1
|
Yu X, Chen X, Chen W, Han X, Xie Q, Geng D, Guo G, Zhou L, Tang S, Chen J, Huang X, Zhong X. TGFβ2 Promotes the Construction of Fibrotic and Immunosuppressive Tumor Microenvironment in Pancreatic Adenocarcinoma: A Comprehensive Analysis. Mol Biotechnol 2024:10.1007/s12033-024-01219-1. [PMID: 39044066 DOI: 10.1007/s12033-024-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) was characterized by dense fibrotic stroma and immunosuppressive tumor microenvironment (TME). TGFβ signaling pathways are highly activated in human cancers. However, the role of TGFβ2 in TME of PAAD remains to be elucidated. In this study, we showed that TGFβ2 was expressed at a relatively high level in PAAD tissues or cancer cells. Moreover, its high expression predicted unfavorable prognosis. In PAAD, gene set enrichment analysis showed that TGFβ2 correlated positively with leukocyte transendothelial migration, but negatively with aerobic metabolism, including oxidative phosphorylation. Results in Tumor and Immune System Interaction Database showed that TGFβ2 correlated with the infiltration of tumor-associated macrophages (TAMs), which could be attributed to that TGFβ2 promote CCL2 expression in PAAD. Moreover, correlation analysis showed that TGFβ2 could trigger cancer-associated fibroblasts (CAFs) activation in PAAD. The drug sensitivity analysis may indicate that patients with TGFβ2 high expression have higher sensitivity to chemotherapeutics, but the sensitivity to targeted drugs is still controversial. TGFβ2 could promote expansion of CAFs and infiltration of TAMs, thus participating in the construction of a fibrotic and immunosuppressive TME in PAAD. Targeting TGFβ2 could be a promising therapeutic approach, which needs to be elucidated by clinical and experimental evidences.
Collapse
Affiliation(s)
- Xiaofen Yu
- Department of Medical Oncology, Nanchang Third Hospital, Nanchang, 330000, Jiangxi, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Linsa Zhou
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China.
| | - Xin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Pancreatobiliary Surgery, Sun Yat-Sen University Cancer Center, GuangzhouGuangdong, 510060, China.
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China.
| |
Collapse
|
2
|
Zhang Z, Ren X, Wang Y, Liu P, Lin P, Jin S, Xu C. CTHRC1 is a prognostic biomarker correlated with immune infiltration in head and neck squamous cell carcinoma. BMC Oral Health 2024; 24:742. [PMID: 38937712 PMCID: PMC11209980 DOI: 10.1186/s12903-024-04525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, characterized by high morbidity, high mortality, and poor prognosis. Collagen triple helix repeat containing 1 (CTHRC1) has been shown to be highly expressed in various cancers. However, its biological functions, potential role as a biomarker, and its relationship with immune infiltrates in HNSCC remain unclear. Our principal objective was to analyze CTHRC1 expression, its prognostic implications, biological functions, and its effects on the immune system in HNSCC patients using bioinformatics analysis. METHODS The expression matrix was obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). CTHRC1 expression in HNSCC was analyzed between tumor and adjacent normal tissues, different stages were compared, and its impact on clinical prognosis was assessed using Kaplan-Meier analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation Analysis (GSVA) were employed for enrichment analysis. The Search Tool for the Retrieval of Interacting Genes database (STRING) was used to analyze protein-protein interactions. Pearson correlation tests were used to investigate the association between CTHRC1 expression and immune checkpoints. The correlation between CTHRC1 and immune infiltration was investigated using CIBERSORT, TIMER, and ESTIMATE. RESULTS Compared to adjacent normal tissues, CTHRC1 was found to be highly overexpressed in tumors. Increased expression of CTHRC1 was more evident in the advanced stage of HNSCC and predicted a poor prognosis. Most genes related to CTHRC1 in HNSCC were enriched in physiological functions of Extracellular matrix(ECM) and tumor. Furthermore, several immune checkpoints, such as TNFSF4 and CD276 have been shown to be associated with CTHRC1 expression. Notably, the level of CTHRC1 expression correlated significantly with immune infiltration levels, particularly activated macrophages in HNSCC. CONCLUSIONS High expression of CTHRC1 predicts poor prognosis and is associated with immune infiltration in HNSCC, confirming its utility as a tumor marker for HNSCC. TRIAL REGISTRATION Not applicable. All data are from public databases and do not contain any clinical trials.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Oral and Maxillofacial Surgery, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, China
| | - Xusheng Ren
- Department of Orthodontics, Jinan Stomatological Hospital, 101 Jingliu Road, Jinan, Shandong, China
| | - Yiling Wang
- Department of Orthodontics, Jinan Stomatological Hospital, 101 Jingliu Road, Jinan, Shandong, China
| | - Ping Liu
- Department of Orthodontics, Jinan Stomatological Hospital, 101 Jingliu Road, Jinan, Shandong, China
| | - Peng Lin
- Department of Orthodontics, Jinan Stomatological Hospital, 101 Jingliu Road, Jinan, Shandong, China
| | - Shumei Jin
- Department of Orthodontics, Jinan Stomatological Hospital, 101 Jingliu Road, Jinan, Shandong, China
| | - Chao Xu
- Department of Orthodontics, Jinan Stomatological Hospital, 101 Jingliu Road, Jinan, Shandong, China.
| |
Collapse
|
3
|
Shi X, Zeng X, Jiao R, Yang Y, Du X, Qian J, Liu J, Chen G. Expression, Prognostic Value, and Biological Function of CTHRC1 in Different Types of Gliomas: A Bioinformatic Analysis and Experiment Validation. Clin Med Insights Oncol 2024; 18:11795549241260576. [PMID: 38894702 PMCID: PMC11185027 DOI: 10.1177/11795549241260576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Background In recent years, abnormal expression of collagen triple helix repeat containing 1 (CTHRC1) has been found in some tumors, closely related to the poor prognosis of cancer patients. However, the clinical significance of CTHRC1 in gliomas is not completely understood. Methods We investigated the expression, prognostic value, and potential biological function of CTHRC1 in different types of gliomas through bioinformatics analysis and experimental verification. Results Bioinformatics analysis revealed several key findings regarding the expression and clinical significance of CTHRC1 in gliomas. First, the analysis demonstrated a positive correlation between CTHRC1 expression and the World Health Organization (WHO) grading of gliomas, a relationship that was validated through immunohistochemistry experiments. In addition, a trend was observed in which CTHRC1 expression increased with the extent of glioma invasion, as supported by Western blot experiments. Subsequent bioinformatics analysis identified the mesenchymal subtype of gliomas as having the highest levels of CTHRC1 expression, a finding reinforced by immunohistochemical staining. Moreover, high CTHRC1 expression was associated with poor prognosis in gliomas and emerged as an independent prognostic factor, with varying impacts on prognosis between low-grade gliomas (LGGs) and glioblastoma (GBM) subgroups. Notably, comparative analysis unveiled distinct patterns of immune infiltration of CTHRC1 in LGG and GBM. Furthermore, alterations in copy number variations and DNA methylation were identified as potential mechanisms underlying elevated CTHRC1 levels in gliomas. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that CTHRC1 and its associated genes mainly function in the extracellular matrix and participate in tumor-related signaling pathways. Conclusions The CTHRC1 has shown significant clinical utility as a prognostic marker and mesenchymal subtype marker of glioma.
Collapse
Affiliation(s)
- Xueping Shi
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Xi Zeng
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Rukai Jiao
- Department of Neurosurgery, The Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, P.R. China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Xiaolin Du
- Department of Neurosurgery, The Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, P.R. China
| | - Jiacai Qian
- Department of Neurosurgery, The Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, P.R. China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, P.R. China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
4
|
Singh CK, Fernandez S, Chhabra G, Zaemisch GR, Nihal A, Swanlund J, Ansari N, Said Z, Chang H, Ahmad N. The role of collagen triple helix repeat containing 1 (CTHRC1) in cancer development and progression. Expert Opin Ther Targets 2024; 28:419-435. [PMID: 38686865 PMCID: PMC11189736 DOI: 10.1080/14728222.2024.2349686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Collagen triple helix repeat containing 1 (CTHRC1) is a protein that has been implicated in pro-migratory pathways, arterial tissue-repair processes, and inhibition of collagen deposition via the regulation of multiple signaling cascades. Studies have also demonstrated an upregulation of CTHRC1 in multiple cancers where it has been linked to enhanced proliferation, invasion, and metastasis. However, the understanding of the exact role and mechanisms of CTHRC1 in cancer is far from complete. AREAS COVERED This review focuses on analyzing the role of CTHRC1 in cancer as well as its associations with clinicopathologies and cancer-related processes and signaling. We have also summarized the available literature information regarding the role of CTHRC1 in tumor microenvironment and immune signaling. Finally, we have discussed the mechanisms associated with CTHRC1 regulations, and opportunities and challenges regarding the development of CTHRC1 as a potential target for cancer management. EXPERT OPINION CTHRC1 is a multifaceted protein with critical roles in cancer progression and other pathological conditions. Its association with lower overall survival in various cancers, and impact on the tumor immune microenvironment make it an intriguing target for further research and potential therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Chandra K. Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sofia Fernandez
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Ayaan Nihal
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jenna Swanlund
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Naveed Ansari
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Zan Said
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Hao Chang
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Liang HQ, Liao NK, Yang SB, Wei QJ, Tan ST, Zhai GQ, Lu JT, Huang YC, Deng XB, Mo LJ, Cheng JW. Identification of tumor immunophenotypes associated with immunotherapy response in bladder cancer. Int J Urol 2023; 30:1122-1132. [PMID: 37602677 DOI: 10.1111/iju.15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVES This study aims to reveal immunophenotypes associated with immunotherapy response in bladder cancer, identify the signature genes of immune subtypes, and provide new molecular targets for improving immunotherapy response. METHODS Bladder cancer immunophenotypes were characterized in the bulk RNA sequencing dataset GSE32894 and Imvigor210, and gene expression signatures were established to identify the immunophenotypes. Expression of gene signatures were validated in single-cell RNA sequencing dataset GSE145140 and human proteins expression data source. Investigation of Immunotherapy Response was performed in IMvigor210 dataset. Prognosis of tumor immunophenotypes was further analyzed. RESULTS Inflamed and immune-excluded immunophenotypes were characterized based on the tumor immune cell scores. Risk score models that were established rely on RNA sequencing profiles and overall survival of bladder cancer cohorts. The inflamed tumors had lower risk scores, and the low-risk tumors were more likely to respond to atezolizumab, receiving complete response/partial response (CR/PR). Patients who responded to atezolizumab had higher SRRM4 and lower NPHS1 and TMEM72 expression than the non-responders. SRRM4 expression was a protective factor for bladder cancer prognosis, while the NPHS1 and TMEM72 showed the opposite pattern. CONCLUSION This study provided a novel classification method for tumor immunophenotypes. Bladder cancer immunophenotypes can predict the response to immune checkpoint blockade. The immunophenotypes can be identified by the expression of signature genes.
Collapse
Affiliation(s)
- Hai-Qi Liang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nai-Kai Liao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shu-Bo Yang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiu-Ju Wei
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shu-Ting Tan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gao-Qiang Zhai
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiang-Ting Lu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Cheng Huang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Bin Deng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin-Jian Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ji-Wen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Liu YJ, Du J, Li J, Tan XP, Zhang Q. CTHRC1, a novel gene with multiple functions in physiology, disease and solid tumors (Review). Oncol Lett 2023; 25:266. [PMID: 37216164 PMCID: PMC10193374 DOI: 10.3892/ol.2023.13852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/01/2023] [Indexed: 05/24/2023] Open
Abstract
Collagen triple helix repeat containing 1 (CTHRC1) is a gene discovered in 2005; it is highly conserved, and no homologous proteins have been disclosed thus far. A number of studies have shown that CTHRC1 is present in normal tissues and organs, and it has vital functions in physiological processes, including participating in the regulation of metabolism, arterial remodeling, bone formation and myelination of the peripheral nervous system. It has been reported that abnormal expression of CTHRC1 is involved in the carcinogenesis of various human organs, such as the breast, colon, pancreas, lung, stomach and liver. Therefore, the present review aims to collate all known findings and results on the regulation of CTHRC1 expression and related signaling pathways. To conclude, this review also provides a hypothesis of the functional mechanism of this gene.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jing Du
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie Li
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiao-Ping Tan
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qing Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
7
|
Yang X, Mei C, Nie H, Zhou J, Ou C, He X. Expression profile and prognostic values of GATA family members in kidney renal clear cell carcinoma. Aging (Albany NY) 2023; 15:2170-2188. [PMID: 36961416 PMCID: PMC10085589 DOI: 10.18632/aging.204607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
To investigate the possible diagnostic and prognostic biomarkers of kidney renal clear cell carcinoma (KIRC), an integrated study of accumulated data was conducted to obtain more reliable information and more feasible measures. Using the Tumor Immune Estimation Resource (TIMER), University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN), Human Protein Atlas (HPA), Kaplan-Meier plotter database, Gene Expression Profiling Interactive Analysis (GEPIA2) database, cBioPortal, and Metascape, we analyzed the expression profiles and prognoses of six members of the GATA family in patients with KIRC. Compared to normal samples, KIRC samples showed significantly lower GATA2/3/6 mRNA and protein expression levels. KIRC's pathological grades, clinical stages, and lymph node metastases were closely related to GATA2 and GATA5 levels. Patients with KIRC and high GATA2 and GATA5 expression had better overall survival (OS) and recurrence-free survival (RFS), while those with higher expression of GATA3/4/6 had worse outcomes. The role and underlying mechanisms of the GATA family in cell cycle, cell proliferation, metabolic processes, and other aspects were evaluated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses. Furthermore, we found that infiltrating immune cells were highly correlated with GATA expression profiles. These results showed that GATA family members may serve as prognostic biomarkers and therapeutic targets for KIRC.
Collapse
Affiliation(s)
- Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha 410008, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
8
|
A pan-cancer analysis of matrisome proteins reveals CTHRC1 and a related network as major ECM regulators across cancers. PLoS One 2022; 17:e0270063. [PMID: 36190948 PMCID: PMC9529084 DOI: 10.1371/journal.pone.0270063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022] Open
Abstract
The extracellular matrix in the tumour microenvironment can regulate cancer cell growth and progression. A pan-cancer analysis of TCGA data from 30 cancer types, identified the top 5% of matrisome genes with amplifications or deletions in their copy number, that affect their expression and cancer survival. A similar analysis of matrisome genes in individual cancers identified CTHRC1 to be significantly altered. CTHRC1, a regulator of collagen synthesis, was identified as the most prominently upregulated matrisome gene of interest across cancers. Differential gene expression analysis identified 19 genes whose expression is increased with CTHRC1. STRING analysis of these genes classified them as ‘extracellular’, involved most prominently in ECM organization and cell adhesion. KEGG analysis showed their involvement in ECM-receptor and growth factor signalling. Cytohubba analysis of these genes revealed 13 hub genes, of which MMP13, POSTN, SFRP4, ADAMTS16 and FNDC1 were significantly altered in their expression with CTHRC1 and seen to affect survival across cancers. This could in part be mediated by their overlapping roles in regulating ECM (collagen or fibronectin) expression and organisation. In breast cancer tumour samples CTHRC1 protein levels are significantly upregulated with POSTN and MMP13, further supporting the need to evaluate their crosstalk in cancers.
Collapse
|
9
|
Zhao Y, Zhao J, Zhong M, Zhang Q, Yan F, Feng Y, Guo Y. The expression and methylation of PITX genes is associated with the prognosis of head and neck squamous cell carcinoma. Front Genet 2022; 13:982241. [PMID: 36204311 PMCID: PMC9530742 DOI: 10.3389/fgene.2022.982241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The PITX gene family, comprising PITX1, PITX2, and PITX3, is critical in organogenesis and has been evolutionary conserved in animals. PITX genes are associated with the advanced progression and poor prognosis of multiple cancers. However, the relationship between the PITX genes and head and neck squamous cell carcinoma (HNSC) has not been reported. Methods: We used data from The Cancer Genome Atlas (TCGA) to analyze the association between PITX mRNA expression and clinicopathological parameters of patients with HNSC. The prognostic value of PITX genes was evaluated using the Kaplan-Meier plotter. Multivariate Cox analysis was used to screen out prognosis-associated genes to identify better prognostic indicators. The potential roles of PITX1 and PITX2 in HNSC prognosis were investigated using the protein-protein interaction (PPI) network, Gene Ontology (GO) analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The correlation between PITX1 and PITX2 expression or methylation and immune cell infiltration was evaluated using the tumor-immune system interaction database (TISIDB). MethSurv was used to identify DNA methylation and its effect on HNSC prognosis. Results:PITX genes expression was correlated with different cancers. PITX1 and PITX2 expression was lower in the patients with HNSC. In HNSC, PITX1 expression was significantly related to the clinical stage, histologic grade, and N stage, while PITX2 expression was only significantly related to the histologic grade. The high expression of PITX3 was significantly related to the histologic grade, T stage, and N stage. Survival analysis revealed that PITX genes had prognostic value in HNSC, which was supported by multivariate Cox analysis. PPI network and enrichment analysis showed that the genes interacting with PITX1 and PITX2 belonged predominantly to signaling pathways associated with DNA binding and transcription. Of the CpG DNA methylation sites in PITX1 and PITX2, 28 and 22 were related to the prognosis of HNSC, respectively. Additionally, PITX1 and PITX2 expression and methylation was associated with tumor-infiltrating lymphocytes (TILs). Conclusion: The PITX genes were differentially expressed in patients with HNSC, highlighting their essential role in DNA methylation and tumor-infiltrating immune cell regulation, as well as overall prognostic value in HNSC.
Collapse
Affiliation(s)
- Yaqiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mengmei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yan
- Hunan Key Laboratory of Oral Health Research and Hunan 3D Printing Engineering Research Center of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yunzhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yue Guo,
| |
Collapse
|
10
|
Lyu C, Wang L, Stadlbauer B, Noessner E, Buchner A, Pohla H. Identification of EZH2 as Cancer Stem Cell Marker in Clear Cell Renal Cell Carcinoma and the Anti-Tumor Effect of Epigallocatechin-3-Gallate (EGCG). Cancers (Basel) 2022; 14:4200. [PMID: 36077742 PMCID: PMC9454898 DOI: 10.3390/cancers14174200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the study was to develop a new therapeutic strategy to target cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC) and to identify typical CSC markers to improve therapy effectiveness. It was found that the corrected-mRNA expression-based stemness index was upregulated in kidney renal clear cell carcinoma (KIRC) tissues compared to non-tumor tissue and increased with higher tumor stage and grade. EZH2 was identified as a CSC marker and prognosis factor for KIRC patients. The expression of EZH2 was associated with several activated tumor-infiltrating immune cells. High expression of EZH2 was enriched in immune-related pathways, low expression was related to several metabolic pathways. Epigallocatechin-3-gallate (EGCG) was identified as the most potent suppressor of EZH2, was able to inhibit viability, migration, and invasion, and to increase the apoptosis rate of ccRCC CSCs. KIF11, VEGF, and MMP2 were identified as predictive EGCG target genes, suggesting a potential mechanism of how EZH2 might regulate invasiveness and migration. The percentages of FoxP3+ Treg cells in the peripheral blood mononuclear cells of ccRCC patients decreased significantly when cultured with spheres pretreated with EGCG plus sunitinib compared to spheres without treatment. Our findings provide new insights into the treatment options of ccRCC based on targeting CSCs.
Collapse
Affiliation(s)
- Chen Lyu
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
| | - Lili Wang
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Birgit Stadlbauer
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Zentrum München, D-81377 Munich, Germany
| | - Alexander Buchner
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| | - Heike Pohla
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| |
Collapse
|
11
|
Wang Z, Zhang S, Zheng C, Xia K, Sun L, Tang X, Zhou F, Ouyang Y, Tang F. CTHRC1 is a Potential Prognostic Biomarker and Correlated with Macrophage Infiltration in Breast Cancer. Int J Gen Med 2022; 15:5701-5713. [PMID: 35755862 PMCID: PMC9231633 DOI: 10.2147/ijgm.s366272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
Background Tumor immune cell infiltration is closely associated with the occurrence and development of tumors. Collagen triple helix repeats containing 1 (CTHRC1), a regulator of collagen expression and cell migration, is involved in the metastasis and invasion of tumors. However, the role of CTHRC1 in breast cancer remains unclear. This study aimed to investigate the prognostic value of CTHRC1, and further explore its association with immune infiltration in breast cancer. Methods CTHRC1 expression pattern and prognostic value were analyzed using ONCOMINE, PrognoScan, GEPIA, and Kaplan–Meier Plotter databases. We then detected CTHRC1 mRNA levels in breast cancer tissues and paired normal breast tissues by Q-PCR. Subsequently, the University of California Santa Cruz (UCSC) database was used to determine the methylation status of CTHRC1. Furthermore, CTHRC1 mutations were investigated using the Catalogue of Somatic mutations in Cancer (COSMIC) and cBioPortal databases. We also assessed the correlation between CTHRC1 expression and immune cell infiltration using TIMER. In addition, The relationship of CTHRC1 expression with the immune marker sets of various immune cells was evaluated using GEPIA and TIMER. Results CTHRC1 was highly expressed in a variety of tumors, including breast cancer. Elevated CTHRC1 expression was related to a poor prognosis. Notably, CTHRC1 expression was significantly associated with macrophage infiltration, especially the immune infiltration gene marker set of M2. Copy number variations, DNA mutations and methylation states might be potential mechanisms for regulating CTHRC1 expression. Protein digestion and absorption, human papillomavirus infection, ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways were identified as the potential CTHRC1-driven signaling pathways. Conclusion These findings suggest that CTHRC1 could be a promising immune-related biomarker for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Zejun Wang
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province/School of Biology and Engineering, Guizhou Medical University, Guiyang, People's Republic of China
| | - Chaochao Zheng
- Immune Cells and Antibody Engineering Research Center of Guizhou province/School of Biology and Engineering, Guizhou Medical University, Guiyang, People's Republic of China
| | - Kaide Xia
- Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, People's Republic of China
| | - Liangquan Sun
- Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, People's Republic of China
| | - Xuejie Tang
- Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, People's Republic of China
| | - Fulin Zhou
- Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, People's Republic of China
| | - Yan Ouyang
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province/School of Biology and Engineering, Guizhou Medical University, Guiyang, People's Republic of China
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou province/School of Biology and Engineering, Guizhou Medical University, Guiyang, People's Republic of China
| |
Collapse
|
12
|
Bai X, Chen H, Oliver BG. miRNAs-mediated overexpression of Periostin is correlated with poor prognosis and immune infiltration in lung squamous cell carcinoma. Aging (Albany NY) 2022; 14:3757-3781. [PMID: 35508298 PMCID: PMC9134939 DOI: 10.18632/aging.204056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Lung cancer is one of the most common malignancies with a high mortality rate worldwide. POSTN has been shown to be strongly correlated with the poor prognosis of lung cancer patients. However, the function and mechanism of action of POSTN in lung cancer remain unclear. Here, we carried out a pan-cancer analysis to assess the clinical prognostic value of POSTN based on the TCGA, TIMER, Oncomine, Kaplan-Meier, and UALCAN databases. We found that upregulated POSTN can be a promising biomarker to predict the prognosis of patients with lung cancer. High levels of POSTN correlated with immune cell infiltration in lung cancer, especially lung squamous cell carcinoma (LUSC), which was further confirmed based on the results from the TISIDB database. Moreover, the expression analysis, correlation analysis, and survival analysis revealed that POSTN-targeted miRNAs, downregulation of has-miR-144-3p and has-miR-30e-3p, were significantly linked to poor prognosis in patients with LUSC. Taken together, we identified that POSTN can act as a novel biomarker for determining the prognosis related to immune infiltration in patients with LUSC and deserves further research.
Collapse
Affiliation(s)
- Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.,Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| |
Collapse
|
13
|
Xie B, Tan G, Ren J, Lu W, Pervaz S, Ren X, Otoo AA, Tang J, Li F, Wang Y, Wang M. RB1 Is an Immune-Related Prognostic Biomarker for Ovarian Cancer. Front Oncol 2022; 12:830908. [PMID: 35299734 PMCID: PMC8920998 DOI: 10.3389/fonc.2022.830908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 01/06/2023] Open
Abstract
Background Ovarian cancer (OC) is one of the most lethal gynecologic malignancies and a leading cause of death in the world. Thus, this necessitates identification of prognostic biomarkers which will be helpful in its treatment. Methods The gene expression profiles from The Cancer Genome Atlas (TCGA) and GSE31245 were selected as the training cohort and validation cohort, respectively. The Kaplan–Meier (KM) survival analysis was used to analyze the difference in overall survival (OS) between high and low RB transcriptional corepressor 1 (RB1) expression groups. To confirm whether RB1 was an independent risk factor for OC, we constructed a multivariate Cox regression model. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were conducted to identify the functions of differentially expressed genes (DEGs). The associations of RB1 with immune infiltration and immune checkpoints were studied by the Tumor Immune Estimation Resource (TIMER 2.0) and the Gene Expression Profiling Interactive Analysis (GEPIA). The immunohistochemistry (IHC) was performed to compare the expression level of RB1 in normal tissues and tumor samples, and to predict the prognosis of OC. Results The KM survival curve of the TCGA indicated that the OS in the high-risk group was lower than that in the low-risk group (HR = 1.61, 95% CI: 1.28-2.02, P = 3×10-5), which was validated in GSE31245 (HR = 4.08, 95% CI: 1.21–13.74, P = 0.01) and IHC. Multivariate Cox regression analysis revealed that RB1 was an independent prognostic biomarker (HR = 1.66, 95% CI: 1.31-2.10, P = 2.02×10-5). Enrichment analysis suggested that the DEGs were mainly involved in cell cycle, DNA replication, and mitochondrial transition. The infiltration levels of fibroblast, neutrophil, monocyte and macrophage were positively correlated with RB1. Furthermore, RB1 was associated with immune checkpoint molecules (CTLA4, LAG3, and CD274). The IHC staining revealed higher expression of RB1 in tumor tissues as compared to that in normal tissues (P = 0.019). Overexpression of RB1 was associated with poor prognosis of OC (P = 0.01). Conclusion These findings suggest that RB1 was a novel and immune-related prognostic biomarker for OC, which may be a promising target for OC treatment.
Collapse
Affiliation(s)
- Biao Xie
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Guangqing Tan
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Jingyi Ren
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Weiyu Lu
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xinyi Ren
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Antonia Adwoa Otoo
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Department of Bioinformatics, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Meijiao Wang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Fu S, Gong B, Wang S, Chen Q, Liu Y, Zhuang C, Li Z, Zhang Z, Ma M, Sun T. Prognostic Value of Long Noncoding RNA DLEU2 and Its Relationship with Immune Infiltration in Kidney Renal Clear Cell Carcinoma and Liver Hepatocellular Carcinoma. Int J Gen Med 2021; 14:8047-8064. [PMID: 34795513 PMCID: PMC8593347 DOI: 10.2147/ijgm.s336428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background DLEU2 is a long noncoding RNA considered important in the progression of many cancers. However, correlations between DLEU2 and kidney renal clear cell carcinoma (KIRC) and liver hepatocellular carcinoma (LIHC) have rarely been reported. Methods We first analysed the expression of DLEU2 across cancers and the correlation between DLEU2 and the clinical features of KIRC and LIHC by using the “ggplot2” package in R and searched the Oncomine database and Timer website platform. We verified the expression of DLEU2 in the GEO dataset (GSE105261 and GSE45267). Receiver operating characteristic (ROC) curves were drawn using the “pROC” and “ggplot2” packages in R, and we constructed a DLEU2-based prognostic nomogram for KIRC and LIHC by using the “survival” and “rms” packages in R. Then, we analysed the correlation between DLEU2 expression and prognosis in R as well as the correlation between DLEU2 and immune cell infiltration in the TIMER database. Finally, we explored the causes of DLEU2 upregulation in the UCSC Xena and UALCAN databases. Results We found that DLEU2 was upregulated in many cancers, including KIRC and LIHC. Expression of DLEU2 is associated with tumour stage, grade, lymphatic metastasis, and distant metastasis in KIRC as well as alpha-fetoprotein (AFP), tumour stage, grade, lymphatic metastasis, and distant metastasis in LIHC. DLEU2 is an adverse factor for the prognosis of KIRC and LIHC. In addition, DLEU2 has moderate accuracy in diagnosing KIRC and LIHC and predicting their prognosis. Moreover, we found that expression of DLEU2 correlated positively with immune cell infiltration in KIRC and LIHC, and upregulation of DLEU2 in KIRC and LIHC suggests a poor prognosis based on immune cells analysis. Genetic and epigenetic analyses of DLEU2 indicate that copy number variations (CNVs) and methylation contribute to the upregulation of DLEU2. Conclusion The long noncoding RNA DLEU2 has the potential to predict the prognosis and immune infiltration of KIRC and LIHC.
Collapse
Affiliation(s)
- Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Siyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Qiang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Changshui Zhuang
- Department of Urology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, People's Republic of China
| | - Zhilong Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
15
|
Gao J, Ye F, Han F, Wang X, Jiang H, Zhang J. A Novel Radiogenomics Biomarker Based on Hypoxic-Gene Subset: Accurate Survival and Prognostic Prediction of Renal Clear Cell Carcinoma. Front Oncol 2021; 11:739815. [PMID: 34692518 PMCID: PMC8529272 DOI: 10.3389/fonc.2021.739815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 01/21/2023] Open
Abstract
Purpose To construct a novel radiogenomics biomarker based on hypoxic-gene subset for the accurate prognostic prediction of clear cell renal cell carcinoma (ccRCC). Materials and Methods Initially, we screened for the desired hypoxic-gene subset by analysis using the GSEA database. Through univariate and multivariate cox regression hazard ratio analysis, survival-related hypoxia genes were identified, and a genomics signature was constructed in the TCGA database. Building on this, a hypoxia-gene related radiogenomics biomarker (prediction of hypoxia-genes signature by contrast-enhanced CT radiomics) was constructed in the TCIA-KIRC database by extracting features in the venous phase of contrast-enhanced CT images, selecting features using the mRMR and LASSO algorithms, and building logistic regression models. Finally, we validated the prognostic capability of the new biomarker for patients with ccRCC in an independent validation cohort at Huashan Hospital of Fudan University, Shanghai, China. Results The hypoxia-related genomics signature consisting of five genes (IFT57, PABPN1, RNF10, RNF19B and UBE2T) was shown to be significantly associated with survival for patients with ccRCC in the TCGA database, delineated by grouping of the signature expression as either low- or high-risk. In the TCIA database, we constructed a radiogenomics biomarker consisting of 13 radiomics features that were optimal predictors of hypoxia-gene signature expression levels (low- or high-risk) in patients at each institution, that demonstrated AUC values of 0.91 and 0.91 in the training and validation groups, respectively. In the independent validation cohort at Huashan Hospital, our radiogenomics biomarker was significantly associated with prognosis in patients with ccRCC (p=0.0059). Conclusions The novel prognostic radiogenomics biomarker that was constructed achieved excellent correlation with prognosis in both the cohort of TCGA/TCIA-KIRC database and the independent validation cohort of Huashan hospital patients with ccRCC. It is anticipated that this work may assist in clinical preferential treatment decisions and promote the process of precision theranostics in the future.
Collapse
Affiliation(s)
- Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Han
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoshuang Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiawen Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Peng D, Wei C, Zhang X, Li S, Liang H, Zheng X, Jiang S, Han L. Pan-cancer analysis combined with experiments predicts CTHRC1 as a therapeutic target for human cancers. Cancer Cell Int 2021; 21:566. [PMID: 34702252 PMCID: PMC8549344 DOI: 10.1186/s12935-021-02266-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The function of collagen triple helix repeat containing 1 (CTHRC1) as an oncogene has been reported in a growing number of publications. Bioinformatics methods represent a beneficial approach to examine the mechanism and function of the CTHRC1 gene in the disease process of cancers from a pan-cancer perspective. METHODS In this study, using the online databases UCSC, NCBI, HPA, TIMER2, Oncomine, GEPIA, UALCAN, cBioPortal, COSMIC, MEXPRESS, STRING, CCLE, LinkedOmics, GTEx, TCGA, CGGA, and SangerBox, we focused on the relationship between CTHRC1 and tumorigenesis, progression, methylation, immunity, and prognosis. qPCR was used to detect CTHRC1 expression in glioma tissues and cell lines. RESULTS The pan-cancer analysis showed that CTHRC1 was overexpressed in most tumors, and a significant correlation was observed between CTHRC1 expression and the prognosis of patients with cancer. CTHRC1 genetic alterations occur in diverse tumors and are associated with tumor progression. Levels of CTHRC1 promoter methylation were decreased in most cancer tissues compared with normal tissues. In addition, CTHRC1 coordinated the activity of ICP genes through diverse signal transduction pathways, was also associated with immune cell infiltration and the tumor microenvironment, and potentially represented a promising immunotherapy target. We identified CTHRC1-related genes across cancers using the GEPIA2 tool. The single-gene GO analysis of CTHRC1 across cancers showed that it was involved in some signaling pathways and biological processes, such as the Wnt signaling pathway, cell migration, and positive regulation of protein binding. The expression and function of CTHRC1 were also further verified in glioma tissues and cell lines. CONCLUSIONS CTHRC1 is overexpressed in various cancer types and functions as an important oncogene that may promote tumorigenesis and development through different mechanisms. CTHRC1 may represent an important therapeutic target for human cancers.
Collapse
Affiliation(s)
- Dazhao Peng
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Xiaoyang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Shenghui Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Hao Liang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jiankang Road, Jining, Shandong 272000 People’s Republic of China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| |
Collapse
|