetal antigens on the cells of the immune system. New findings in this area are of great importance for advancement, especially in the field of oncology, since it is already known that cellular interactions mediated by carbohydrate-carbohydrate and/or carbohydrate proteins are able to modulate the progression of different types of cancer in events that compromise the functionality of the immune responses.
Collapse
|
19
|
Lee SM, Lee S, Cho HW, Min KJ, Hong JH, Song JY, Lee JK, Lee NW. Application of Immune Checkpoint Inhibitors in Gynecological Cancers: What Do Gynecologists Need to Know before Using Immune Checkpoint Inhibitors? Int J Mol Sci 2023; 24:974. [PMID: 36674491 PMCID: PMC9865129 DOI: 10.3390/ijms24020974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Standard treatments for gynecological cancers include surgery, chemotherapy, and radiation therapy. However, there are limitations associated with the chemotherapeutic drugs used to treat advanced and recurrent gynecological cancers, and it is difficult to identify additional treatments. Therefore, immune checkpoint inhibitor (ICI) therapy products, including PD-1/PD-L1 inhibitors and CTLA-4 inhibitors, are in the spotlight as alternatives for the treatment of advanced gynecological cancers. Although the ICI monotherapy response rate in gynecological cancers is lower than that in melanoma or non-small cell lung cancer, the response rates are approximately 13-52%, 7-22%, and 4-17% for endometrial, ovarian, and cervical cancers, respectively. Several studies are being conducted to compare the outcomes of combining ICI therapy with chemotherapy, radiation therapy, and antiangiogenesis agents. Therefore, it is critical to determine the mechanism underlying ICI therapy-mediated anti-tumor activity and its application in gynecological cancers. Additionally, understanding the possible immune-related adverse events induced post-immunotherapy, as well as the appropriate management of diagnosis and treatment, are necessary to create a quality environment for immunotherapy in patients with gynecological cancers. Therefore, in this review, we summarize the ICI mechanisms, ICIs applied to gynecological cancers, and appropriate diagnosis and treatment of immune-related side effects to help gynecologists treat gynecological cancers using immunotherapy.
Collapse
Affiliation(s)
- Seon-Mi Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Koreadae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sanghoon Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Koreadae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun-Woong Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Kyung-Jin Min
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Jin-Hwa Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Jae-Yun Song
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Koreadae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jae-Kwan Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Nak-Woo Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| |
Collapse
|
20
|
Kang-Pettinger T, Walker K, Brown R, Cowan R, Wright H, Baravalle R, Waters LC, Muskett FW, Bowler MW, Sawmynaden K, Coombs PJ, Carr MD, Hall G. Identification, binding, and structural characterization of single domain anti-PD-L1 antibodies inhibitory of immune regulatory proteins PD-1 and CD80. J Biol Chem 2022; 299:102769. [PMID: 36470427 PMCID: PMC9811221 DOI: 10.1016/j.jbc.2022.102769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a key immune regulatory protein that interacts with programmed cell death protein 1 (PD-1), leading to T-cell suppression. Whilst this interaction is key in self-tolerance, cancer cells evade the immune system by overexpressing PD-L1. Inhibition of the PD-1/PD-L1 pathway with standard monoclonal antibodies has proven a highly effective cancer treatment; however, single domain antibodies (VHH) may offer numerous potential benefits. Here, we report the identification and characterization of a diverse panel of 16 novel VHHs specific to PD-L1. The panel of VHHs demonstrate affinities of 0.7 nM to 5.1 μM and were able to completely inhibit PD-1 binding to PD-L1. The binding site for each VHH on PD-L1 was determined using NMR chemical shift perturbation mapping and revealed a common binding surface encompassing the PD-1-binding site. Additionally, we solved crystal structures of two representative VHHs in complex with PD-L1, which revealed unique binding modes. Similar NMR experiments were used to identify the binding site of CD80 on PD-L1, which is another immune response regulatory element and interacts with PD-L1 localized on the same cell surface. CD80 and PD-1 were revealed to share a highly overlapping binding site on PD-L1, with the panel of VHHs identified expected to inhibit CD80 binding. Comparison of the CD80 and PD-1 binding sites on PD-L1 enabled the identification of a potential antibody binding region able to confer specificity for the inhibition of PD-1 binding only, which may offer therapeutic benefits to counteract cancer cell evasion of the immune system.
Collapse
Affiliation(s)
- Tara Kang-Pettinger
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Kayleigh Walker
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Richard Brown
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Richard Cowan
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Helena Wright
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Roberta Baravalle
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Lorna C. Waters
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Frederick W. Muskett
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | | | - Kovilen Sawmynaden
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Peter J. Coombs
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Mark D. Carr
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK,For correspondence: Gareth Hall; Mark D. Carr
| | - Gareth Hall
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK,For correspondence: Gareth Hall; Mark D. Carr
| |
Collapse
|
21
|
Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem 2022; 123:1938-1965. [PMID: 36288574 DOI: 10.1002/jcb.30344] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
Over the last seven decades, a significant scientific contribution took place in the delineation of the implications of vascular endothelial-derived growth factor (VEGF) in the processes of angiogenesis. Under pathological conditions, mainly in response to hypoxia or ischemia, elevated VEGF levels promote vascular damage and the growth of abnormal blood vessels. Indeed, the development of VEGF biology has revolutionized our understanding of its role in pathological conditions. Hence, targeting VEGF or VEGF-mediated molecular pathways could be an excellent therapeutic strategy for managing cancers and intraocular neovascular disorders. Although anti-VEGF therapies, such as monoclonal antibodies and small-molecule tyrosine kinase inhibitors, have limited clinical efficacy, they can still significantly improve the overall survival rate. This thus demands further investigation through the development of alternative strategies in the management of VEGF-mediated pathological angiogenesis. This review article focuses on the recent developments toward the delineation of the functional biology of VEGF and the role of anti-VEGF strategies in the management of tumor and eye pathologies. Moreover, therapeutic angiogenesis, an exciting frontier for the treatment of ischemic disorders, is highlighted in this review, including wound healing.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, Abdulaziz University Hospital, Riyadh, Saudi Arabia
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, Abdulaziz University Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Saini P, Adeniji OS, Abdel-Mohsen M. Inhibitory Siglec-sialic acid interactions in balancing immunological activation and tolerance during viral infections. EBioMedicine 2022; 86:104354. [PMID: 36371982 PMCID: PMC9663867 DOI: 10.1016/j.ebiom.2022.104354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
Siglecs are a family of emerging glyco-immune checkpoints. Inhibiting them can enhance the functions of several types of immune cells, whereas engaging them can reduce hyper-inflammation and hyper-activation of immune functions. Siglec-sialoglycan interactions play an important role in modulating immunological functions during cancer, however, their roles in regulating immunological equilibrium during viral infections is less clear. In this review, we discuss the documented and potential roles of inhibitory Siglecs in balancing immune activation and tolerance during viral infections and consider how this balance could affect both the desired anti-viral immunological functions and the unwanted hyper- or chronic inflammation. Finally, we discuss the opportunities to target the Siglec immunological switches to reach an immunological balance during viral infections: inhibiting specific Siglec-sialoglycan interactions when maximum anti-viral immune responses are needed, or inducing other interactions when preventing excessive inflammation or reducing chronic immune activation are the goals.
Collapse
|
23
|
Pawłowska A, Skiba W, Suszczyk D, Kuryło W, Jakubowicz-Gil J, Paduch R, Wertel I. The Dual Blockade of the TIGIT and PD-1/PD-L1 Pathway as a New Hope for Ovarian Cancer Patients. Cancers (Basel) 2022; 14:5757. [PMID: 36497240 PMCID: PMC9740841 DOI: 10.3390/cancers14235757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The prognosis for ovarian cancer (OC) patients is poor and the five-year survival rate is only 47%. Immune checkpoints (ICPs) appear to be the potential targets in up-and-coming OC treatment. However, the response of OC patients to immunotherapy based on programmed cell death pathway (PD-1/PD-L1) inhibitors totals only 6-15%. The promising approach is a combined therapy, including other ICPs such as the T-cell immunoglobulin and ITIM domain/CD155/DNAX accessory molecule-1 (TIGIT/CD155/DNAM-1) axis. Preclinical studies in a murine model of colorectal cancer showed that the dual blockade of PD-1/PD-L1 and TIGIT led to remission in the whole studied group vs. the regression of the tumors with the blockade of a single pathway. The approach stimulates the effector activity of T cells and NK cells, and redirects the immune system activity against the tumor. The understanding of the synergistic action of the TIGIT and PD-1/PD-L1 blockade is, however, poor. Thus, the aim of this review is to summarize the current knowledge about the mode of action of the dual TIGIT and PD-1/PD-L1 blockade and its potential benefits for OC patients. Considering the positive impact of this combined therapy in malignancies, including lung and colorectal cancer, it appears to be a promising approach in OC treatment.
Collapse
Affiliation(s)
- Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Weronika Kuryło
- Students’ Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
24
|
Miano DI, Cosgrove R, Sherman J, Balaraman S, Sherman M. Pembrolizumab-Induced Giant Cell Arteritis in the Setting of Urothelial Carcinoma. Neuroophthalmology 2022; 47:93-99. [PMID: 36891407 PMCID: PMC9988338 DOI: 10.1080/01658107.2022.2108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 10/14/2022] Open
Abstract
A 65-year-old male presented to the Ophthalmology clinic with painless loss of vision in his right eye. Over the previous week the right eye's vision had progressed from being blurry to complete loss. Three weeks prior to presentation he had begun treatment with pembrolizumab for urothelial carcinoma. Ophthalmological assessment and subsequent imaging prompted further investigation, and a temporal artery biopsy confirmed a diagnosis of giant cell arteritis. This case demonstrates a rare, yet serious, condition of biopsy-confirmed giant cell arteritis in the setting of pembrolizumab treatment for urothelial carcinoma. In addition to reporting a vision threatening side effect of pembrolizumab we emphasise the need for vigilant care of patients on this drug as symptomatology and laboratory results may be inconspicuous.
Collapse
Affiliation(s)
- Deanna Ingrassia Miano
- Department of Ophthalmology, Ascension Eye Institute - Ascension Macomb-Oakland Hospital, Warren, Michigan, USA
- Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan, USA
| | - Ryan Cosgrove
- Department of Ophthalmology, Ascension Eye Institute - Ascension Macomb-Oakland Hospital, Warren, Michigan, USA
- Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan, USA
| | - Joshua Sherman
- Lyman Briggs College, Michigan State University, East Lansing, Michigan, USA
| | | | - Michael Sherman
- Department of Ophthalmology, Ascension Eye Institute - Ascension Macomb-Oakland Hospital, Warren, Michigan, USA
- Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
25
|
Li J, Chen Y, Wu H, Shan Z, Bei D, Gan K, Liu J, Zhang X, Chen B, Chen J, Zhao FD. Different responses of cervical intervertebral disc caused by low and high virulence bacterial infection: a comparative study in rats. Bioengineered 2022; 13:12446-12461. [PMID: 35587595 PMCID: PMC9275948 DOI: 10.1080/21655979.2022.2075305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aims of this study were to investigate the outcomes of low- and high-virulence bacterial cervical intervertebral discs (IVDs) infection and its association with cervical IVDs degeneration in rats. A total of 75 clean grade male rats were used to establish the corresponding animal models of low and high virulent bacterial cervical disc infection via an anterior cervical approach, with injection of Propionibacterium acnes (P. acnes) and Staphylococcus epidermidis (S. epidermidis) with a 29 G needle to cervical IVDs. Specimens were collected for evaluation of Blood routine (Blood-RT), histological staining, and gene expression assays after a magnetic resonance imaging (MRI) scan. There were no statistical differences in all groups in white blood cells (WBC) at 2 and 6 weeks postoperatively (P = 0.136). The highest percentage of neutrophils was found in the S. epidermidis group at 2 weeks postoperatively (P = 0.043). MRI and histology showed that at 6 weeks postoperatively, the puncture group and P. acnes group had similar disc degeneration. In the S. epidermidis group, the disc and subchondral bone structure had been destroyed and bony fusion had occurred after the discitis. The upregulation of pro-inflammatory factor expression had the strongest effect of S. epidermidis on the early stage, while the upregulation in the puncture and P. acnes groups was more persistent. P. acnes infection of the cervical IVDs can lead to degenerative changes, whereas S. epidermidis infection leads to the manifestation of septic discitis. The correlation between P. acnes infection and cervical IVDs degeneration found in clinical studies was confirmed.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Yilei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Wu
- Department of Orthopaedics and Traumatology, the University of Hong Kong, Hong Kong, SAR, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dikai Bei
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binhui Chen
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Feng-Dong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Dong H, Qi Y, Kong X, Wang Z, Fang Y, Wang J. PD-1/PD-L1 Inhibitor-Associated Myocarditis: Epidemiology, Characteristics, Diagnosis, Treatment, and Potential Mechanism. Front Pharmacol 2022; 13:835510. [PMID: 35517794 PMCID: PMC9062035 DOI: 10.3389/fphar.2022.835510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) induce T-cell activation against cancer cells, and due to their anti-tumor function in multiple cancers, ICIs have been considered an important option for oncotherapy. PD-1/PD-L1 inhibitors are now widely used as ICIs for many types of cancers in clinical practices. Myocarditis induced by anti-PD-1/PD-L1 agents is uncommon but shows potentially fatal toxicity. In this review, we attempted to conclude the incidence, characteristics, diagnosis, and treatments, as well as illustrate the potential pathogenesis from the perspectives of T-lymphocyte infiltration, disturbance of regulatory T cells, cytokines, macrophage-mediated inflammatory response, and synergistic effect of PD-1/PD-L1 and CTLA4.
Collapse
Affiliation(s)
- Hao Dong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
27
|
Katariya NN, Lizaola-Mayo BC, Chascsa DM, Giorgakis E, Aqel BA, Moss AA, Uson Junior PLS, Borad MJ, Mathur AK. Immune Checkpoint Inhibitors as Therapy to Down-Stage Hepatocellular Carcinoma Prior to Liver Transplantation. Cancers (Basel) 2022; 14:cancers14092056. [PMID: 35565184 PMCID: PMC9101696 DOI: 10.3390/cancers14092056] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is the most common liver malignancy and third leading cause of cancer death worldwide. For early- and intermediate-stage disease, liver-directed therapies for locoregional control, or down-staging prior to definitive surgical therapy with hepatic resection or liver transplantation, have been studied broadly, and are the mainstays of current treatment guidelines. As HCC incidence has continued to grow, and with more patients presenting with advanced disease, our current treatment modalities do not suffice, and better therapies are needed to improve disease-specific and overall survival. Until recently, sorafenib was the only systemic therapy utilized, and was associated with dismal results. The advent of immuno-oncology has been of significant interest, and has changed the paradigm of therapy for HCC. Lately, combination regimens including atezolizumab plus bevacizumab; durvalumab plus tremelimumab; and pembrolizumab plus Lenvatinib have shown impressive responses of between 25-35%; this is much higher than responses observed with single agents. Complete responses with checkpoint inhibitor therapy have been observed in advanced-stage HCC patients. These dramatic results have naturally led to several questions. Can or should checkpoint inhibitors, or other immunotherapy combinations, be used routinely before resection or transplant? Is there a synergistic effect of immunotherapy with locoregional therapy, and will pre-treatment increase disease-free survival after surgical intervention? Is it immunologically safe to use these therapies prior to transplantation? Much is still to be learned in terms of the dosing, timing, and overall utility of the use of immune checkpoint inhibitors for pre-transplant care and down-staging. More studies will be needed to understand the management of adverse events while maximizing the therapeutic window of these agents. In this review, we look at the current data on therapy with immune checkpoint inhibitors in advanced HCC, with a focus on pre-transplant treatment prior to liver transplant.
Collapse
Affiliation(s)
- Nitin N. Katariya
- Department of Surgery, Division of Transplant and HPB Surgery, Mayo Clinic, Alix School of Medicine, Phoenix, AZ 85054, USA; (A.A.M.); (A.K.M.)
- Correspondence:
| | - Blanca C. Lizaola-Mayo
- Department of Medicine, Division of Gastroenterology & Transplant Hepatology, Mayo Clinic, Alix School of Medicine, Phoenix, AZ 85054, USA; (B.C.L.-M.); (D.M.C.); (B.A.A.)
| | - David M. Chascsa
- Department of Medicine, Division of Gastroenterology & Transplant Hepatology, Mayo Clinic, Alix School of Medicine, Phoenix, AZ 85054, USA; (B.C.L.-M.); (D.M.C.); (B.A.A.)
| | - Emmanouil Giorgakis
- Department of Surgery, Division of Transplantation, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Bashar A. Aqel
- Department of Medicine, Division of Gastroenterology & Transplant Hepatology, Mayo Clinic, Alix School of Medicine, Phoenix, AZ 85054, USA; (B.C.L.-M.); (D.M.C.); (B.A.A.)
| | - Adyr A. Moss
- Department of Surgery, Division of Transplant and HPB Surgery, Mayo Clinic, Alix School of Medicine, Phoenix, AZ 85054, USA; (A.A.M.); (A.K.M.)
| | | | - Mitesh J. Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Alix School of Medicine, Phoenix, AZ 85054, USA;
| | - Amit K. Mathur
- Department of Surgery, Division of Transplant and HPB Surgery, Mayo Clinic, Alix School of Medicine, Phoenix, AZ 85054, USA; (A.A.M.); (A.K.M.)
| |
Collapse
|
28
|
Zhang K, Kong X, Li Y, Wang Z, Zhang L, Xuan L. PD-1/PD-L1 Inhibitors in Patients With Preexisting Autoimmune Diseases. Front Pharmacol 2022; 13:854967. [PMID: 35370736 PMCID: PMC8971753 DOI: 10.3389/fphar.2022.854967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune diseases and malignant tumors are the two hotspots and difficulties that are currently being studied and concerned by the medical field. The use of PD-1/PD-L1 inhibitors improves the prognosis of advanced tumors, but excessive immune responses can also induce immune-related adverse events (irAEs). Due to this concern, many clinical trials exclude cancer patients with preexisting autoimmune disease (AID). This review outlines the possible mechanisms of irAE, discusses the safety and efficacy of PD-1/PD-L1 inhibitors in cancer patients with preexisting AID, and emphasizes the importance of early recognition, continuous monitoring, and multidisciplinary cooperation in the prevention and management of cancer patients with preexisting AID.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Lin Zhang, ; Lixue Xuan,
| | - Lin Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Melbourne School of Population and Global Health, the University of Melbourne, Melbourne, VIC, Australia
- Centre of Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- *Correspondence: Zhongzhao Wang, ; Lin Zhang, ; Lixue Xuan,
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Lin Zhang, ; Lixue Xuan,
| |
Collapse
|
29
|
Yaseen MM, Abuharfeil NM, Darmani H. CMTM6 as a master regulator of PD-L1. Cancer Immunol Immunother 2022; 71:2325-2340. [PMID: 35294592 DOI: 10.1007/s00262-022-03171-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
Immune checkpoint proteins, such as programmed cell death receptor 1 (PD-1) and its ligand (PD-L1), play critical roles in the pathology of chronic inflammatory pathological conditions, particularly cancer. In addition, the activation of PD-1/PD-L1 pathway is involved in mediating resistance to certain anti-cancer chemo- and immuno-therapeutics. Unfortunately, targeting the PD-1/PD-L1 pathway by the available anti-PD-1/PD-L1 drugs can benefit only a small proportion of cancer patients. Thus, studying the factors that regulate the expression of these immune checkpoint proteins is of central importance in this context. Recent investigations have identified CMTM6 and, to a lesser extent, CMTM4, as master regulators of PD-L1 expression in various cancer cells. Understanding the mechanisms by which such proteins upregulate the expression of PD-L1 in tumor cells, and determining the potential regulators of CMTM6 expression in different types of cancers will accelerate the development of new therapeutic targets and/or lead to the enhancement of the currently available PD-1/PD-L1 blockade therapies.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
30
|
Tu YC, Yeh WC, Yu HH, Lee YC, Su BC. Hedgehog Suppresses Paclitaxel Sensitivity by Regulating Akt-Mediated Phosphorylation of Bax in EGFR Wild-Type Non-Small Cell Lung Cancer Cells. Front Pharmacol 2022; 13:815308. [PMID: 35250564 PMCID: PMC8894848 DOI: 10.3389/fphar.2022.815308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common and deadly cancers worldwide. Among NSCLC patients, almost half have wild-type epidermal growth factor receptor (EGFR WT). The primary therapeutic option for these EGFR WT NSCLC patients is chemotherapy, while NSCLC patients with EGFR mutations have more diverse therapeutic options, including EGFR tyrosine kinase inhibitors. Moreover, NSCLC patients with EGFR WT have worse chemotherapy response than EGFR mutant NSCLC patients. Thus, an urgent need exists for novel therapeutic strategies to improve chemotherapy response in EGFR WT NSCLC patients. Hedgehog signaling is known to be highly active in NSCLC; however, its potential role in chemoresistance is not fully understood. In the present study, we found that paclitaxel (PTX) treatment induces hedgehog signaling in EGFR WT NSCLC cells, and inhibition of hedgehog signaling with GDC-0449 (Vismodegib) increases sensitivity to PTX-stimulated apoptosis. Furthermore, GDC-0449 potentiates PTX-induced reactive oxygen species and mitochondrial dysfunction. In contrast, a hedgehog agonist, Hh-Ag1.5, attenuates PTX-induced apoptosis. Mechanistic experiments revealed that hedgehog induces phosphorylation of Akt at Ser473. Akt then phosphorylates Bax at Ser184, which can switch its activity from pro-apoptosis to anti-apoptosis. Taken together, our findings suggest that inhibition of hedgehog signaling might be a promising therapeutic strategy to improve PTX response in EGFR WT NSCLC.
Collapse
Affiliation(s)
- Yun-Chieh Tu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chen Yeh
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bor-Chyuan Su
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Bor-Chyuan Su,
| |
Collapse
|
31
|
Liu W, Zhou Z, Li Y, Xu J, Shen Y, Luo S, Zhou Y, Wu X, Zhao H, Beer DG, He Y, Chen G. CSE1L silencing impairs tumor progression via MET/STAT3/PD-L1 signaling in lung cancer. Am J Cancer Res 2021; 11:4380-4393. [PMID: 34659893 PMCID: PMC8493386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023] Open
Abstract
CSE1L is involved in the cancer progression of several types of cancer. Its expression status, potential oncogenic role and underlying mechanism in lung cancer, however, are unclear. Here, we investigated CSE1L expression in primary lung adenocarcinoma based on multiple datasets and then investigated its oncologic role in lung cancer. We also examined the potential molecular mechanisms of CSE1L in cancer progression. CSE1L levels were increased in cancer as compared to normal lung tissues. CSE1L expression was higher in poorly-differentiated late stage and lymph node positive metastatic tumors. Higher CSE1L level was correlated with worse patient outcome. Knockdown of CSE1L using siRNAs impaired cell proliferation, invasion, migration and induced cell apoptosis. Mechanistically, MET, STAT3 and PD-L1 proteins were decreased upon CSE1L silencing. These results suggest that CSE1L may affect tumor progression through MET/STAT3/PD-L1 signaling. CSE1L may have potential as a biomarker and therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Anorectal Disease, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunming 650032, Yunnan, China
| | - Zhiqing Zhou
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Yu Li
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Jiali Xu
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Yang Shen
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Suisui Luo
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Yujie Zhou
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Xing Wu
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Huijie Zhao
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - David G Beer
- Department of Surgery, University of Michigan Medical SchoolAnn Arbor 48109, MI, United States
| | - Yanli He
- School of Basic Medicine, Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, China
| | - Guoan Chen
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| |
Collapse
|
32
|
Zhou L, Wei X. Ocular Immune-Related Adverse Events Associated With Immune Checkpoint Inhibitors in Lung Cancer. Front Immunol 2021; 12:701951. [PMID: 34504488 PMCID: PMC8421677 DOI: 10.3389/fimmu.2021.701951] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are novel immunotherapy-based drugs that have become increasingly popular in the treatment of lung cancer. Researchers have recognized ocular immune-related adverse events (irAEs) secondary to ICIs because of their vision-threatening characteristics. However, they are incompletely characterized and no studies have reported the ICI-related ocular irAEs in lung cancer. Therefore, we aimed to comprehensively illustrate the clinical characteristics, contributory factors, diagnosis, and management of ICI-related ocular irAEs in lung cancer, based on previously reported 79 patients. Ophthalmoplegia (40.51%), uveitis (20.25%), and dry eye (17.72%) were the most common ICI-related ocular irAEs in lung cancer. Ptosis was the most common (36.71%) and the highest mortality (23.33%) of ophthalmoplegia. Patients in Asia and patients who underwent combination therapy with programmed cell death-1 and cytotoxic T-lymphocyte-associated antigen 4 inhibitors demonstrated significantly higher frequency of ophthalmoplegia than other ocular irAEs. Most ICI-related ophthalmoplegia and uveitis in lung cancer were observed in the first 10 weeks following the initiation of ICIs. Furthermore, the onset time of dry eye and other ocular irAEs was much longer. In addition, 92.31% of the patients with ocular irAEs other than ophthalmoplegia could be remised. In conclusion, ocular irAEs secondary to ICIs in lung cancer are non-negligible, particularly ophthalmoplegia. Ethnicity and the type of ICIs play important roles in the distribution of ocular irAEs. ICI-related ophthalmoplegia in lung cancer presented with early onset and worse prognosis features, thus necessitating further attention.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Trontzas IP, Rapti VE, Syrigos NK, Kounadis G, Perlepe N, Kotteas EA, Bamias G. Enteric plexus neuropathy associated with PD-L1 blockade in a patient with small-cell lung cancer. Immunotherapy 2021; 13:1085-1092. [PMID: 34247513 DOI: 10.2217/imt-2020-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized the management of patients with cancer. The increasing use of these agents has brought up a new set of adverse events which are widely heterogenous and potentially life-threatening. Rare immune-related adverse events associated with nervous system have not been described thoroughly, but their early recognition and management may be crucial. Immune-related autonomic neuropathy may be presented with a constellation of symptoms ranging from gastrointestinal and urinary complaints, to sweating and hypotension. Intestinal pseudo-obstruction as consequence of immune-related myenteric autonomic neuropathy is an under-recognized, not-well described and potentially fatal adverse event. We herein, present a unique case of enteric plexus neuropathy induced by PD-L1 blockade in a patient with small-cell lung cancer.
Collapse
Affiliation(s)
- Ioannis P Trontzas
- 3rd Department of Internal Medicine, Oncology Unit, Sotiria General Hospital, Athens School of Medicine, 11527, Greece
| | - Vasiliki E Rapti
- 3rd Department of Internal Medicine, Oncology Unit, Sotiria General Hospital, Athens School of Medicine, 11527, Greece
| | - Nikolaos K Syrigos
- 3rd Department of Internal Medicine, Oncology Unit, Sotiria General Hospital, Athens School of Medicine, 11527, Greece
| | - George Kounadis
- 3rd Department of Internal Medicine, Gastroenterology Unit, Sotiria General Hospital, Athens School of Medicine, 11527, Greece
| | - Nikoleta Perlepe
- 3rd Department of Internal Medicine, Gastroenterology Unit, Sotiria General Hospital, Athens School of Medicine, 11527, Greece
| | - Elias A Kotteas
- 3rd Department of Internal Medicine, Oncology Unit, Sotiria General Hospital, Athens School of Medicine, 11527, Greece
| | - Giorgos Bamias
- 3rd Department of Internal Medicine, Gastroenterology Unit, Sotiria General Hospital, Athens School of Medicine, 11527, Greece
| |
Collapse
|
34
|
Shi Z, Liu B, Huang C, Xie W, Cen Y, Chen L, Liang M. An oncolytic vaccinia virus armed with anti-human-PD-1 antibody and anti-human-4-1BB antibody double genes for cancer-targeted therapy. Biochem Biophys Res Commun 2021; 559:176-182. [PMID: 33945995 DOI: 10.1016/j.bbrc.2021.04.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022]
Abstract
Oncolytic virus can selectively recognize cancer cells, target tumors, and stimulate an oncolytic and immune response. Recombinant armed oncolytic vaccinia virus has emerged as an attractive tool in oncolytic virotherapy because it has tumor-specific cytotoxicity and serves as a vector to express immune genes. A novel thymidine kinase (TK) gene-deleted oncolytic vaccinia virus (named ΔTK-Armed-VACV) armed with anti-human-programed cell death-1 protein (PD-1) antibody and anti-human-tumor necrosis factor receptor superfamily, member 9 (4-1BB) antibody genes was constructed based on Western Reserve in our previous study. The present study evaluated the ability of this virus for cancer-targeted therapy both in vitro and in vivo. A complete morphological structure of ΔTK-Armed-VACV was verified using transmission electron microscopy. The antibody was co-expressed with the replication of ΔTK-Armed-VACV in vitro assessed by Western blot analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-rboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay showed that the ΔTK-Armed-VACV exhibited significant tumor-specific cytotoxicity in vitro. The ΔTK-Armed-VACV inhibited the tumor growth in a 4T1 or A549 tumor-bearing mouse model. ELISpot assay showed that ΔTK-Armed-VACV-treated mice induced the expression of interferon-gamma, and lactate dehydrogenase-dependent cytotoxicity assay revealed that the ΔTK-Armed-VACV treatment activated tumor-specific cytotoxic T lymphocytes. The results indicated that oncolytic VACV with Western Reserve-mediated anti-human-PD-1 and anti-human-4-1BB antibody co-expression exerted a significant antitumor effect, indicating that the combination of oncolytic virotherapy and immunotherapy by the oncolytic VACV expressing one or more immune checkpoint genes might have satisfactory clinical expectations.
Collapse
Affiliation(s)
- Zhenrui Shi
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Bo Liu
- GeneSail Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Chengda Huang
- GeneSail Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Wenbo Xie
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yi Cen
- GeneSail Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Ling Chen
- GeneSail Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Min Liang
- School of Life Sciences, Shanghai University, Shanghai, China; GeneSail Biotech (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
35
|
Paraboschi I, Turnock S, Kramer-Marek G, Musleh L, Barisa M, Anderson J, Giuliani S. Near-InfraRed PhotoImmunoTherapy (NIR-PIT) for the local control of solid cancers: Challenges and potentials for human applications. Crit Rev Oncol Hematol 2021; 161:103325. [PMID: 33836238 PMCID: PMC8177002 DOI: 10.1016/j.critrevonc.2021.103325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023] Open
Abstract
Near-InfraRed PhotoImmunoTherapy (NIR-PIT) is a novel cancer-targeted treatment effected by a chemical conjugation between a photosensitiser (e.g. the NIR phthalocyanine dye IRDye700DX) and a cancer-targeting moiety (e.g. a monoclonal antibody, moAb). Delivery of a conjugate in vivo leads to accumulation at the tumour cell surface by binding to cell surface receptors or antigens. Upon deployment of focal NIR-light, irradiation of the conjugate results in a rapid, targeted cell death. However, the mechanisms of action to produce the cytotoxic effects have yet to be fully understood. Herein, we bring together the current knowledge of NIR-PIT from preclinical and clinical studies in a variety of cancers highlighting the key unanswered research questions. Furthermore, we discuss how to enhance the local control of solid cancers using this novel treatment regimen.
Collapse
Affiliation(s)
- Irene Paraboschi
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK
| | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Layla Musleh
- Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, UK
| | - Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK; Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
36
|
Food, Nutrition, Physical Activity and Microbiota: Which Impact on Lung Cancer? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052399. [PMID: 33804536 PMCID: PMC7967729 DOI: 10.3390/ijerph18052399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Lung cancer still represents the leading cause of cancer-related death, globally. Likewise, malnutrition and inactivity represent a major risk for loss of functional pulmonary capacities influencing overall lung cancer severity. Therefore, the adhesion to an appropriate health lifestyle is crucial in the management of lung cancer patients despite the subtype of cancer. This review aims to summarize the available knowledge about dietary approaches as well as physical activity as the major factors that decrease the risk towards lung cancer, and improve the response to therapies. We discuss the most significant dietary schemes positively associated to body composition and prognosis of lung cancer and the main molecular processes regulated by specific diet schemes, functional foods and physical activity, i.e., inflammation and oxidative stress. Finally, we report evidence demonstrating that dysbiosis of lung and/or gut microbiome, as well as their interconnection (the gut–lung axis), are strictly related to dietary patterns and regular physical activity playing a key role in lung cancer formation and progression, opening to the avenue of modulating the microbiome as coadjuvant therapy. Altogether, the evidence reported in this review highlights the necessity to consider non-pharmacological interventions (nutrition and physical activity) as effective adjunctive strategies in the management of lung cancer.
Collapse
|