1
|
Huang Y, Xi X, Ye Z, Zhang C, Jiang Y, Yu F, Huang G. MYBL2 promotes proliferation of clear cell renal cell carcinoma by regulating TOP2A and activating AKT/mTOR signaling pathway. FASEB J 2025; 39:e70330. [PMID: 39831843 DOI: 10.1096/fj.202401910r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system, and clear cell renal cell carcinoma (ccRCC) is the most common subtype. MYBL2 has been reported to be overexpressed in various tumors and associated with poor prognosis in patients, but its biological role in ccRCC remains unclear. In this study, we investigated the mRNA and protein expression levels of MYBL2 in ccRCC samples and evaluated the prognostic value of MYBL2 using TCGA dataset. In vitro functional assays were performed using CCK-8, EdU, colony formation, cell scratch, and transwell assays, as well as in vivo tumorigenesis assays to investigate the biological functions of MYBL2 in ccRCC. Additionally, gene set enrichment analysis (GSEA) was used to explore the downstream pathways of MYBL2, which were further validated. Finally, we predicted the target genes of MYBL2 using bioinformatics and validated them using ChIP and dual-luciferase reporter gene assays. MYBL2 expression was significantly higher in ccRCC than in adjacent normal tissues and was associated with poor prognosis. MYBL2 expression was positively correlated with the pathological tumor grade and clinical TNM stage of ccRCC patients. Knockdown of MYBL2 significantly inhibited the proliferation of renal cancer cells in vitro and in vivo, and knockdown of MYBL2 could inhibit cell invasion and migration, while overexpression of MYBL2 had the opposite effect. GSEA revealed that MYBL2 was associated with the mTOR signaling pathway and cell cycle pathway, which was confirmed by our study. Finally, we found that TOP2A was a target gene of MYBL2, and MYBL2 could bind to the TOP2A promoter to regulate its transcriptional activity, promoting the proliferation of clear cell renal cell carcinoma cells. MYBL2 emerges as a highly expressed factor that significantly correlates with adverse patient prognosis in ccRCC. Mechanistically, MYBL2 transcriptionally upregulates TOP2A, thereby modulating the proliferation of ccRCC cells. Furthermore, MYBL2 activates the mTOR signaling pathway, a critical node in the progression of ccRCC. Collectively, these findings position MYBL2 as a promising candidate for both a biological marker and a therapeutic target in the management of ccRCC.
Collapse
Affiliation(s)
- Yawei Huang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqing Xi
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfeng Ye
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Jiang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fanfan Yu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaomin Huang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Dou R, Liu R, Su P, Yu X, Xu Y. The GJB3 correlates with the prognosis, immune cell infiltration, and therapeutic responses in lung adenocarcinoma. Open Med (Wars) 2024; 19:20240974. [PMID: 39135979 PMCID: PMC11317640 DOI: 10.1515/med-2024-0974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/26/2024] [Accepted: 05/01/2024] [Indexed: 08/15/2024] Open
Abstract
Gap junction protein beta 3 (GJB3) has been reported as a tumor suppressor in most tumors. However, its role in lung adenocarcinoma (LUAD) remains unknown. The purpose of this study is to explore the role of GJB3 in the prognosis and tumor microenvironment of LUAD patients. The data used in this study were acquired from The Cancer Genome Atlas, Gene Expression Omnibus, and imvigor210 cohorts. We found that GJB3 expression was increased in LUAD patients and correlated with LUAD stages. LUAD patients with high GJB3 expression exhibited a worse prognosis. A total of 164 pathways were significantly activated in the GJB3 high group. GJB3 expression was positively associated with nine transcription factors and might be negatively regulated by hsa-miR-6511b-5p. Finally, we found that immune cell infiltration and immune checkpoint expression were different between the GJB3 high and GJB3 low groups. In summary. GJB3 demonstrated high expression levels in LUAD patients, and those with elevated GJB3 expression displayed unfavorable prognoses. Additionally, there was a correlation between GJB3 and immune cell infiltration, as well as immune checkpoint expression in LUAD patients.
Collapse
Affiliation(s)
- Ruigang Dou
- Department of Thoracic Surgery, The First Affiliated Hospital of Xingtai Medical College,
Xingtai054000, Hebei, P. R. China
| | - Rongfeng Liu
- Department of Oncology, Fourth Hospital of Hebei Medical University,
Shijiazhuang050011, Hebei, P. R. China
| | - Peng Su
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University,
Shijiazhuang050011, Hebei, P. R. China
| | - Xiaohui Yu
- Department of Computer Science and Technology, Tangshan Normal University,
Tangshan050011, Hebei, P. R. China
| | - Yanzhao Xu
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang050011, Hebei, P. R. China
| |
Collapse
|
3
|
Li Y, Wang S, Guo M, Yang R, Wei X, Li H, Yan S. MYBL2 is a Novel Independent Prognostic Biomarker and Correlated with TMB in pancreatic cancer. J Cancer 2024; 15:4360-4373. [PMID: 38947375 PMCID: PMC11212096 DOI: 10.7150/jca.96320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Pancreatic cancer continues to pose a significant threat due to its high mortality rate. While MYB family genes have been identified as oncogenes in certain cancer types, their role in pancreatic cancer remains largely unexplored. Methods: The mRNA and protein expression of MYB family genes in pancreatic cancer samples was analyzed using TNMplot, HPA, and TISBID online bioinformatics tools, sourced from the TCGA and GETx databases. The relationship between MYB family gene expression and survival time was assessed through Kaplan-Meier analysis, while the prognostic impact of MYB family gene expression was evaluated using the Cox proportional hazards model. Additionally, Spearman's correlation analysis was employed to investigate the correlation between MYB family genes and TMB/MSI. Results: The integration of data from various databases demonstrated that all MYB family genes exhibited dysregulated expression in pancreatic cancer. However, only the expression of the MYBL2 gene displayed a notable association with the grade and stage of pancreatic cancer. Furthermore, the MYBL2 gene exhibited significant variations in both univariate and multivariate factor analyses.Subsequent functional analyses revealed a significant correlation between MYBL2 expression in pancreatic cancers and various biological processes, such as DNA replication, tumor proliferation, G2M checkpoint regulation, pyrimidine metabolism, and the P53 pathway. Additionally, a notable positive association was observed between MYBL2 expression and tumor mutational burden (TMB), a predictive indicator for response to PD1 antibody treatment. Conclusion: MYBL2 may be a double marker for independent diagnosis and PD1 antibody response prediction of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yanping Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Shanshan Wang
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Miao Guo
- College of life science,Shandong First Medical University, Jinan, Shandong 250000, China
| | - Rui Yang
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Xiaonan Wei
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Haibin Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Siyuan Yan
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
4
|
Anand S, Vikramdeo KS, Sudan SK, Sharma A, Acharya S, Khan MA, Singh S, Singh AP. From modulation of cellular plasticity to potentiation of therapeutic resistance: new and emerging roles of MYB transcription factors in human malignancies. Cancer Metastasis Rev 2024; 43:409-421. [PMID: 37950087 PMCID: PMC11015973 DOI: 10.1007/s10555-023-10153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
MYB transcription factors are encoded by a large family of highly conserved genes from plants to vertebrates. There are three members of the MYB gene family in human, namely, MYB, MYBL1, and MYBL2 that encode MYB/c-MYB, MYBL1/A-MYB, and MYBL2/B-MYB, respectively. MYB was the first member to be identified as a cellular homolog of the v-myb oncogene carried by the avian myeloblastosis virus (AMV) causing leukemia in chickens. Under the normal scenario, MYB is predominantly expressed in hematopoietic tissues, colonic crypts, and neural stem cells and plays a role in maintaining the undifferentiated state of the cells. Over the years, aberrant expression of MYB genes has been reported in several malignancies and recent years have witnessed tremendous progress in understanding of their roles in processes associated with cancer development. Here, we review various MYB alterations reported in cancer along with the roles of MYB family proteins in tumor cell plasticity, therapy resistance, and other hallmarks of cancer. We also discuss studies that provide mechanistic insights into the oncogenic functions of MYB transcription factors to identify potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shashi Anand
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Amod Sharma
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Srijan Acharya
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Mohammad Aslam Khan
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Seema Singh
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
5
|
Devall M, Eaton S, Yoshida C, Powell SM, Casey G, Li L. Assessment of Colorectal Cancer Risk Factors through the Application of Network-Based Approaches in a Racially Diverse Cohort of Colon Organoid Stem Cells. Cancers (Basel) 2023; 15:3550. [PMID: 37509213 PMCID: PMC10377524 DOI: 10.3390/cancers15143550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Numerous demographic factors have been associated with colorectal cancer (CRC) risk. To better define biological mechanisms underlying these associations, we performed RNA sequencing of stem-cell-enriched organoids derived from the healthy colons of seven European Americans and eight African Americans. A weighted gene co-expression network analysis was performed following RNA sequencing. Module-trait relationships were determined through the association testing of each module and five CRC risk factors (age, body mass index, sex, smoking history, and race). Only modules that displayed a significantly positive correlation for gene significance and module membership were considered for further investigation. In total, 16 modules were associated with known CRC risk factors (p < 0.05). To contextualize the role of risk modules in CRC, publicly available RNA-sequencing data from TCGA-COAD were downloaded and re-analyzed. Differentially expressed genes identified between tumors and matched normal-adjacent tissue were overlaid across each module. Loci derived from CRC genome-wide association studies were additionally overlaid across modules to identify robust putative targets of risk. Among them, MYBL2 and RXRA represented strong plausible drivers through which cigarette smoking and BMI potentially modulated CRC risk, respectively. In summary, our findings highlight the potential of the colon organoid system in identifying novel CRC risk mechanisms in an ancestrally diverse and cellularly relevant population.
Collapse
Affiliation(s)
- Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA (L.L.)
| | - Stephen Eaton
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA (L.L.)
| | - Cynthia Yoshida
- Digestive Health Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Steven M. Powell
- Digestive Health Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA (L.L.)
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
6
|
Farzaneh M, Najafi S, Sheykhi-Sabzehpoush M, Nezhad Dehbashi F, Anbiyaee O, Nasrolahi A, Azizidoost S. The stem cell-specific long non-coding RNAs in leukemia. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:345-351. [PMID: 36168086 DOI: 10.1007/s12094-022-02952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
Leukemia is defined as a heterogeneous group of hematological cancers whose prevalence is on the rise worldwide. Despite the large body of studies, the etiology of leukemia has not been fully elucidated. Leukemia stem cells (LSCs) are a subpopulation of cancer cells that sustain the growth of the leukemic clone and are the main culprit for the maintenance of the neoplasm. In contrast to most leukemia cells, LSCs are resistant to chemo- and radiotherapy. Several recent studies demonstrated the altered expression profile of long non-coding RNAs (lncRNAs) in LSCs and shed light on the role of lncRNAs in the survival, proliferation, and differentiation of LSCs. LncRNAs are transcripts longer than 200 nucleotides that are implicated in several cellular and molecular processes such as gene expression, apoptosis, and carcinogenesis. Likewise, lncRNAs have shown a prognostic marker in leukemia patients and represent novel treatment options. Herein, we review the current knowledge concerning lncRNAs' implication in the pathogenesis of LSCs and discuss their prognostic, diagnostic, and therapeutic potential.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Nezhad Dehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, School of Medicine, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Nasrolahi
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Otálora-Otálora BA, López-Kleine L, Rojas A. Lung Cancer Gene Regulatory Network of Transcription Factors Related to the Hallmarks of Cancer. Curr Issues Mol Biol 2023; 45:434-464. [PMID: 36661515 PMCID: PMC9857713 DOI: 10.3390/cimb45010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The transcriptomic analysis of microarray and RNA-Seq datasets followed our own bioinformatic pipeline to identify a transcriptional regulatory network of lung cancer. Twenty-six transcription factors are dysregulated and co-expressed in most of the lung cancer and pulmonary arterial hypertension datasets, which makes them the most frequently dysregulated transcription factors. Co-expression, gene regulatory, coregulatory, and transcriptional regulatory networks, along with fibration symmetries, were constructed to identify common connection patterns, alignments, main regulators, and target genes in order to analyze transcription factor complex formation, as well as its synchronized co-expression patterns in every type of lung cancer. The regulatory function of the most frequently dysregulated transcription factors over lung cancer deregulated genes was validated with ChEA3 enrichment analysis. A Kaplan-Meier plotter analysis linked the dysregulation of the top transcription factors with lung cancer patients' survival. Our results indicate that lung cancer has unique and common deregulated genes and transcription factors with pulmonary arterial hypertension, co-expressed and regulated in a coordinated and cooperative manner by the transcriptional regulatory network that might be associated with critical biological processes and signaling pathways related to the acquisition of the hallmarks of cancer, making them potentially relevant tumor biomarkers for lung cancer early diagnosis and targets for the development of personalized therapies against lung cancer.
Collapse
Affiliation(s)
- Beatriz Andrea Otálora-Otálora
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| | - Adriana Rojas
- Facultad de Medicina, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| |
Collapse
|
8
|
Morris BB, Smith JP, Zhang Q, Jiang Z, Hampton OA, Churchman ML, Arnold SM, Owen DH, Gray JE, Dillon PM, Soliman HH, Stover DG, Colman H, Chakravarti A, Shain KH, Silva AS, Villano JL, Vogelbaum MA, Borges VF, Akerley WL, Gentzler RD, Hall RD, Matsen CB, Ulrich CM, Post AR, Nix DA, Singer EA, Larner JM, Stukenberg PT, Jones DR, Mayo MW. Replicative Instability Drives Cancer Progression. Biomolecules 2022; 12:1570. [PMID: 36358918 PMCID: PMC9688014 DOI: 10.3390/biom12111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 01/07/2023] Open
Abstract
In the past decade, defective DNA repair has been increasingly linked with cancer progression. Human tumors with markers of defective DNA repair and increased replication stress exhibit genomic instability and poor survival rates across tumor types. Seminal studies have demonstrated that genomic instability develops following inactivation of BRCA1, BRCA2, or BRCA-related genes. However, it is recognized that many tumors exhibit genomic instability but lack BRCA inactivation. We sought to identify a pan-cancer mechanism that underpins genomic instability and cancer progression in BRCA-wildtype tumors. Methods: Using multi-omics data from two independent consortia, we analyzed data from dozens of tumor types to identify patient cohorts characterized by poor outcomes, genomic instability, and wildtype BRCA genes. We developed several novel metrics to identify the genetic underpinnings of genomic instability in tumors with wildtype BRCA. Associated clinical data was mined to analyze patient responses to standard of care therapies and potential differences in metastatic dissemination. Results: Systematic analysis of the DNA repair landscape revealed that defective single-strand break repair, translesion synthesis, and non-homologous end-joining effectors drive genomic instability in tumors with wildtype BRCA and BRCA-related genes. Importantly, we find that loss of these effectors promotes replication stress, therapy resistance, and increased primary carcinoma to brain metastasis. Conclusions: Our results have defined a new pan-cancer class of tumors characterized by replicative instability (RIN). RIN is defined by the accumulation of intra-chromosomal, gene-level gain and loss events at replication stress sensitive (RSS) genome sites. We find that RIN accelerates cancer progression by driving copy number alterations and transcriptional program rewiring that promote tumor evolution. Clinically, we find that RIN drives therapy resistance and distant metastases across multiple tumor types.
Collapse
Affiliation(s)
- Benjamin B. Morris
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jason P. Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | - Susanne M. Arnold
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, Lexington, KY 40536, USA
| | - Dwight H. Owen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jhanelle E. Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Patrick M. Dillon
- Division of Hematology/Oncology, Department of Internal Medicine, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Hatem H. Soliman
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daniel G. Stover
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Howard Colman
- Huntsman Cancer Institute and Department of Neurosurgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Kenneth H. Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ariosto S. Silva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John L. Villano
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, Lexington, KY 40536, USA
| | | | - Virginia F. Borges
- Division of Medical Oncology, University of Colorado Comprehensive Cancer Center, Aurora, CO 80045, USA
| | - Wallace L. Akerley
- Department of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Ryan D. Gentzler
- Division of Hematology/Oncology, Department of Internal Medicine, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Richard D. Hall
- Division of Hematology/Oncology, Department of Internal Medicine, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Cindy B. Matsen
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - C. M. Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew R. Post
- Department of Biomedical Informatics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - David A. Nix
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Eric A. Singer
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - James M. Larner
- Department of Radiation Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Peter Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - David R. Jones
- Department of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marty W. Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Zhong NS, Tong WL, Zhang Y, Xiao SN, Liu JM, Li AA, Yao GL, Lin Q, Liu ZL. HELQ suppresses migration and proliferation of non-small cell lung cancer cells by repairing DNA damage and inducing necrosis. Cell Biol Int 2022; 47:188-200. [PMID: 36183369 DOI: 10.1002/cbin.11922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/19/2022] [Indexed: 01/22/2023]
Abstract
HELQ plays a key role in DNA damage response and cell-cycle checkpoint regulation. It has been implicated in ovarian and pituitary tumors and may play a role in germ cell maintenance. This study investigated the role of HELQ in lung cancer. The expression of HELQ in patients with non-small-cell lung cancer (NSCLC) was downregulated compared with normal human lungs. Clinical prognostic analysis of Kaplan-Meier plots revealed that patients with NSCLC with low HELQ levels had a reduced overall survival. Further, we found that HELQ depletion enhanced lung cancer cell malignancy. Furthermore, overexpression of HELQ in lung cancer cells reduced cell migration in vitro, while DNA damage repair was inhibited. Both in vitro and in vivo studies have shown that HELQ induces cell death. Mechanistically, we found that cells overexpressing HELQ showed a tendency to induce necrosis. After analyzing the database of HELQ interactors. we found that RIPK3 may interact with it and proved this conclusion by immunoprecipitation. Our findings identified the tumor suppressive role of HELQ in malignant human lung cancer and unraveled a potential therapeutic strategy for cancer treatment through HELQ activation. Moreover, HELQ may also be a predictive biomarker for the clinical predisposition, progression, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Nan Shan Zhong
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Wei Lai Tong
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Yu Zhang
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Shi Ning Xiao
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Jia Ming Liu
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - An An Li
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Ge Liang Yao
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Massachusetts, USA
| | - Zhi Li Liu
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| |
Collapse
|
10
|
杨 明, 朱 旭, 沈 炀, 何 麒, 秦 远, 邵 轶, 袁 琳, 叶 和. [High expression of MYBL2 promotes progression and predicts a poor survival outcome of prostate cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1109-1118. [PMID: 36073208 PMCID: PMC9458535 DOI: 10.12122/j.issn.1673-4254.2022.08.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the correlation of MYB proto-oncogene like 2 (MYBL2) with biological behaviors and clinical prognosis of prostate cancer (PCa). METHODS We detected Mybl2 mRNA expression in 45 pairs of PCa and adjacent tissues using real-time quantitative PCR, and analyzed the correlation of high (23 cases) and low expression (22 cases) of Mybl2 with clinicopathological features and prognosis of the patients using nonparametric test, Kaplan-Meier survival analysis and univariate and multivariate Cox regression. The results were verified by analysis of the data from Cancer Genome Atlas (TCGA) microarray database, and the molecular pathways were identified by gene set enrichment analysis (GSEA). The CIBERPORT algorithm was used to identify the correlations between Mybl2 expression and tumor microenvironment of PCa. We also tested the effects of MYBL2 knockdown on proliferation and invasion of PCa cell lines using cell counting kit-8 and Transwell assays and observed the growth of PC3 cell xenograft with MYBL2 knockdown in nude mice and the expression levels of Ki-67 in the xenograft using immunohistochemistry. RESULTS Mybl2 expression was significantly elevated in PCa tissues in close correlation with Gleason score and clinical and pathological stage of the tumor (P < 0.01) but not with the patients' age. Kaplan-Meier analysis indicated a significant negative correlation of high Mybl2 expression with recurrence-free survival (P < 0.05), but not with the overall survival of the patients. The data from TCGA suggested that clinical and pathological stages were independent prognostic factors for recurrence-free survival, and our data indicated that clinical stage and Gleason score were independent prognostic factors of PCa (P < 0.05). GSEA suggested that Mybl2 expression was related with the pathways involving immune function, cell adhesion, and cytokine secretion; CIBERPORT analysis suggested the involvement of Mybl2 expression with memory B cells and resting mast cells (P < 0.05). In LNCaP and PC-3 cells, MYBL2 knockdown significantly inhibited cell proliferation and invasion (P < 0.05); in the tumor-bearing nude mice, the xenografts derived from PC-3 cells with MYBL2 knockdown exhibited a lowered mean tumor weight and positivity rate for Ki67 (P < 0.05). CONCLUSION Mybl2 is an oncogene related with multiple pathological indicators of PCa and can serve as a potential prognostic marker as well as a therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- 明 杨
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - 旭东 朱
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - 炀 沈
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - 麒 何
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - 远 秦
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - 轶群 邵
- 上海中医药大学附属岳阳中西医结合医院泌尿外科,上海 200437Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - 琳 袁
- 南京中医药大学附属医院泌尿外科,江苏 南京 210029Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - 和松 叶
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| |
Collapse
|
11
|
Guo H, Li N, Sun Y, Wu C, Deng H, Xu L, Yang X. MYBL2 Gene Polymorphism Is Associated With Acute Lymphoblastic Leukemia Susceptibility in Children. Front Oncol 2021; 11:734588. [PMID: 34568071 PMCID: PMC8456030 DOI: 10.3389/fonc.2021.734588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Although MYBL2 had been validated to participate in multiple cancers including leukemia, the role of MYBL2 polymorphisms in acute lymphoblastic leukemia (ALL) was still not clear. In this study, we aimed to evaluate the association between MYBL2 single nucleotide polymorphisms (SNPs) and ALL risk in children. Methods A total of 687 pediatric ALL cases and 971 cancer-free controls from two hospitals in South China were recruited. A case-control study by genotyping three SNPs in the MYBL2 gene (rs285162 C>T, rs285207 A>C, and rs2070235 A>G) was conducted. The associations were assessed by odds ratios (ORs) with corresponding 95% confidence intervals (CIs). Subgroup and stratification analyses were conducted to explore the association of rs285207 with ALL risk in terms of age, sex, immunophenotype, risk level, and other clinical characteristics. The false-positive report probability (FPRP) analysis was performed to verify each significant finding. Functional analysis in silico was used to evaluate the probability that rs285207 might influence the regulation of MYBL2 . Results Our study demonstrated that rs285207 was related to a decreased ALL risk (adjusted OR = 0.78; 95% CI = 0.63-0.97, P = 0.022) in the dominant model. The associations of rs285207 with ALL risk appeared stronger in patients with pre B ALL (adjusted OR=0.56; 95% CI=0.38-0.84, P=0.004), with normal diploid (adjusted OR=0.73; 95% CI=0.57-0.95, P=0.017), with low risk (adjusted OR=0.68; 95% CI=0.49-0.94, P=0.021), with lower WBC (adjusted OR=0.62; 95% CI=0.43-0.87, P=0.007) or lower platelet level (adjusted OR=0.76; 95% CI=0.59-0.96, P=0.023). With FPRP analysis, the significant association between the rs285207 polymorphism and decreased ALL risk was still noteworthy (FPRP=0.128). Functional analysis showed that IKZF1 bound to DNA motif overlapping rs285207 and had a higher preference for the risk allele A. As for rs285162 C>T and rs2070235 A>G, no significant was found between them and ALL risk. Conclusion In this study, we revealed that rs285207 polymorphism decreased the ALL risk in children, and rs285207 might alter the binding to IKZF1, which indicated that the MYBL2 gene polymorphism might be a potential biomarker of childhood ALL.
Collapse
Affiliation(s)
- Haixia Guo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaping Sun
- Institute of Systems Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuiling Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huixia Deng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Xu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xu Yang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|