1
|
Wery AR, Salaroli A, Andreozzi F, Paesmans M, Dewispelaere L, Heimann P, Wittnebel S, Lewalle P. Measurable residual disease assessment prior to allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia and myelodysplastic syndromes: a 20-year monocentric study. Ann Hematol 2024; 103:4671-4685. [PMID: 39365357 DOI: 10.1007/s00277-024-06017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) who undergo allogeneic hematopoietic stem-cell transplantation (alloHSCT) can have divergent survival outcomes while all in morphological complete remission (CR). Techniques of measurable residual disease (MRD) have allowed us to refine their prognosis in two categories: MRD-positive and MRD-negative patients. We conducted a monocentric retrospective study (01/2000-12/2020) to assess the prognosis of pretransplant MRD status measured by multiparametric flow cytometry (MFC) and molecular biology assessed by PCR. 192 patients were included. The median follow-up period was 77 months. Among patients undergoing alloHSCT in CR, overall survival (median-OS: 130.6 vs. 16.0 months, P < 0.001), disease-free survival (median-DFS: 109.6 vs. 7.1 months, P < 0.001) and cumulative incidence of relapse (12-month CIR: 7.3% vs. 33.7%, P < 0.0001) were significantly different between MRD-negative and MRD-positive patients. Patients with discordant intermethod results had intermediate DFS. MRD-negative patients according to molecular PCR-based techniques, WT1 overexpression and MFC had longer median-DFS, compared to MRD-positive patients (P = 0.001, P < 0.001, P < 0.001, respectively). Looking into subgroups, MRD-positive patients among the ELN2017 adverse-category (P < 0.0001), myeloablative and reduced-intensity conditioning regimens (P < 0.0001, P = 0.005), < 60-year patients (P < 0.001) and AML patients (P < 0.001) were associated with lower DFS. This difference was not found in ≥ 60-year patients (P = 0.27) and MDS patients (P = 0.70). MRD-positive patients within the favorable/intermediate ELN2017 category trended toward lower DFS (P = 0.05). We confirmed that MRD status prior to alloHSCT is a strong prognostic factor for OS, DFS and CIR. Combining MFC and molecular-PCR techniques to assess MRD seems primordial as inter-method discordance can be consequential.
Collapse
Affiliation(s)
- Alexandre-Raphael Wery
- Department of Hematology, Institut Jules Bordet, Rue Meylemeersch, 90. 1070, Brussels, Belgium.
| | - Adriano Salaroli
- Department of Hematology, Institut Jules Bordet, Rue Meylemeersch, 90. 1070, Brussels, Belgium
| | - Fabio Andreozzi
- Department of Hematology, Institut Jules Bordet, Rue Meylemeersch, 90. 1070, Brussels, Belgium
| | - Marianne Paesmans
- Information Management Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurent Dewispelaere
- Laboratory of Hematology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Heimann
- Laboratory of Hematology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Sebastian Wittnebel
- Department of Hematology, Institut Jules Bordet, Rue Meylemeersch, 90. 1070, Brussels, Belgium
| | - Philippe Lewalle
- Department of Hematology, Institut Jules Bordet, Rue Meylemeersch, 90. 1070, Brussels, Belgium
| |
Collapse
|
2
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
3
|
Sun Y, Zhu G, Zhong H. Minimal residual disease monitoring in acute myeloid leukemia: Focus on MFC-MRD and treatment guidance for elderly patients. Eur J Haematol 2024; 112:870-878. [PMID: 38342613 DOI: 10.1111/ejh.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/13/2024]
Abstract
Acute myeloid leukemia (AML) is distinguished by clonal growth of myeloid precursor cells, which impairs normal hematopoiesis. Minimal residual disease (MRD) refers to the residual leukemia cells that persist after chemotherapy. Patients who test positive for MRD have a higher likelihood of experiencing a recurrence, regardless of the specific chemotherapy approach used. Multi-parameter flow cytometry (MFC), polymerase chain reaction (PCR), and next-generation sequencing (NGS) are commonly employed techniques for identifying MRD. In the context of AML, patients are frequently monitored for measurable residual disease via multi-parameter flow cytometry (MFC-MRD). In order to explore recent advancements in AML and MRD diagnosis, an extensive search of the PubMed database was conducted, focusing on relevant research in the past 20 years. This review aims to examine various MRD monitoring methods, the optimal time points for assessment, as well as different specimen types used. Additionally, it underscores the significance of MFC-MRD assessment in guiding the treatment of elderly AML.
Collapse
Affiliation(s)
- Yue Sun
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Gelan Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Récher C. Transplant in AML: just follow the NPM1 guide! Blood 2024; 143:1881-1882. [PMID: 38722660 DOI: 10.1182/blood.2024024074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
|
5
|
Cloos J. Understanding differential technologies for detection of MRD and how to incorporate into clinical practice. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:682-690. [PMID: 38066915 PMCID: PMC10727023 DOI: 10.1182/hematology.2023000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Patient- and leukemia-specific factors assessed at diagnosis classify patients with acute myeloid leukemia (AML) in risk categories that are prognostic for outcome. The induction phase with intensive chemotherapy in fit patients aims to reach a complete remission (CR) of less than 5% blasts in bone marrow by morphology. To deepen and sustain the response, induction is followed by consolidation treatment. This postremission treatment of patients with AML is graduated in intensity based on this favorable, intermediate, or adverse risk group classification as defined in the European Leukemia Network (ELN) 2022 recommendations. The increment of evidence that measurable residual disease (MRD) after induction can be superimposed on risk group at diagnosis is instrumental in tailoring further treatment accordingly. Several techniques are applied to detect MRD such as multiparameter flow cytometry (MFC), quantitative (digital) polymerase chain reaction (PCR), and next-generation sequencing. The clinical implementation of MRD and the technique used differ among institutes, leading to the accumulation of a wide range of data, and therefore harmonization is warranted. Currently, evidence for MRD guidance is limited to the time point after induction using MFC or quantitative PCR for NPM1 and core binding factor abnormalities in intermediate-risk patients. The role of MRD in targeted or nonintensive therapies needs to be clarified, although some data show improved survival in patients achieving CR-MRD negativity. Potential application of MRD for selection of conditioning before stem cell transplantation, monitoring after consolidation, and use as an intermediate end point in clinical trials need further evaluation.
Collapse
Affiliation(s)
- Jacqueline Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, location VUMC, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Xu D, Yang Y, Yin Z, Tu S, Nie D, Li Y, Huang Z, Sun Q, Huang C, Nie X, Yao Z, Shi P, Zhang Y, Jiang X, Liu Q, Yu G. Risk-directed therapy based on genetics and MRD improves the outcomes of AML1-ETO-positive AML patients, a multi-center prospective cohort study. Blood Cancer J 2023; 13:168. [PMID: 37957175 PMCID: PMC10643486 DOI: 10.1038/s41408-023-00941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Affiliation(s)
- Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qixin Sun
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou, China
| | - Changfen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaqi Nie
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zurong Yao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Chiad Z, Chojecki A. Graft versus Leukemia in 2023. Best Pract Res Clin Haematol 2023; 36:101476. [PMID: 37611995 DOI: 10.1016/j.beha.2023.101476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 08/25/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is commonly utilized in the management of leukemia across multiple subtypes. Graft versus leukemia (GVL) is a critical component of successful transplantation and involves donor cells eradicating residual leukemia within the recipient. Graft versus host disease (GVHD) by contrast is a common complication of the transplantation process in which donor cells identify the recipient's various organ systems as foreign, thereby leading to a multitude of organ toxicities that can be described as autoimmune in nature. As both GVL and GVHD are mediated by a similar mechanism, these processes are felt to occur in tandem with one another. Here, we review the allogeneic HCT process in the context of GVL.
Collapse
Affiliation(s)
- Zane Chiad
- 1021 Morehead Medical Drive, Building 2, Charlotte, NC, 28204, USA.
| | | |
Collapse
|
9
|
Dekker SE, Rea D, Cayuela JM, Arnhardt I, Leonard J, Heuser M. Using Measurable Residual Disease to Optimize Management of AML, ALL, and Chronic Myeloid Leukemia. Am Soc Clin Oncol Educ Book 2023; 43:e390010. [PMID: 37311155 DOI: 10.1200/edbk_390010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, we discuss the use of measurable residual disease (MRD) in AML, ALL, and chronic myeloid leukemia (CML). Our aims were to review the different methodologies for MRD assessment; describe the clinical relevance and medical decision making on the basis of MRD; compare and contrast the usage of MRD across AML, ALL, and CML; and discuss what patients need to know about MRD as it relates to their disease status and treatment. Finally, we discuss ongoing challenges and future directions with the goal of optimizing MRD usage in leukemia management.
Collapse
Affiliation(s)
- Simone E Dekker
- Department of Medicine, Oregon Health & Science University, Portland, OR
| | - Delphine Rea
- France Intergroupe des Leucémies Myéloïdes chroniques FiLMC, Hôpital Saint-Louis APHP, Paris, France
- Service d'Hématologie Adulte, Hôpital Saint-Louis APHP, Paris, France
| | - Jean-Michel Cayuela
- France Intergroupe des Leucémies Myéloïdes chroniques FiLMC, Hôpital Saint-Louis APHP, Paris, France
- Laboratoire de Biologie Moléculaire, Hôpital Saint-Louis APHP, Paris, France
| | - Isabell Arnhardt
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Jessica Leonard
- Division of Hematology-Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Comprehensive Cancer Center Lower Saxony, Hannover, Germany
| |
Collapse
|
10
|
Srinivasan Rajsri K, Roy N, Chakraborty S. Acute Myeloid Leukemia Stem Cells in Minimal/Measurable Residual Disease Detection. Cancers (Basel) 2023; 15:2866. [PMID: 37345204 PMCID: PMC10216329 DOI: 10.3390/cancers15102866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by an abundance of incompletely matured or immature clonally derived hematopoietic precursors called leukemic blasts. Rare leukemia stem cells (LSCs) that can self-renew as well as give rise to leukemic progenitors comprising the bulk of leukemic blasts are considered the cellular reservoir of disease initiation and maintenance. LSCs are widely thought to be relatively resistant as well as adaptive to chemotherapy and can cause disease relapse. Therefore, it is imperative to understand the molecular bases of LSC forms and functions during different stages of disease progression, so we can more accurately identify these cells and design therapies to target them. Irrespective of the morphological, cytogenetic, and cellular heterogeneity of AML, the uniform, singularly important and independently significant prognosticator of disease response to therapy and patient outcome is measurable or minimal residual disease (MRD) detection, defined by residual disease detection below the morphology-based 5% blast threshold. The importance of LSC identification and frequency estimation during MRD detection, in order to make MRD more effective in predicting disease relapse and modifying therapeutic regimen is becoming increasingly apparent. This review focuses on summarizing functional and cellular composition-based LSC identification and linking those studies to current techniques of MRD detection to suggest LSC-inclusive MRD detection as well as outline outstanding questions that need to be addressed to improve the future of AML clinical management and treatment outcomes.
Collapse
Affiliation(s)
- Kritika Srinivasan Rajsri
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; (K.S.R.); (N.R.)
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Nainita Roy
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; (K.S.R.); (N.R.)
| | - Sohini Chakraborty
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; (K.S.R.); (N.R.)
| |
Collapse
|
11
|
Costa RG, Silva SL, Dias IR, Oliveira MDS, Rodrigues ACBDC, Dias RB, Bezerra DP. Emerging drugs targeting cellular redox homeostasis to eliminate acute myeloid leukemia stem cells. Redox Biol 2023; 62:102692. [PMID: 37031536 PMCID: PMC10119960 DOI: 10.1016/j.redox.2023.102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous group of disorders with large differences in the percentage of immature blasts that presently are classified according to the specific mutations that trigger malignant proliferation among thousands of mutations reported thus far. It is an aggressive disease for which few targeted therapies are available and still has a high recurrence rate and low overall survival. The main reason for AML relapse is believed to be due to leukemic stem cells (LSCs) that have unlimited self-renewal capacity and long residence in a quiescent state, which promote greater resistance to traditional therapies for this cancer. AML LSCs have low oxidative stress levels, which appear to be caused by a combination of low mitochondrial activity and high activity of ROS-removing pathways. In this sense, oxidative stress has been thought to be an important new potential target for the treatment of AML patients, targeting the eradication of AML LSCs. The aim of this review is to discuss some drugs that induce oxidative stress to direct new goals for future research focusing on redox imbalance as an effective strategy to eliminate AML LSCs.
Collapse
|
12
|
Teixeira A, Carreira L, Abalde-Cela S, Sampaio-Marques B, Areias AC, Ludovico P, Diéguez L. Current and Emerging Techniques for Diagnosis and MRD Detection in AML: A Comprehensive Narrative Review. Cancers (Basel) 2023; 15:cancers15051362. [PMID: 36900154 PMCID: PMC10000116 DOI: 10.3390/cancers15051362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a group of hematologic neoplasms characterized by abnormal differentiation and proliferation of myeloid progenitor cells. AML is associated with poor outcome due to the lack of efficient therapies and early diagnostic tools. The current gold standard diagnostic tools are based on bone marrow biopsy. These biopsies, apart from being very invasive, painful, and costly, have low sensitivity. Despite the progress uncovering the molecular pathogenesis of AML, the development of novel detection strategies is still poorly explored. This is particularly important for patients that check the criteria for complete remission after treatment, since they can relapse through the persistence of some leukemic stem cells. This condition, recently named as measurable residual disease (MRD), has severe consequences for disease progression. Hence, an early and accurate diagnosis of MRD would allow an appropriate therapy to be tailored, improving a patient's prognosis. Many novel techniques with high potential in disease prevention and early detection are being explored. Among them, microfluidics has flourished in recent years due to its ability at processing complex samples as well as its demonstrated capacity to isolate rare cells from biological fluids. In parallel, surface-enhanced Raman scattering (SERS) spectroscopy has shown outstanding sensitivity and capability for multiplex quantitative detection of disease biomarkers. Together, these technologies can allow early and cost-effective disease detection as well as contribute to monitoring the efficiency of treatments. In this review, we aim to provide a comprehensive overview of AML disease, the conventional techniques currently used for its diagnosis, classification (recently updated in September 2022), and treatment selection, and we also aim to present how novel technologies can be applied to improve the detection and monitoring of MRD.
Collapse
Affiliation(s)
- Alexandra Teixeira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Luís Carreira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Anabela C. Areias
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (P.L.); (L.D.)
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
- Correspondence: (P.L.); (L.D.)
| |
Collapse
|
13
|
Meddi E, Savi A, Moretti F, Mallegni F, Palmieri R, Paterno G, Buzzatti E, Del Principe MI, Buccisano F, Venditti A, Maurillo L. Measurable Residual Disease (MRD) as a Surrogate Efficacy-Response Biomarker in AML. Int J Mol Sci 2023; 24:ijms24043062. [PMID: 36834477 PMCID: PMC9967250 DOI: 10.3390/ijms24043062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In acute myeloid leukemia (AML) many patients experience relapse, despite the achievement of morphological complete remission; therefore, conventional morphologic criteria are currently considered inadequate for assessing the quality of the response after treatment. Quantification of measurable residual disease (MRD) has been established as a strong prognostic marker in AML and patients that test MRD negative have lower relapse rates and better survival than those who test positive. Different techniques, varying in their sensitivity and applicability to patients, are available for the measurement of MRD and their use as a guide for selecting the most optimal post-remission therapy is an area of active investigation. Although still controversial, MRD prognostic value promises to support drug development serving as a surrogate biomarker, potentially useful for accelerating the regulatory approval of new agents. In this review, we will critically examine the methods used to detect MRD and its potential role as a study endpoint.
Collapse
Affiliation(s)
- Elisa Meddi
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Arianna Savi
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Federico Moretti
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Flavia Mallegni
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Raffaele Palmieri
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | | | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | | | - Francesco Buccisano
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
- Correspondence:
| | - Luca Maurillo
- Hematology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
14
|
Pretransplantation Plasma ST2 Level as a Prognostic Biomarker of 1-Year Nonrelapse Mortality in Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2023; 29:97.e1-97.e6. [PMID: 36375798 DOI: 10.1016/j.jtct.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Soluble ST2 is established as a prognostic biomarker of nonrelapse mortality (NRM) when measured early after allogeneic hematopoietic cell transplantation (HCT). However, less is known about the prognostic value of ST2 measured before transplantation. We hypothesized that pretransplantation plasma ST2 level was associated with 1-year NRM and could add to our current prognostic assessment. Moreover, we aimed to investigate the associations between pretransplantation plasma ST2 levels and patient characteristics and other plasma biomarkers and to reproduce previous associations between post-transplantation plasma ST2 levels and outcomes of HCT. We conducted this cohort study of 374 adults who underwent allogeneic HCT at our center between July 2015 and December 2019 (median age, 59 years; 55% with a nonmyeloablative conditioning regimen). ST2 levels were measured by enzyme-linked immunosorbent assay in stored plasma samples obtained at a median of 23 days before HCT and also in samples obtained on days +7 and +14 post-HCT. A logistic regression model of 1-year NRM was fitted using an a priori defined set of covariates consisting of age, Hematopoietic Cell Transplantation-Specific Comorbidity Index (HCT-CI), and conditioning intensity (myeloablative versus nonmyeloablative), to which the pretransplantation ST2 level was added as a variable to assess its incremental prognostic value. Models also were fitted of 1-year all-cause mortality, relapse, and grade II-IV acute graft-versus-host disease (GVHD) for pretransplantation and post-transplantation ST2 levels. The median pretransplantation plasma ST2 level was 20.4 ng/mL (interquartile range, 15.2 to 27.2 ng/mL). Pretransplantation ST2 levels were higher in males compared with females (median, 22.2 ng/mL versus 18.1 ng/mL; P < .001) and were correlated with HCT-CI (Spearman ρ = .18; P < .001), body mass index (ρ = .10; P = .05), and plasma levels of C-reactive protein (ρ = .34; P < .001), creatinine (ρ = .17; P = .001), and albumin (ρ = -.17; P < .001). Pretransplantation ST2 levels added prognostic information about 1-year NRM to age, HCT-CI, and conditioning intensity (adjusted odds ratio [OR] of 1-year NRM per 10 ng/mL increase in ST2, 1.32; 95% confidence interval [CI], 1.05 to 1.65; P = .02). Although adding pretransplantation ST2 levels did not notably improve model discrimination (.674 to .675, ΔAUC = .001), it increased the diversity of the predicted risks (P = .02, likelihood ratio test). Pretransplantation ST2 levels also were prognostic of 1-year all-cause mortality (adjusted OR per 10-ng/mL increase, 1.23; 95% CI, 1.02 to 1.48; P = .03), but not of relapse (P = .47) or acute GvHD (P = .81). Plasma ST2 levels at day +7 were prognostic of 1-year NRM, all-cause mortality, relapse, and acute GVHD, whereas levels at day +14 were prognostic of 1-year NRM and all-cause mortality. Our results show that pretransplantation plasma ST2 levels added prognostic information about 1-year NRM to age, HCT-CI, and conditioning intensity, and suggest that ST2 has potential as a biomarker of pretransplantation vulnerability and should be considered in future developments of prediction models of NRM after allogeneic HCT.
Collapse
|
15
|
Gjaerde LK, Jakobsen LH, Juhl-Christensen C, Olesen G, Petruskevicius I, Severinsen MT, Marcher CW, Theilgaard-Mönch K, Andersen NS, Friis LS, Kornblit B, Petersen SL, Schjødt I, Sengeløv H. Trends in survival and cure after allogeneic haematopoietic cell transplantation for acute myeloid leukaemia from 2000 to 2020: A Danish population-based cohort study. Br J Haematol 2023; 200:e40-e43. [PMID: 36263998 DOI: 10.1111/bjh.18511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Lars K Gjaerde
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse H Jakobsen
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark.,Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | | | - Gitte Olesen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Claus W Marcher
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | | | | | - Lone S Friis
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Brian Kornblit
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | | | - Ida Schjødt
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Allam S, Nasr K, Khalid F, Shah Z, Khan Suheb MZ, Mulla S, Vikash S, Bou Zerdan M, Anwer F, Chaulagain CP. Liquid biopsies and minimal residual disease in myeloid malignancies. Front Oncol 2023; 13:1164017. [PMID: 37213280 PMCID: PMC10196237 DOI: 10.3389/fonc.2023.1164017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
Minimal residual disease (MRD) assessment through blood component sampling by liquid biopsies (LBs) is increasingly being investigated in myeloid malignancies. Blood components then undergo molecular analysis by flow cytometry or sequencing techniques and can be used as a powerful tool for prognostic and predictive purposes in myeloid malignancies. There is evidence and more is evolving about the quantification and identification of cell-based and gene-based biomarkers in myeloid malignancies to monitor treatment response. MRD based acute myeloid leukemia protocol and clinical trials are currently incorporating LB testing and preliminary results are encouraging for potential widespread use in clinic in the near future. MRD monitoring using LBs are not standard in myelodysplastic syndrome (MDS) but this is an area of active investigation. In the future, LBs can replace more invasive techniques such as bone marrow biopsies. However, the routine clinical application of these markers continues to be an issue due to lack of standardization and limited number of studies investigating their specificities. Integrating artificial intelligence (AI) could help simplify the complex interpretation of molecular testing and reduce errors related to operator dependency. Though the field is rapidly evolving, the applicability of MRD testing using LB is mostly limited to research setting at this time due to the need for validation, regulatory approval, payer coverage, and cost issues. This review focuses on the types of biomarkers, most recent research exploring MRD and LB in myeloid malignancies, ongoing clinical trials, and the future of LB in the setting of AI.
Collapse
Affiliation(s)
- Sabine Allam
- Department of Medicine and Medical Sciences, University of Balamand, Dekwaneh, Lebanon
| | - Kristina Nasr
- Department of Medicine and Medical Sciences, University of Balamand, Dekwaneh, Lebanon
| | - Farhan Khalid
- Department of Internal Medicine, Monmouth Medical Center, Long Branch, NJ, United States
| | - Zunairah Shah
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, IL, United States
| | | | - Sana Mulla
- Department of Internal Medicine, St Mary’s Medical Center, Apple Valley, CA, United States
| | - Sindhu Vikash
- Department of Medicine, Jacobi Medical center/AECOM Bronx, Bronx, NY, United States
| | - Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, New York, NY, United States
| | - Faiz Anwer
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, United States
| | - Chakra P. Chaulagain
- Department of Hematology and Oncology, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, United States
- *Correspondence: Chakra P. Chaulagain,
| |
Collapse
|
17
|
Granroth G, Khera N, Arana Yi C. Progress and Challenges in Survivorship After Acute Myeloid Leukemia in Adults. Curr Hematol Malig Rep 2022; 17:243-253. [PMID: 36117228 PMCID: PMC9483315 DOI: 10.1007/s11899-022-00680-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) survivors face unique challenges affecting long-term outcomes and quality of life. There is scant literature on the long-term impact of AML treatment in physical and mental health, disease recurrence, and financial burden in survivors. RECENT FINDINGS Fatigue, mental health concerns, infections, sexual dysfunction, and increase cancer recurrence occur after AML treatment. Chronic graft-versus-host disease (GVHD) and infections are common concerns in AML after hematopoietic stem cell transplantation (HCT). Survivorship guidelines encompass symptoms and complications but fail to provide an individualized care plan for AML survivors. Studies in patient-reported outcomes (PROs) and health-related quality of life (HRQoL) are sparse. Here we discuss the most common aspects pertaining to AML survivorship, late complications, care delivery, prevention of disease recurrence, and potential areas for implementation.
Collapse
|
18
|
Upadhyay Banskota S, Khanal N, Marar RI, Dhakal P, Bhatt VR. Precision Medicine in Myeloid Malignancies: Hype or Hope? Curr Hematol Malig Rep 2022; 17:217-227. [PMID: 35972641 DOI: 10.1007/s11899-022-00674-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW We review how understanding the fitness and comorbidity burden of patients, and molecular landscape of underlying acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) at the time of diagnosis is now integral to treatment. RECENT FINDINGS The upfront identification of patients' fitness and molecular profile facilitates selection of targeted and novel agents, enables risk stratification, allows consideration of allogeneic hematopoietic cell transplantation in high-risk patients, and provides treatment selection for older (age ≥ 75) or otherwise unfit patients who may not tolerate conventional treatment. The use of measurable residual disease (MRD) assessment improves outcome prediction and can also guide therapeutic strategies such as chemotherapy maintenance and transplant. In recent years, several novel drugs have received FDA approval for treating patients with AML with or without specific mutations. A doublet and triplet combination of molecular targeted and other novel treatments have resulted in high response rates in early trials. Following the initial success in AML, novel drugs are undergoing clinical trials in MDS. Unprecedented advances have been made in precision medicine approaches in AML and MDS. However, lack of durable responses and long-term disease control in many patients still present significant challenges, which can only be met, to some extent, with innovative combination strategies throughout the course of treatment from induction to consolidation and maintenance.
Collapse
Affiliation(s)
| | - Nabin Khanal
- Division of Hematology and Oncology, Franciscan Health, Indianapolis, IN, USA
| | - Rosalyn I Marar
- Division of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prajwal Dhakal
- Division of Hematology and Oncology, Blood and Marrow Transplantation Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA, USA
| | - Vijaya Raj Bhatt
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-6840, USA.
| |
Collapse
|
19
|
Tettero JM, Al-Badri WKW, Ngai LL, Bachas C, Breems DA, van Elssen CHMJ, Fischer T, Gjertsen BT, van Gorkom GNY, Gradowska P, Greuter MJE, Griskevicius L, Juliusson G, Maertens J, Manz MG, Pabst T, Passweg J, Porkka K, Löwenberg B, Ossenkoppele GJ, Janssen JJWM, Cloos J. Concordance in measurable residual disease result after first and second induction cycle in acute myeloid leukemia: An outcome- and cost-analysis. Front Oncol 2022; 12:999822. [PMID: 36300090 PMCID: PMC9589259 DOI: 10.3389/fonc.2022.999822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Measurable residual disease (MRD) measured using multiparameter flow-cytometry (MFC) has proven to be an important prognostic biomarker in acute myeloid leukemia (AML). In addition, MRD is increasingly used to guide consolidation treatment towards a non-allogenic stem cell transplantation treatment for MRD-negative patients in the ELN-2017 intermediate risk group. Currently, measurement of MFC-MRD in bone marrow is used for clinical decision making after 2 cycles of induction chemotherapy. However, measurement after 1 cycle has also been shown to have prognostic value, so the optimal time point remains a question of debate. We assessed the independent prognostic value of MRD results at either time point and concordance between these for 273 AML patients treated within and according to the HOVON-SAKK 92, 102, 103 and 132 trials. Cumulative incidence of relapse, event free survival and overall survival were significantly better for MRD-negative (<0.1%) patients compared to MRD-positive patients after cycle 1 and cycle 2 (p ≤ 0.002, for all comparisons). A total of 196 patients (71.8%) were MRD-negative after cycle 1, of which the vast majority remained negative after cycle 2 (180 patients; 91.8%). In contrast, of the 77 MRD-positive patients after cycle 1, only 41 patients (53.2%) remained positive. A cost reduction of –€571,751 per 100 patients could be achieved by initiating the donor search based on the MRD-result after cycle 1. This equals to a 50.7% cost reduction compared to the current care strategy in which the donor search is initiated for all patients. These results show that MRD after cycle 1 has prognostic value and is highly concordant with MRD status after cycle 2. When MRD-MFC is used to guide consolidation treatment (allo vs non-allo) in intermediate risk patients, allogeneic donor search may be postponed or omitted after cycle 1. Since the majority of MRD-negative patients remain negative after cycle 2, this could safely reduce the number of allogeneic donor searches and reduce costs.
Collapse
Affiliation(s)
- Jesse M. Tettero
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- *Correspondence: Jesse M. Tettero,
| | - Waleed K. W. Al-Badri
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lok Lam Ngai
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Dimitri A. Breems
- Department of Hematology, Ziekenhuis Netwerk Antwerpen, Antwerp, Belgium
| | - Catharina H. M. J. van Elssen
- Department of Internal Medicine, Division of Hematology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Thomas Fischer
- Department of Hematology and Oncology, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
| | - Bjorn T. Gjertsen
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Gwendolyn N. Y. van Gorkom
- Department of Internal Medicine, Division of Hematology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Patrycja Gradowska
- The Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON) Data Center, Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Marjolein J. E. Greuter
- Department of Epidemiology and Data Science, Amsterdam Univerisity Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laimonas Griskevicius
- Hematology, Oncology, Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos and Vilnius University, Vilnius, Lithuania
| | - Gunnar Juliusson
- Department of Hematology, Skanes University Hospital, Lund, Sweden
| | - Johan Maertens
- Department of Hematology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital, Zurich, Switzerland
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
| | - Thomas Pabst
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital, Bern, Switzerland
| | - Jakob Passweg
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
- Department of Hematology, University Hospital, Basel, Switzerland
| | - Kimmo Porkka
- Department of Hematology, Helsinki University Hospital Cancer Center, Helsinki, Finland
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center (MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Jeroen J. W. M. Janssen
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
20
|
Pessach I, Spyropoulos T, Lamprianidou E, Kotsianidis I. MRD Monitoring by Multiparametric Flow Cytometry in AML: Is It Time to Incorporate Immune Parameters? Cancers (Basel) 2022; 14:cancers14174294. [PMID: 36077826 PMCID: PMC9454571 DOI: 10.3390/cancers14174294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Measurable residual disease (MRD) is emerging as an important prognostic and predictive biomarker in acute myeloid leukemia (AML). However, its use is currently hampered by the disparity and lack of harmonization between the available MRD methodologies. In addition, the current assessment of MRD in AML focuses only on the quantification of the residual leukemic burden, without addressing the parallel alterations of the antineoplastic immune response that can critically affect the course and outcome of AML, often despite MRD persistence. Incorporating parameters of immune competence provides more consistency with the biological concept of MRD and may lead to higher accuracy. Multiparameter flow cytometry (MFC) is a highly efficacious and sensitive technology for the thorough and synchronous investigation of the kinetics of both antitumor immunity and the leukemic clone. MFC-based MRD provides the platform for the development of a composite leukemia- and immune-based biomarker which can outcompete the current MRD assessment. Abstract Acute myeloid leukemia (AML) is a heterogeneous group of clonal myeloid disorders characterized by intrinsic molecular variability. Pretreatment cytogenetic and mutational profiles only partially inform prognosis in AML, whereas relapse is driven by residual leukemic clones and mere morphological evaluation is insensitive for relapse prediction. Measurable residual disease (MRD), an independent post-diagnostic prognosticator, has recently been introduced by the European Leukemia Net as a new outcome definition. However, MRD techniques are not yet standardized, thus precluding its use as a surrogate endpoint for survival in clinical trials and MRD-guided strategies in real-life clinical practice. AML resistance and relapse involve a complex interplay between clonal and immune cells, which facilitates the evasion of the leukemic clone and which is not taken into account when merely quantifying the residual leukemia. Multiparameter flow cytometry (MFC) offers the possibility of capturing an overall picture of the above interactions at the single cell level and can simultaneously assess the competence of anticancer immune response and the levels of residual clonal cells. In this review, we focus on the current status of MFC-based MRD in diverse AML treatment settings and introduce a novel perspective of combined immune and leukemia cell profiling for MRD assessment in AML.
Collapse
Affiliation(s)
- Ilias Pessach
- Department of Hematology, Athens Medical Center, 11634 Athens, Greece
| | - Theodoros Spyropoulos
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece
- Correspondence: or ; Tel.: +30-25-5103-0320; Fax: +30-25-5107-6154
| |
Collapse
|
21
|
Röhnert MA, Kramer M, Schadt J, Ensel P, Thiede C, Krause SW, Bücklein V, Hoffmann J, Jaramillo S, Schlenk RF, Röllig C, Bornhäuser M, McCarthy N, Freeman S, Oelschlägel U, von Bonin M. Reproducible measurable residual disease detection by multiparametric flow cytometry in acute myeloid leukemia. Leukemia 2022; 36:2208-2217. [PMID: 35851154 PMCID: PMC9417981 DOI: 10.1038/s41375-022-01647-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Measurable residual disease (MRD) detected by multiparametric flow cytometry (MFC) is associated with unfavorable outcome in patients with AML. A simple, broadly applicable eight-color panel was implemented and analyzed utilizing a hierarchical gating strategy with fixed gates to develop a clear-cut LAIP-based DfN approach. In total, 32 subpopulations with aberrant phenotypes with/without expression of markers of immaturity were monitored in 246 AML patients after completion of induction chemotherapy. Reference values were established utilizing 90 leukemia-free controls. Overall, 73% of patients achieved a response by cytomorphology. In responders, the overall survival was shorter for MRDpos patients (HR 3.8, p = 0.006). Overall survival of MRDneg non-responders was comparable to MRDneg responders. The inter-rater-reliability for MRD detection was high with a Krippendorffs α of 0.860. The mean time requirement for MRD analyses at follow-up was very short with 04:31 minutes. The proposed one-tube MFC approach for detection of MRD allows a high level of standardization leading to a promising inter-observer-reliability with a fast turnover. MRD defined by this strategy provides relevant prognostic information and establishes aberrancies outside of cell populations with markers of immaturity as an independent risk feature. Our results imply that this strategy may provide the base for multicentric immunophenotypic MRD assessment.
Collapse
Affiliation(s)
- Maximilian A Röhnert
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany.
| | - Michael Kramer
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Jonas Schadt
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Philipp Ensel
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
- AgenDix GmbH, Dresden, Germany
| | - Stefan W Krause
- Department of Medicine 5, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Veit Bücklein
- Department of Medicine III, University Hospital LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Jörg Hoffmann
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg and University Hospital Giessen and Marburg, Marburg, Germany
| | - Sonia Jaramillo
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard F Schlenk
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Röllig
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
- National Center of Tumor Diseases, Dresden, Germany
| | - Nicholas McCarthy
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sylvie Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Uta Oelschlägel
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Malte von Bonin
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| |
Collapse
|
22
|
Han L, Li Y, Wu J, Peng J, Han X, Zhao H, He C, Li Y, Wang W, Zhang M, Li Y, Sun H, Cao H, Sang L, Jiang Z, Yu J. Post-remission measurable residual disease directs treatment choice and improves outcomes for patients with intermediate-risk acute myeloid leukemia in CR1. Int J Hematol 2022; 116:892-901. [PMID: 36031670 PMCID: PMC9668963 DOI: 10.1007/s12185-022-03441-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Objectives This study retrospectively investigated in which cycle measurable residual disease (MRD) is associated with prognosis in patients in first complete remission (CR1) of intermediate-risk acute myeloid leukemia (AML). Methods The study enrolled 235 younger patients with intermediate-risk AML. MRD was evaluated by multiparameter flow cytometry after the 1st, 2nd, and 3rd chemotherapy cycles (MRD1–3, respectively). Results No significant association was detected after the 1st and 2nd cycles. However, the 5-year incidence of relapse was higher in the MRD3-positive group (n = 99) than in the negative group (n = 136) (48.7% vs. 13.7%, P = 0.005), while 5-year disease-free survival (DFS) and overall survival (OS) were lower in the MRD3-positive group than in the negative group (43.2% vs. 81.0% and 45.4% vs. 84.1%; P = 0.003 and 0.005, respectively). Allogeneic hematopoietic stem cell transplantation led to a lower 5-year relapse, and higher DFS and OS rates than chemotherapy in the MRD3-positive group (22.3% vs. 71.5%, 65.9% vs. 23.0%, and 67.1% vs. 23.9%; P < 0.001, 0.002, and 0.022, respectively), but did not affect the MRD-negative group. Conclusions MRD3 could serve as an indicator for post-remission treatment choice and help improve outcomes for intermediate-risk AML in CR1. Supplementary Information The online version contains supplementary material available at 10.1007/s12185-022-03441-6.
Collapse
|
23
|
Azenkot T, Jonas BA. Clinical Impact of Measurable Residual Disease in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14153634. [PMID: 35892893 PMCID: PMC9330895 DOI: 10.3390/cancers14153634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Advances in immunophenotyping and molecular techniques have allowed for the development of more sensitive diagnostic tests in acute leukemia. These techniques can identify low levels of leukemic cells (quantified as 10−4 to 10−6 ratio to white blood cells) in patient samples. The presence of such low levels of leukemic cells, termed “measurable/minimal residual disease” (MRD), has been shown to be a marker of disease burden and patient outcomes. In acute lymphoblastic leukemia, new agents are highly effective at eliminating MRD for patients whose leukemia progressed despite first line therapies. By comparison, the role of MRD in acute myeloid leukemia is less clear. This commentary reviews select data and remaining questions about the clinical application of MRD to the treatment of patients with acute myeloid leukemia. Abstract Measurable residual disease (MRD) has emerged as a primary marker of risk severity and prognosis in acute myeloid leukemia (AML). There is, however, ongoing debate about MRD-based surveillance and treatment. A literature review was performed using the PubMed database with the keywords MRD or residual disease in recently published journals. Identified articles describe the prognostic value of pre-transplant MRD and suggest optimal timing and techniques to quantify MRD. Several studies address the implications of MRD on treatment selection and hematopoietic stem cell transplant, including patient candidacy, conditioning regimen, and transplant type. More prospective, randomized studies are needed to guide the application of MRD in the treatment of AML, particularly in transplant.
Collapse
Affiliation(s)
- Tali Azenkot
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA;
| | - Brian A. Jonas
- Division of Cellular Therapy, Bone Marrow Transplant, and Malignant Hematology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Correspondence: ; Tel.: +1-916-734-3772
| |
Collapse
|
24
|
Bernardi M, Ferrara F, Carrabba MG, Mastaglio S, Lorentino F, Vago L, Ciceri F. MRD in Venetoclax-Based Treatment for AML: Does it Really Matter? Front Oncol 2022; 12:890871. [PMID: 35924144 PMCID: PMC9339596 DOI: 10.3389/fonc.2022.890871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
The prognosis of newly diagnosed patients with acute myeloid leukemia is still unfavorable in the majority of cases within the intermediate and mainly adverse genetic risk group but also in a considerable fraction of favorable-risk patients, mainly due to recurrence of disease after complete remission achievement or, less frequently, primary refractoriness. Besides genetic classification at diagnosis, post-treatment prognostic factors include measurable residual disease evaluation in patients in complete remission and in most cases measurable residual disease (MRD) positivity predicts hematologic relapse potentially allowing early therapeutic intervention. Currently, the most commonly used methods for detection of minimal residual disease are multiparameter flow cytometry and quantitative PCR, applicable to around 90% and 50% of patients, respectively. In addition, in > 90% of acute myeloid leukemia (AML) patients, molecular aberrations can be identified by next-generation sequencing, a technology that is widely used in clinical practice for the initial mutational screening at the time of diagnosis but more often, for MRD detection because its flexibility allows almost every mutated gene to be used as an MRD marker. Threshold levels of residual disease and correlation with outcome have been thoroughly studied and established in younger patients treated with intensive induction and consolidation chemotherapy as well as after allogeneic transplantation. Yet, experience on MRD monitoring and interpretation in patients treated with low-intensity regimens, including new agents, is still limited. The updated armamentarium of anti-leukemic agents includes the BCL-2 inhibitor venetoclax, which demonstrated good tolerability, high response rates, and prolonged overall survival when combined with hypomethylating agents or low dose cytarabine in patients considered elderly/”unfit” to tolerate intensive regimens. Although remissions with negative minimal residual disease clearly translated into improved outcomes after intensive treatments, data supporting the same evidence in patients receiving low-intensity venetoclax-based treatments are not still consolidated. We here review and discuss more recent data on the minimal residual disease interpretation and role in AML patients treated with venetoclax-based combinations.
Collapse
Affiliation(s)
- Massimo Bernardi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Department of Onco-Hematology, Milan, Italy
- *Correspondence: Massimo Bernardi,
| | | | - Matteo Giovanni Carrabba
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Department of Onco-Hematology, Milan, Italy
| | - Sara Mastaglio
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Department of Onco-Hematology, Milan, Italy
| | - Francesca Lorentino
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Department of Onco-Hematology, Milan, Italy
| | - Luca Vago
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Department of Onco-Hematology, Milan, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Fabio Ciceri
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Department of Onco-Hematology, Milan, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
25
|
Zhigarev D, Varshavsky A, MacFarlane AW, Jayaguru P, Barreyro L, Khoreva M, Dulaimi E, Nejati R, Drenberg C, Campbell KS. Lymphocyte Exhaustion in AML Patients and Impacts of HMA/Venetoclax or Intensive Chemotherapy on Their Biology. Cancers (Basel) 2022; 14:cancers14143352. [PMID: 35884414 PMCID: PMC9320805 DOI: 10.3390/cancers14143352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Patients with acute myeloid leukemia (AML) are routinely treated with either intensive chemotherapy or DNA hypomethylating agents (HMA) in combination with the Bcl-2 inhibitor, venetoclax. While both treatment regimens are highly cytotoxic to the aggressive AML tumor cells, they are also toxic to immune cells. Therefore, we sought to establish the detrimental impacts of these therapies on lymphocytes and their recovery over time in AML patients. Even prior to treatment initiation, the patients were found to have exhausted lymphocytes in peripheral blood, and additional signs of exhaustion were noted after treatment with HMA/venetoclax. In fact, the lymphocytes were still suppressed for two to three months after the initiation of induction therapy. Furthermore, T cells in a subset of patients subsequently found to be resistant to venetoclax therapy exhibited a higher expression of perforin and CD39 and more pronounced IFN-γ production. Abstract Acute myeloid leukemia (AML) is an aggressive malignancy that requires rapid treatment with chemotherapies to reduce tumor burden. However, these chemotherapies can compromise lymphocyte function, thereby hindering normal anti-tumor immune responses and likely limiting the efficacy of subsequent immunotherapy. To better understand these negative impacts, we assessed the immunological effects of standard-of-care AML therapies on lymphocyte phenotype and function over time. When compared to healthy donors, untreated AML patients showed evidence of lymphocyte activation and exhaustion and had more prevalent CD57+NKG2C+ adaptive NK cells, which was independent of human cytomegalovirus (HCMV) status. HMA/venetoclax treatment resulted in a greater fraction of T cells with effector memory phenotype, inhibited IFN-γ secretion by CD8+ T cells, upregulated perforin expression in NK cells, downregulated PD-1 and 2B4 expression on CD4+ T cells, and stimulated Treg proliferation and CTLA-4 expression. Additionally, we showed increased expression of perforin and CD39 and enhanced IFN-γ production by T cells from pre-treatment blood samples of venetoclax-resistant AML patients. Our results provide insight into the lymphocyte status in previously untreated AML patients and the effects of standard-of-care treatments on their biology and functions. We also found novel pre-treatment characteristics of T cells that could potentially predict venetoclax resistance.
Collapse
Affiliation(s)
- Dmitry Zhigarev
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (D.Z.); (A.W.M.IV)
- Department of Immunology, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Asya Varshavsky
- Department of Bone Marrow Transplant and Cellular Therapies, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Alexander W. MacFarlane
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (D.Z.); (A.W.M.IV)
| | - Prathiba Jayaguru
- Oncology Translational Research, Janssen R&D, Spring House, PA 19477, USA; (P.J.); (L.B.); (C.D.)
| | - Laura Barreyro
- Oncology Translational Research, Janssen R&D, Spring House, PA 19477, USA; (P.J.); (L.B.); (C.D.)
| | - Marina Khoreva
- Department of Immunology, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (E.D.); (R.N.)
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (E.D.); (R.N.)
| | - Christina Drenberg
- Oncology Translational Research, Janssen R&D, Spring House, PA 19477, USA; (P.J.); (L.B.); (C.D.)
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (D.Z.); (A.W.M.IV)
- Correspondence: ; Tel.: +1-215-728-7761; Fax: +1-215-727-2412
| |
Collapse
|
26
|
Depth of Response to Intensive Chemotherapy Has Significant Prognostic Value among Acute Myeloid Leukemia (AML) Patients Undergoing Allogeneic Hematopoietic Stem-Cell Transplantation with Intermediate or Adverse Risk at Diagnosis Compared to At-Risk Group According to European Leukemia Net 2017 Risk Stratification. Cancers (Basel) 2022; 14:cancers14133199. [PMID: 35804971 PMCID: PMC9265052 DOI: 10.3390/cancers14133199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
We evaluated the prognostic efficiency of the European Leukemia Net (ELN) 2017 criteria on the post-transplant outcomes of 174 patients with intermediate (INT; n = 108, 62%) or adverse (ADV) risk (n = 66, 38%) of acute myeloid leukemia; these patients had received the first allogeneic hematopoietic stem-cell transplantation (HSCT) at remission. After a median follow-up period of 18 months, the 2 year OS, RFS, and CIR after HSCT were estimated to be 58.6% vs. 64.4% (p = 0.299), 50.5% vs. 53.7% (p = 0.533), and 26.9% vs. 36.9% (p = 0.060) in the INT and ADV risk groups, respectively. Compared to the ELN 2017 stratification, pre-HSCT WT1 levels (cutoff: 250 copies/104 ABL) more effectively segregated the post-HSCT outcomes of INT risk patients compared to ADV risk patients regarding their 2 year OS (64.2% vs. 51.5%, p = 0.099), RFS (59.4% vs. 32.4%, p = 0.003), and CIR (18.9% vs. 60.0% p < 0.001). Indeed, high WT1 levels were more prominent in INT risk patients than in ADV risk patients. Notably, FLT3-ITD had the greatest impact on post-HSCT outcomes among all the ELN 2017 criteria components; patients in the FLT3-ITD mutant subgroups exhibited the worst outcomes regardless of their allelic ratios or NPM1 status compared to the pre-HSCT WT1 level of other INT and ADV risk patients.
Collapse
|
27
|
Voso MT, Ferrara F, Galimberti S, Rambaldi A, Venditti A. Diagnostic Workup of Acute Myeloid Leukemia: What Is Really Necessary? An Italian Survey. Front Oncol 2022; 12:828072. [PMID: 35251997 PMCID: PMC8893956 DOI: 10.3389/fonc.2022.828072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a wide variety of clinical presentations, morphological features, and immunophenotypes. The diagnostic approaches to AML that are adopted in Italy have been explored using an online Delphi-based process to expand the global discussion on mandatory tests for the correct diagnosis and, consequently, for optimal management of AML in clinical practice. The final results of the panel of Italian hematologists involved in this work highlight the importance of genetic evaluation for classification and risk stratification and firmly establish that karyotyping, fluorescence in situ hybridization in cases with non-evaluable karyotype, and molecular tests must be performed in every case of AML, regardless of age. Obtaining clinically relevant genetic data at diagnosis is the basis for the success of patient-tailored therapy. The Italian specialists also confirm the role of multidisciplinary diagnostics for AML, now mandatory and expected to become more important in the future context of “precision” medicine.
Collapse
Affiliation(s)
- Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- *Correspondence: Maria Teresa Voso,
| | | | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Alessandro Rambaldi
- Department of Oncology-Hematology, University of Milan, Milan, Italy
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
28
|
Brestoff JR, Frater JL. Contemporary Challenges in Clinical Flow Cytometry: Small Samples, Big Data, Little Time. J Appl Lab Med 2022; 7:931-944. [DOI: 10.1093/jalm/jfab176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Abstract
Background
Immunophenotypic analysis of cell populations by flow cytometry has an established role in primary diagnosis and disease monitoring of many hematologic diseases. A persistent problem in evaluation of specimens is suboptimal cell counts and low cell viability, which results in an undesirable rate of analysis failure. In addition, the increased amount of data generated in flow cytometry challenges existing data analysis and reporting paradigms.
Content
We describe current and emerging technological improvements in cell analysis that allow the clinical laboratory to perform multiparameter analysis of specimens, including those with low cell counts and other quality issues. These technologies include conventional multicolor flow cytometry and new high-dimensional technologies, such as spectral flow cytometry and mass cytometry that enable detection of over 40 antigens simultaneously. The advantages and disadvantages of each approach are discussed. We also describe new innovations in flow cytometry data analysis, including artificial intelligence-aided techniques.
Summary
Improvements in analytical technology, in tandem with innovations in data analysis, data storage, and reporting mechanisms, help to optimize the quality of clinical flow cytometry. These improvements are essential because of the expanding role of flow cytometry in patient care.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - John L Frater
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
29
|
Tarantino P, Curigliano G, Parsons HA, Lin NU, Krop I, Mittendorf EA, Waks A, Winer EP, Tolaney SM. Aiming at a Tailored Cure for ERBB2-Positive Metastatic Breast Cancer: A Review. JAMA Oncol 2022; 8:629-635. [PMID: 35024766 DOI: 10.1001/jamaoncol.2021.6597] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Metastatic breast cancer (MBC) has traditionally been considered incurable. Accordingly, current treatment algorithms are aimed at maintaining quality of life and improving overall survival, rather than at complete eradication of the disease. Attempts to achieve cure with high-dose chemotherapy were conducted in the 1990s, with no observed long-term benefit compared with conventional chemotherapy. Nonetheless, Erb-B2 receptor tyrosine kinase 2 (ERBB2, formerly HER2)-targeted biologic treatments, developed in the past 2 decades, are currently challenging this paradigm. Indeed, a fraction of patients with ERBB2-positive MBC achieve long-lasting responses to chemotherapy and ERBB2-blockade, resembling a cure. In this setting, the challenge of identifying the optimal curable population has emerged, including identifying populations in whom treatment escalation strategies may be beneficial, while avoiding overtreatment in patients with incurable disease. Observations A number of clinical and pathologic features allow physicians to identify patients with ERBB2-positive MBC who are more likely to experience a long-lasting response to chemotherapy and ERBB2-blockade. Long-term responders tend to be de novo metastatic, have a reduced disease burden, and tend to show deep responses to systemic treatment. In pathologic terms, features associated with long-term response are high ERBB2 expression, lack of detrimental genomic aberrations, and antitumor immune activation. This population of patients may potentially derive benefit from a tailored escalation of frontline treatment with novel anti-ERBB2 drugs, such as trastuzumab deruxtecan, tucatinib, or margetuximab. Additional recent therapeutic and diagnostic advancements could further aid in the path toward a cure for ERBB2-positive MBC. Conclusions and Relevance Careful implementation of novel diagnostic and treatment tools could potentially expand the population of patients with ERBB2-positive MBC experiencing long-lasting disease response. Trials are in preparation to confirm this paradigm, and hopefully lead to a new era of precision therapy for breast cancer.
Collapse
Affiliation(s)
- Paolo Tarantino
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Heather A Parsons
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Nancy U Lin
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Ian Krop
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Elizabeth A Mittendorf
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Adrienne Waks
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Eric P Winer
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sara M Tolaney
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Genetic diversity within leukemia-associated immunophenotype-defined subclones in AML. Ann Hematol 2022; 101:571-579. [PMID: 35024892 PMCID: PMC8810467 DOI: 10.1007/s00277-021-04747-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease showing dynamic clonal evolution patterns over time. Various subclones may be present simultaneously and subclones may show a different expansion pattern and respond differently to applied therapies. It is already clear that immunophenotyping and genetic analyses may yield overlapping, but also complementary information. Detailed information on the genetic make-up of immunophenotypically defined subclones is however scarce. We performed error-corrected sequencing for 27 myeloid leukemia driver genes in 86, FACS-sorted immunophenotypically characterized normal and aberrant subfractions in 10 AML patients. We identified three main scenarios. In the first group of patients, the two techniques were equally well characterizing the malignancy. In the second group, most of the isolated populations did not express aberrant immunophenotypes but still harbored several genetic aberrancies, indicating that the information obtained only by immunophenotyping would be incomplete. Vice versa, one patient was identified in which genetic mutations were found only in a small fraction of the immunophenotypically defined malignant populations, indicating that the genetic analysis gave an incomplete picture of the disease. We conclude that currently, characterization of leukemic cells in AML by molecular and immunophenotypic techniques is complementary, and infer that both techniques should be used in parallel in order to obtain the most complete view on the disease.
Collapse
|
31
|
Servais S, Beguin Y, Baron F. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:461-477. [PMID: 35438781 PMCID: PMC9154332 DOI: 10.1093/stcltm/szac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 11/12/2022] Open
Abstract
As in younger patients, allogeneic stem cell transplantation (alloHSCT) offers the best chance for durable remission in older patients (≥60 years) with acute myeloid leukemia (AML). However, defining the best treatment strategy (and in particular, whether or not to proceed to alloHSCT) for elderly patients with AML remains a difficult decision for the hematologist, since potential toxicity of conditioning regimens, risks of graft-versus-host disease, impaired immune reconstitution and the need for prolonged immunosuppression may be of major concern in these vulnerable patients with complex needs. Hopefully, significant progress has been made over the past decade in alloHSCT for elderly patients and current evidence suggests that chronological age per se (between 60 and 75) is not a reliable predictor of outcome after alloHSCT. Here, we review the current state of alloHSCT in elderly patients with AML and also discuss the different approaches currently being investigated to improve both accessibility to as well as success of alloHSCT in these patients.
Collapse
Affiliation(s)
- Sophie Servais
- Department of Clinical Hematology, CHU of Liège, Liège, Belgium
- Hematology Research Unit GIGA-I3, University of Liège, Liège, Belgium
| | - Yves Beguin
- Department of Clinical Hematology, CHU of Liège, Liège, Belgium
- Hematology Research Unit GIGA-I3, University of Liège, Liège, Belgium
| | - Frédéric Baron
- Corresponding author: Baron Frédéric, Clinical Hematology Department, University of Liège, CHU of Liège (Sart-Tilman), 4000 Liège, Belgium. Tel: +32 4 366 72 01;
| |
Collapse
|
32
|
Trial Watch: Adoptive TCR-Engineered T-Cell Immunotherapy for Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13184519. [PMID: 34572745 PMCID: PMC8469736 DOI: 10.3390/cancers13184519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a type of blood cancer with an extremely grim prognosis. This is due to the fact that the majority of patients will relapse after frontline treatment. Overall survival of relapsed AML is very low, and treatment options are few. T lymphocytes harnessed with antitumor T-cell receptors (TCRs) can produce objective clinical responses in certain cancers, such as melanoma, but have not entered the main road for AML. In this review, we describe the current status of the field of TCR-T-cell therapies for AML. Abstract Despite the advent of novel therapies, acute myeloid leukemia (AML) remains associated with a grim prognosis. This is exemplified by 5-year overall survival rates not exceeding 30%. Even with frontline high-intensity chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the majority of patients with AML will relapse. For these patients, treatment options are few, and novel therapies are urgently needed. Adoptive T-cell therapies represent an attractive therapeutic avenue due to the intrinsic ability of T lymphocytes to recognize tumor cells with high specificity and efficiency. In particular, T-cell therapies focused on introducing T-cell receptors (TCRs) against tumor antigens have achieved objective clinical responses in solid tumors such as synovial sarcoma and melanoma. However, contrary to chimeric antigen receptor (CAR)-T cells with groundbreaking results in B-cell malignancies, the use of TCR-T cells for hematological malignancies is still in its infancy. In this review, we provide an overview of the status and clinical advances in adoptive TCR-T-cell therapy for the treatment of AML.
Collapse
|
33
|
Weigert N, Rowe JM, Lazarus HM, Salman MY. Consolidation in AML: Abundant opinion and much unknown. Blood Rev 2021; 51:100873. [PMID: 34483002 DOI: 10.1016/j.blre.2021.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 08/01/2021] [Indexed: 11/25/2022]
Abstract
Consolidation therapy forms the backbone of post-remission therapy for AML and is uniformly accepted as an integral part of therapy designed to achieve long-term survival. The need for post-remission therapy was initially described over four decades ago and has since undergone many variations in terms of dosage, number of cycles and intensity of therapy. There is much empiricism in the current understanding of consolidation therapy and much that has not been rigorously studied. This review will consider the many aspects of consolidation therapy, focusing on the number of cycles, differences between young and older adults, first and subsequent remission as well as therapy prior to an allogeneic transplant. Emphasis will be given to differentiate strategies that are clearly evidence-based from those that have been incorporated into standard of care while bypassing the need for rigorous data-driven approaches. Finally, consideration will be given to the current ability to assess the minimal measureable residual disease and the impact that this may have on therapeutic paradigms, including superseding many of the time-honored prognostic features.
Collapse
Affiliation(s)
- Nir Weigert
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Jacob M Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel; Department of Hematology and Bone Marrow Transplantation, Rambam Medical Center, Haifa, Israel; Technion, Israel Institute of Technology, Haifa, Israel.
| | | | | |
Collapse
|
34
|
Hanekamp D, Tettero JM, Ossenkoppele GJ, Kelder A, Cloos J, Schuurhuis GJ. AML/Normal Progenitor Balance Instead of Total Tumor Load (MRD) Accounts for Prognostic Impact of Flowcytometric Residual Disease in AML. Cancers (Basel) 2021; 13:2597. [PMID: 34073205 PMCID: PMC8198261 DOI: 10.3390/cancers13112597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Measurable residual disease (MRD) in AML, assessed by multicolor flow cytometry, is an important prognostic factor. Progenitors are key populations in defining MRD, and cases of MRD involving these progenitors are calculated as percentage of WBC and referred to as white blood cell MRD (WBC-MRD). Two main compartments of WBC-MRD can be defined: (1) the AML part of the total primitive/progenitor (CD34+, CD117+, CD133+) compartment (referred to as primitive marker MRD; PM-MRD) and (2) the total progenitor compartment (% of WBC, referred to as PM%), which is the main quantitative determinant of WBC-MRD. Both are related as follows: WBC-MRD = PM-MRD × PM%. We explored the relative contribution of each parameter to the prognostic impact. In the HOVON/SAKK study H102 (300 patients), based on two objectively assessed cut-off points (2.34% and 10%), PM-MRD was found to offer an independent prognostic parameter that was able to identify three patient groups with different prognoses with larger discriminative power than WBC-MRD. In line with this, the PM% parameter itself showed no prognostic impact, implying that the prognostic impact of WBC-MRD results from the PM-MRD parameter it contains. Moreover, the presence of the PM% parameter in WBC-MRD may cause WBC-MRD false positivity and WBC-MRD false negativity. For the latter, at present, it is clinically relevant that PM-MRD ≥ 10% identifies a patient sub-group with a poor prognosis that is currently classified as good prognosis MRDnegative using the European LeukemiaNet 0.1% consensus MRD cut-off value. These observations suggest that residual disease analysis using PM-MRD should be conducted.
Collapse
Affiliation(s)
- Diana Hanekamp
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
- Department of Hematology, Erasmus MC, NL-3000 CA Rotterdam, The Netherlands
| | - Jesse M. Tettero
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Angèle Kelder
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Gerrit Jan Schuurhuis
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| |
Collapse
|
35
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|