1
|
Geng W, Thomas H, Chen Z, Yan Z, Zhang P, Zhang M, Huang W, Ren X, Wang Z, Ding K, Zhang J. Mechanisms of acquired resistance to HER2-Positive breast cancer therapies induced by HER3: A comprehensive review. Eur J Pharmacol 2024; 977:176725. [PMID: 38851563 DOI: 10.1016/j.ejphar.2024.176725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors with kinase activity that play a crucial role in diverse cellular processes. Among the RTK family members, Human epidermal growth factor receptor 2 (HER2) and HER3 are particularly relevant to breast cancer. The review delves into the complexities of receptor tyrosine kinase interactions, resistance mechanisms, and the potential of anti-HER3 drugs, offering valuable insights into the clinical implications and future directions in this field of study. It assesses the potential of anti-HER3 drugs, such as pertuzumab, in overcoming resistance observed in HER2-positive breast cancer therapies. The review also explores the resistance mechanisms associated with various drugs, including trastuzumab, lapatinib, and PI3K inhibitors, providing insights into the intricate molecular processes underlying resistance development. The review concludes by emphasizing the necessity for further clinical trials to assess the efficacy of HER3 inhibitors and the potential of developing safe and effective anti-HER3 treatments to improve treatment outcomes for patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Wujun Geng
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Holly Thomas
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Zhiyuan Chen
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhixiu Yan
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Pujuan Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Meiying Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.
| |
Collapse
|
2
|
Tang Q, Li H, Zhao XT, Li ZY, Ma CX, Zhou SQ, Chen DD. Opportunities and Challenges in the Development of Antibody-Drug Conjugate for Triple-Negative Breast Cancer: The Diverse Choices and Changing Needs. World J Oncol 2024; 15:527-542. [PMID: 38993251 PMCID: PMC11236369 DOI: 10.14740/wjon1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype, which is also characterized by the aggressive phenotype, high recurrence rate, and poor prognosis. Antibody-drug conjugate (ADC) is a monoclonal antibody with a cytotoxic payload connected by a linker. ADC is gaining more and more attention as a targeted anti-cancer agent. Clinical studies of emerging ADC drugs such as sacituzumab govitecan and trastuzumab deruxtecan in patients with metastatic breast cancer (including TNBC) are progressing rapidly. In view of its excellent clinical efficacy and good tolerability, Sacituzumab govitecan gained accelerated approval by the FDA for the treatment of advanced metastatic TNBC in 2020. This review discusses the treatment status and challenges in TNBC, with an emphasis on the current status of ADC development and clinical trials in TNBC and metastatic breast cancer. We also summarize the clinical experience and future exploration directions of ADC development for TNBC patients.
Collapse
Affiliation(s)
- Qi Tang
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Hui Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Xin Tong Zhao
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Ze Ying Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Chun Xiao Ma
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Shao Qiang Zhou
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - De Dian Chen
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| |
Collapse
|
3
|
Sinevici N, Edmonds CE, Dontchos BN, Wang G, Lehman CD, Isakoff S, Mahmood U. A prospective study of HER3 expression pre and post neoadjuvant therapy of different breast cancer subtypes: implications for HER3 imaging therapy guidance. Breast Cancer Res 2024; 26:107. [PMID: 38951909 PMCID: PMC11218108 DOI: 10.1186/s13058-024-01859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
PURPOSE HER3, a member of the EGFR receptor family, plays a central role in driving oncogenic cell proliferation in breast cancer. Novel HER3 therapeutics are showing promising results while recently developed HER3 PET imaging modalities aid in predicting and assessing early treatment response. However, baseline HER3 expression, as well as changes in expression while on neoadjuvant therapy, have not been well-characterized. We conducted a prospective clinical study, pre- and post-neoadjuvant/systemic therapy, in patients with newly diagnosed breast cancer to determine HER3 expression, and to identify possible resistance mechanisms maintained through the HER3 receptor. EXPERIMENTAL DESIGN The study was conducted between May 25, 2018 and October 12, 2019. Thirty-four patients with newly diagnosed breast cancer of any subtype (ER ± , PR ± , HER2 ±) were enrolled in the study. Two core biopsy specimens were obtained from each patient at the time of diagnosis. Four patients underwent a second research biopsy following initiation of neoadjuvant/systemic therapy or systemic therapy which we define as neoadjuvant therapy. Molecular characterization of HER3 and downstream signaling nodes of the PI3K/AKT and MAPK pathways pre- and post-initiation of therapy was performed. Transcriptional validation of finings was performed in an external dataset (GSE122630). RESULTS Variable baseline HER3 expression was found in newly diagnosed breast cancer and correlated positively with pAKT across subtypes (r = 0.45). In patients receiving neoadjuvant/systemic therapy, changes in HER3 expression were variable. In a hormone receptor-positive (ER +/PR +/HER2-) patient, there was a statistically significant increase in HER3 expression post neoadjuvant therapy, while there was no significant change in HER3 expression in a ER +/PR +/HER2+ patient. However, both of these patients showed increased downstream signaling in the PI3K/AKT pathway. One subject with ER +/PR -/HER2- breast cancer and another subject with ER +/PR +/HER2 + breast cancer showed decreased HER3 expression. Transcriptomic findings, revealed an immune suppressive environment in patients with decreased HER3 expression post therapy. CONCLUSION This study demonstrates variable HER3 expression across breast cancer subtypes. HER3 expression can be assessed early, post-neoadjuvant therapy, providing valuable insight into cancer biology and potentially serving as a prognostic biomarker. Clinical translation of neoadjuvant therapy assessment can be achieved using HER3 PET imaging, offering real-time information on tumor biology and guiding personalized treatment for breast cancer patients.
Collapse
Affiliation(s)
- Nicoleta Sinevici
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA
| | - Christine E Edmonds
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA
| | - Brian N Dontchos
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA
| | - Gary Wang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA
| | - Constance D Lehman
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA
| | - Steven Isakoff
- Department of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA.
| |
Collapse
|
4
|
Carvalho FM. Triple-negative breast cancer: from none to multiple therapeutic targets in two decades. Front Oncol 2023; 13:1244781. [PMID: 38023167 PMCID: PMC10666917 DOI: 10.3389/fonc.2023.1244781] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are more likely to occur in younger patients and have a poor prognosis. They are highly heterogeneous tumors consisting of different molecular subtypes. The only common characteristic among them is the absence of targets for endocrine therapy and human epidermal growth factor receptor 2 (HER2) blockade. In the past two decades, there has been an increased understanding of these tumors from a molecular perspective, leading to their stratification according to new therapeutic strategies. TNBC has ushered breast carcinomas into the era of immunotherapy. The higher frequency of germline BRCA mutations in these tumors enables targeting this repair defect by drugs like PARP inhibitors, resulting in synthetic lethality in neoplastic cells. Additionally, we have the identification of new molecules to which this generation of smart drugs, such as antibody-drug conjugates (ADCs), are directed. In this review, we will discuss the trajectory of this knowledge in a systematic manner, presenting the molecular bases, therapeutic possibilities, and biomarkers.
Collapse
Affiliation(s)
- Filomena Marino Carvalho
- Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
5
|
Esfahani SA, de Aguiar Ferreira C, Rotile NJ, Ataeinia B, Krishna S, Catalano OA, Caravan P, Yen YF, Heidari P, Mahmood U. HER3 PET Imaging Predicts Response to Pan Receptor Tyrosine Kinase Inhibition Therapy in Gastric Cancer. Mol Imaging Biol 2023; 25:353-362. [PMID: 35962301 PMCID: PMC10024929 DOI: 10.1007/s11307-022-01763-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE New generation of receptor tyrosine kinase inhibitors (RTKIs) have shown to improve survival in many solid tumors. However, an imaging biomarker is needed for patient selection and prediction of treatment response. This study evaluates the use of quantitative changes of HER3 on 68 Ga-NOTA-HER3P1 PET/MRI for prediction of early response to pan-RTKIs in gastric cancer (GCa). PROCEDURES GCa cell lines were evaluated for expression of RTKs, and downstream signaling pathways (AKT and MAPK). Cell viability was assessed following 24-72 h of treatment with 0.01-1 µmol/L of afatinib, a pan-RTKI. HER3-expressing afatinib-sensitive (NCI-N87) and resistant cells (SNU16) were selected for evaluation of changes in RTKs expression and downstream pathways, with 24-72 h of 0.1 µmol/L afatinib treatment. 68 Ga-NOTA-HER3P1 PET/MRI was performed in subcutaneous NCI-N87 and SNU16 xenografts (nu:nu, n = 12/group) at baseline and 4 days after afatinib treatment (10 mg/kg, PO, daily). Temporal changes in PET measures were correlated to HER3 expression in tumors, tumor growth rate, and treatment response. RESULTS With afatinib therapy, NCI-N87 cells showed increased total HER3 expression, and reduction of other RTKs and downstream nodes within 72 h, while SNU16 cells showed no significant change in total HER3 and downstream nodes. 68 Ga-HER3P1 PET/MRI showed increased uptake in NCI-N87 and no significant change in SNU16 tumors (day 4 vs. baseline SUVmean: 3.8 ± 0.7 vs. 1.6 ± 0.6, p < 0.05 in NCI-N87, and 1.5 ± 0.7 vs. 1.7 ± 0.7, p > 0.05 in SNU16). These findings were in concordance with HER3 expression in histopathological analyses and tumor growth over 3 weeks of treatment (mean tumor volume in treated vs. control: 11 ± 17 mm3 vs. 293 ± 79 mm3, p < 0.001 in NCI-N87, and 238 ± 91 mm3 vs. 282 ± 35 mm3, p > 0.05 in SNU16). CONCLUSIONS Quantitative changes in HER3 PET could be used to predict response to pan-RTKI within few days after initiation of treatment and can help with personalizing GCa management.
Collapse
Affiliation(s)
- Shadi A Esfahani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149, 13th Street, Charlestown, MA, 02129, USA. .,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA. .,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| | - Carolina de Aguiar Ferreira
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149, 13th Street, Charlestown, MA, 02129, USA
| | - Nicholas J Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149, 13th Street, Charlestown, MA, 02129, USA
| | - Bahar Ataeinia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149, 13th Street, Charlestown, MA, 02129, USA
| | - Shriya Krishna
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149, 13th Street, Charlestown, MA, 02129, USA
| | - Onofrio A Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149, 13th Street, Charlestown, MA, 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149, 13th Street, Charlestown, MA, 02129, USA.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149, 13th Street, Charlestown, MA, 02129, USA
| | - Pedram Heidari
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149, 13th Street, Charlestown, MA, 02129, USA.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Umar Mahmood
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149, 13th Street, Charlestown, MA, 02129, USA.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Zardavas D. Clinical development of antibody-drug conjugates in triple negative breast cancer: Can we jump higher? Expert Opin Investig Drugs 2022; 31:633-644. [PMID: 35451891 DOI: 10.1080/13543784.2022.2070064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Triple negative breast cancer (TNBC) is an aggressive BC subtype, associated with higher rates of relapse in the primary disease setting and shorter overall survival upon metastatic relapse. The advent of antibody-drug conjugates (ADC), able to deliver selectively potent chemotherapeutic agents, has demonstrated promising clinical activity, with the first approval of an ADC, i.e. Sacituzumab Govitecan, in the metastatic setting. The main scope of this paper is to provide the most recent data indicating the promise of this novel class of drugs, as potential tools to improve clinical outcomes of patients diagnosed with TNBC. AREAS COVERED In this article, upon review of the main characteristics of TNBC, and those of ADCs, an overview of the data from clinical trials assessing ADCs in TNBC will be provided, including those that led to the first approval of such a drug for patients with metastatic disease; furthermore, several other ADCs targeting different proteins (over)expressed by TNBC undergo clinical development. Combinations of ADCs with other targeted agents are discussed; the most pertinent considerations for improving the chances of successful clinical development of ADCs in TNBC are provided. EXPERT OPINION ADCs are a potent class of targeted anticancer assets, with demonstrated efficacy against metastatic TNBC. Such assets could further improve clinical outcomes of patients with TNBC, and successful development depends upon: i) successful triaging of patients with the right ADC, ii) technical optimization of ADCs to maximize the efficacy, while reducing toxicity, and iii) assess rationally chosen combinations with synergistic antitumor activity and acceptable safety profile.
Collapse
|
7
|
Basu A, Albert GK, Awshah S, Datta J, Kodumudi KN, Gallen C, Beyer A, Smalley KS, Rodriguez PC, Duckett DR, Forsyth PA, Soyano A, Koski GK, Lima Barros Costa R, Han H, Soliman H, Lee MC, Kalinski P, Czerniecki BJ. Identification of Immunogenic MHC Class II Human HER3 Peptides that Mediate Anti-HER3 CD4 + Th1 Responses and Potential Use as a Cancer Vaccine. Cancer Immunol Res 2022; 10:108-125. [PMID: 34785506 PMCID: PMC9414303 DOI: 10.1158/2326-6066.cir-21-0454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/01/2021] [Accepted: 11/16/2021] [Indexed: 01/11/2023]
Abstract
The HER3/ERBB3 receptor is an oncogenic receptor tyrosine kinase that forms heterodimers with EGFR family members and is overexpressed in numerous cancers. HER3 overexpression associates with reduced survival and acquired resistance to targeted therapies, making it a potential therapeutic target in multiple cancer types. Here, we report on immunogenic, promiscuous MHC class II-binding HER3 peptides, which can generate HER3-specific CD4+ Th1 antitumor immune responses. Using an overlapping peptide screening methodology, we identified nine MHC class II-binding HER3 epitopes that elicited specific Th1 immune response in both healthy donors and breast cancer patients. Most of these peptides were not identified by current binding algorithms. Homology assessment of amino acid sequence BLAST showed >90% sequence similarity between human and murine HER3/ERBB3 peptide sequences. HER3 peptide-pulsed dendritic cell vaccination resulted in anti-HER3 CD4+ Th1 responses that prevented tumor development, significantly delayed tumor growth in prevention models, and caused regression in multiple therapeutic models of HER3-expressing murine tumors, including mammary carcinoma and melanoma. Tumors were robustly infiltrated with CD4+ T cells, suggesting their key role in tumor rejection. Our data demonstrate that class II HER3 promiscuous peptides are effective at inducing HER3-specific CD4+ Th1 responses and suggest their applicability in immunotherapies for human HER3-overexpressing tumors.
Collapse
Affiliation(s)
- Amrita Basu
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gabriella K. Albert
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sabrina Awshah
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jashodeep Datta
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Krithika N. Kodumudi
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Oncological Sciences, University of South Florida, Tampa, Florida
| | - Corey Gallen
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amber Beyer
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Keiran S.M. Smalley
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Paulo C. Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Derek R. Duckett
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Peter A. Forsyth
- Department of NeuroOncology and the NeuroOncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aixa Soyano
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gary K. Koski
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | | - Heather Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hatem Soliman
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Marie Catherine Lee
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, New York, New York
| | - Brian J. Czerniecki
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Corresponding Author: Brian J. Czerniecki, Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612. E-mail:
| |
Collapse
|
8
|
Cohen SE, Hashmi SM, Jones AAD, Lykourinou V, Ondrechen MJ, Sridhar S, van de Ven AL, Waters LS, Beuning PJ. Adapting Undergraduate Research to Remote Work to Increase Engagement. BIOPHYSICIST (ROCKVILLE, MD.) 2021; 2:28-32. [PMID: 36909739 PMCID: PMC10003819 DOI: 10.35459/tbp.2021.000199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Demand for undergraduate research experiences typically outstrips the available laboratory positions, which could have been exacerbated during the remote work conditions imposed by the SARS-CoV-2/COVID-19 pandemic. This report presents a collection of examples of how undergraduates have been engaged in research under pandemic work restrictions. Examples include a range of projects related to fluid dynamics, cancer biology, nanomedicine, circadian clocks, metabolic disease, catalysis, and environmental remediation. Adaptations were made that included partnerships between remote and in-person research students and students taking on more data analysis and literature surveys, as well as data mining, computational, and informatics projects. In many cases, these projects engaged students who otherwise would have worked in traditional bench research, as some previously had. Several examples of beneficial experiences are reported, such as the additional time spent studying the literature, which gave students a heightened sense of project ownership, and more opportunities to integrate feedback into writing and research. Additionally, the more intentional and regular communication necessitated by remote work proved beneficial for all team members. Finally, online seminars and conferences have made participation possible for many more students, especially those at predominantly undergraduate institutions. Participants aim to adopt these beneficial practices in our research groups even after pandemic restrictions end.
Collapse
Affiliation(s)
- Susan E Cohen
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Sara M Hashmi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - A-Andrew D Jones
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,School of Public Policy and Urban Affairs, Northeastern University, Boston, MA 02115, USA
| | - Vasiliki Lykourinou
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.,Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Anne L van de Ven
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Lauren S Waters
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.,Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
9
|
Hsu PC, Chen YH, Cheng CF, Kuo CY, Sytwu HK. Interleukin-6 and Interleukin-8 Regulate STAT3 Activation Migration/Invasion and EMT in Chrysophanol-Treated Oral Cancer Cell Lines. Life (Basel) 2021; 11:life11050423. [PMID: 34063134 PMCID: PMC8148210 DOI: 10.3390/life11050423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment plays a critical role in the control of metastasis. The epithelial–mesenchymal transition (EMT) is strongly associated with tumor metastasis, and consists of several protein markers, including E-cadherin and vimentin. We discovered that chrysophanol causes oral cancer cell apoptosis and the inhibition of migration/invasion and EMT. However, the detailed mechanisms of chrysophanol and its role in oral cancer with respect to the tumor microenvironment remain unknown. In the clinic, proinflammatory cytokines, such as IL-6 and IL-8, exhibit a higher expression in patients with oral cancer. However, the effect of chrysophanol on the production of IL-6 and IL-8 is unknown. We evaluated the expression of IL-6 and IL-8 in human SAS and FaDu oral cancer cell lines in the presence or absence of chrysophanol. The migration and invasion abilities were also determined using a Boyden chamber assay. Our results showed that treatment with chrysophanol significantly decreased the expression of IL-6 and IL-8, as well as the invasion ability of oral cancer cells. Moreover, chrysophanol also attenuated the EMT by increasing the expression of E-cadherin and reducing the expression of vimentin. Mechanistically, chrysophanol inhibited IL-6- and IL-8-induced invasion and STAT3 phosphorylation. IL-6 and IL-8 promote EMT and cell invasion, which is potentially related to the STAT3 signaling pathway in oral cancer. These findings provide insight into new aspects of chrysophanol activity and may contribute to the development of new therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Po-Chih Hsu
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan;
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Yi-Hsuan Chen
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 114, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 114, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Correspondence: (C.-Y.K.); (H.-K.S.)
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 350, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (C.-Y.K.); (H.-K.S.)
| |
Collapse
|