1
|
Jahani-Sherafat S, Azimirad M, Raeisi H, Azizmohammad Looha M, Tavakkoli S, Ahmadi Amoli H, Moghim S, Rostami-Nejad M, Yadegar A, Zali MR. Alterations in the gut microbiota and their metabolites in human intestinal epithelial cells of patients with colorectal cancer. Mol Biol Rep 2024; 51:265. [PMID: 38302841 DOI: 10.1007/s11033-024-09273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The gut microbiota has become one of the main risk factors for the formation and development of colorectal cancer (CRC). CRC intensification may be due to the microbial pathogens' colonization and their released metabolites. Here, we analyzed Bacteroidetes and Clostridia bacteria in CRC patients and studied bacterial metabolome in cancerous tissues compared to their adjacent normal tissues. METHODS AND RESULTS The population of selected bacteria in biopsy specimens of 30 patients with CRC was studied by RT-qPCR. The mutagenicity and cytotoxicity effects of microbiota metabolites were evaluated by Ames test and MTT Assay, respectively. Moreover, gene expression in carcinogenic pathways was studied by RT-qPCR, and genes with different expressions in tumor and non-tumor tissues were diagnosed. Based on microbiota analysis, the relative abundance of Clostridia and C. difficile was significantly higher in CRC tissue, whereas C. perfringens showed higher relative abundance in normal tissue. AIMES test confirmed the proliferation and mutagenicity effects of the bacterial metabolites in CRC patients. Significant upregulation of C-Myc, GRB2, IL-8, EGFR, PI3K, and AKT and downregulation of ATM were observed in CRC samples compared to the control. CONCLUSIONS The influence of bacterial metabolites on inflammation and altered expression of genes in the cell signaling pathways was observed. The findings confirm the role gut microbiota composition and bacterial metabolites as key players in CRC onset and development.
Collapse
Affiliation(s)
- Somayeh Jahani-Sherafat
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Microbiology Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
| | - Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Tavakkoli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sharareh Moghim
- Microbiology Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rostami-Nejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Celiac Disease and Gluten Related Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran.
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kang C, Zhang J, Xue M, Li X, Ding D, Wang Y, Jiang S, Chu FF, Gao Q, Zhang M. Metabolomics analyses of cancer tissue from patients with colorectal cancer. Mol Med Rep 2023; 28:219. [PMID: 37772396 PMCID: PMC10568249 DOI: 10.3892/mmr.2023.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/31/2023] [Indexed: 09/30/2023] Open
Abstract
The alteration of metabolism is essential for the initiation and progression of numerous types of cancer, including colorectal cancer (CRC). Metabolomics has been used to study CRC. At present, the reprogramming of the metabolism in CRC remains to be fully elucidated. In the present study, comprehensive untargeted metabolomics analysis was performed on the paired CRC tissues and adjacent normal tissues from patients with CRC (n=35) using ultra‑high‑performance liquid chromatography‑mass spectrometry. Subsequently, bioinformatic analysis was performed on the differentially expressed metabolites. The changes in these differential metabolites were compared among groups of patients based on sex, anatomical tumor location, grade of tumor differentiation and stage of disease. A total of 927 metabolites were detected in the tissue samples, and 24 metabolites in the CRC tissue were significantly different compared with the adjacent normal tissue. The present study revealed that the levels of three amino acid metabolites were increased in the CRC tissue, specifically, N‑α‑acetyl‑ε‑(2‑propenal)‑Lys, cyclo(Glu‑Glu) and cyclo(Phe‑Glu). The metabolites with decreased levels in the CRC tissue included quinaldic acid (also referred to as quinoline‑2‑carboxilic acid), 17α‑ and 17β‑estradiol, which are associated with tumor suppression activities, as well as other metabolites such as, anhydro‑β‑glucose, Asp‑Arg, lysophosphatidylcholine, lysophosphatidylethanolamine (lysoPE), lysophosphatidylinositol, carnitine, 5'‑deoxy‑5'‑(methylthio) adenosine, 2'‑deoxyinosine‑5'‑monophosphate and thiamine monophosphate. There was no difference in the levels of the differential metabolites between male and female patients. The differentiation of CRC also showed no impact on the levels of the differential metabolites. The levels of lysoPE were increased in the right side of the colon compared with the left side of the colon and rectum. Analysis of the different tumor stages indicated that 2‑aminobenzenesulfonic acid, P‑sulfanilic acid and quinoline‑4‑carboxylic acid were decreased in stage I CRC tissue compared with stage II, III and IV CRC tissue. The levels of N‑α‑acetyl‑ε‑(2‑propenal)‑Lys, methylcysteine and 5'‑deoxy‑5'‑(methylthio) adenosine varied at different stages of tumorigenesis. These differential metabolites were implicated in multiple metabolism pathways, including carbohydrate, amino acid, lipid, nucleotide and hormone. In conclusion, the present study demonstrated that CRC tumors had altered metabolites compared with normal tissue. The data from the metabolic profile of CRC tissues in the present study provided supportive evidence to understand tumorigenesis.
Collapse
Affiliation(s)
- Chunbo Kang
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Jie Zhang
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Mei Xue
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Xiaowei Li
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Danyang Ding
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Ye Wang
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Shujing Jiang
- Department of Acute Medicine, Queen Elizabeth Hospital, London SE18 4QH, UK
| | - Fong-Fong Chu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of The City of Hope, Duarte, CA 91010, USA
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Mengqiao Zhang
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| |
Collapse
|
3
|
Ionescu VA, Gheorghe G, Bacalbasa N, Chiotoroiu AL, Diaconu C. Colorectal Cancer: From Risk Factors to Oncogenesis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1646. [PMID: 37763765 PMCID: PMC10537191 DOI: 10.3390/medicina59091646] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Colorectal cancer is the second leading cause of cancer-related mortality worldwide. Numerous pathophysiological mechanisms, such as abnormal cell proliferation, cell differentiation, resistance to apoptosis, invasion of structures adjacent to colorectal tumor cells, and distant metastasis, are involved in colorectal carcinogenesis. These processes are initiated by the complex interaction of a number of genetic and environmental factors, including sedentary lifestyle, obesity, alcohol consumption, smoking, or gut microbiota. Despite the significant progress achieved in the diagnostic and therapeutic management of patients with colorectal cancer, there has been recently a noteworthy increase in the incidence of colorectal cancer in individuals below the age of 50 years. Early-onset colorectal cancer has a different frequency of oncogenic mutations, a higher prevalence of mucinous histology, a distinct deoxyribonucleic acid (DNA) methylation profile, a more distal location, and lower survival rates. A significant improvement in the prognosis of these patients can be achieved through the detection and removal of modifiable risk factors, along with the implementation of personalized screening strategies for individuals at high risk for this malignancy. Furthermore, gaining comprehension of the pathophysiological mechanisms by which these risk factors contribute to the process of oncogenesis may facilitate the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Department of Cellular and Mollecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Department of Cellular and Mollecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
- Gastroenterology Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Nicolae Bacalbasa
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Department of Visceral Surgery, Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | | | - Camelia Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
4
|
Feng J, Gong Z, Sun Z, Li J, Xu N, Thorne RF, Zhang XD, Liu X, Liu G. Microbiome and metabolic features of tissues and feces reveal diagnostic biomarkers for colorectal cancer. Front Microbiol 2023; 14:1034325. [PMID: 36712187 PMCID: PMC9880203 DOI: 10.3389/fmicb.2023.1034325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Microbiome and their metabolites are increasingly being recognized for their role in colorectal cancer (CRC) carcinogenesis. Towards revealing new CRC biomarkers, we compared 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) metabolite analyses in 10 CRC (TCRC) and normal paired tissues (THC) along with 10 matched fecal samples (FCRC) and 10 healthy controls (FHC). The highest microbial phyla abundance from THC and TCRC were Firmicutes, while the dominant phyla from FHC and FCRC were Bacteroidetes, with 72 different microbial genera identified among four groups. No changes in Chao1 indices were detected between tissues or between fecal samples whereas non-metric multidimensional scaling (NMDS) analysis showed distinctive clusters among fecal samples but not tissues. LEfSe analyses indicated Caulobacterales and Brevundimonas were higher in THC than in TCRC, while Burkholderialese, Sutterellaceaed, Tannerellaceaea, and Bacteroidaceae were higher in FHC than in FCRC. Microbial association networks indicated some genera had substantially different correlations. Tissue and fecal analyses indicated lipids and lipid-like molecules were the most abundant metabolites detected in fecal samples. Moreover, partial least squares discriminant analysis (PLS-DA) based on metabolic profiles showed distinct clusters for CRC and normal samples with a total of 102 differential metabolites between THC and TCRC groups and 700 metabolites different between FHC and FCRC groups. However, only Myristic acid was detected amongst all four groups. Highly significant positive correlations were recorded between genus-level microbiome and metabolomics data in tissue and feces. And several metabolites were associated with paired microbes, suggesting a strong microbiota-metabolome coupling, indicating also that part of the CRC metabolomic signature was attributable to microbes. Suggesting utility as potential biomarkers, most such microbiome and metabolites showed directionally consistent changes in CRC patients. Nevertheless, further studies are needed to increase sample sizes towards verifying these findings.
Collapse
Affiliation(s)
- Jiahui Feng
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Zhizhong Gong
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Zhangran Sun
- School of Life Sciences, Anhui Medical University, Hefei, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Juan Li
- Department of Oncology, BinHu Hospital of Hefei, Hefei, China
| | - Na Xu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Rick F. Thorne
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Xu Dong Zhang
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gang Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Yan Y, Yang Y, Ning C, Wu N, Yan S, Sun L. Role of Traditional Chinese Medicine Syndrome Type, Gut Microbiome, and Host Immunity in Predicting Early and Advanced Stage Colorectal Cancer. Integr Cancer Ther 2023; 22:15347354221144051. [PMID: 36604798 PMCID: PMC9830091 DOI: 10.1177/15347354221144051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To investigate the role of Traditional Chinese Medicine (TCM) syndrome type, gut microbiome distribution, and host immunity function in predicting the early and advanced clinical stages of colorectal cancer (CRC). METHODS A cross-sectional case-control study was performed which included 48 early stage and 48 advanced patients with CRC enrolled from March 2018 to December 2020. 16S rRNA gene sequencing was performed to analyze the gut microbiomes of the patients, while T and B lymphocyte subsets in peripheral blood were assessed using flow cytometry. TCM syndrome type was measured using the spleen deficiency syndrome (SDS) scale. RESULTS The abundance levels of Prevotella, Escherichia-Shigella, and Faecalibacterium in the gut microbiota were significantly increased in the advanced group, while Bacteroides was significantly decreased. Phascolarctobacterium was detectable only in the early metaphase group, whereas Alistipes was detectable only in the advanced group. The lymphocyte (P = .006), T helper cell (TH) (P = .002), cytotoxic T cell (TC) (P = .003), double positive T cell (DPT) (P = .02), and total T counts (P = .001) were significantly higher in the early metaphase group than in the advanced metaphase group. Compared with patients with early stage CRC, the advanced group had a higher SDS score. After adjusting for clinical stage, Spearman's correlation analysis showed interactions among gut microbiome abundance, T cell level, and SDS score. Multivariate logistic analysis showed that after controlling for the SDS score, abundance of Alistipes and Faecalibacterium, and double negative T cell (DNT) level, DPT was significantly associated with a lower risk of advanced-stage disease (hazard ratio, 0.918; P = .022). CONCLUSION Our study suggested associations between clinical stage, SDS, gut microbiota, and T lymphocytes, which provided insights for a potential prediction model for the disease progression of CRC.
Collapse
Affiliation(s)
- Yunzi Yan
- Beijing University of Chinese Medicine,
Beijing, China
- China Academy of Chinese Medical
Science, Beijing, China
| | - Yufei Yang
- Beijing University of Chinese Medicine,
Beijing, China
| | - Chunhui Ning
- China Academy of Chinese Medical
Science, Beijing, China
| | - Na Wu
- Beijing University of Chinese Medicine,
Beijing, China
| | - Shaohua Yan
- Beijing University of Chinese Medicine,
Beijing, China
| | - Lingyun Sun
- China Academy of Chinese Medical
Science, Beijing, China
- Lingyun Sun, China Academy of Chinese
Medical Sciences Xiyuan Hospital, Xiyuan Caochang Road, Haidian District,
Beijing, 100091, China.
| |
Collapse
|
6
|
Brezmes J, Llambrich M, Cumeras R, Gumà J. Urine NMR Metabolomics for Precision Oncology in Colorectal Cancer. Int J Mol Sci 2022; 23:11171. [PMID: 36232473 PMCID: PMC9569997 DOI: 10.3390/ijms231911171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolomics is a fundamental approach to discovering novel biomarkers and their potential use for precision medicine. When applied for population screening, NMR-based metabolomics can become a powerful clinical tool in precision oncology. Urine tests can be more widely accepted due to their intrinsic non-invasiveness. Our review provides the first exhaustive evaluation of NMR metabolomics for the determination of colorectal cancer (CRC) in urine. A specific search in PubMed, Web of Science, and Scopus was performed, and 10 studies met the required criteria. There were no restrictions on the query for study type, leading to not only colorectal cancer samples versus control comparisons, but also prospective studies of surgical effects. With this review, all compounds in the included studies were merged into a database. In doing so, we identified up to 100 compounds in urine samples, and 11 were found in at least three articles. Results were analyzed in three groups: case (CRC and adenomas)/control, pre-/post-surgery, and combining both groups. When combining the case-control and the pre-/post-surgery groups, up to twelve compounds were found to be relevant. Seven down-regulated metabolites in CRC were identified, creatinine, 4-hydroxybenzoic acid, acetone, carnitine, d-glucose, hippuric acid, l-lysine, l-threonine, and pyruvic acid, and three up-regulated compounds in CRC were identified, acetic acid, phenylacetylglutamine, and urea. The pathways and enrichment analysis returned only two pathways significantly expressed: the pyruvate metabolism and the glycolysis/gluconeogenesis pathway. In both cases, only the pyruvic acid (down-regulated in urine of CRC patients, with cancer cell proliferation effect in the tissue) and acetic acid (up-regulated in urine of CRC patients, with chemoprotective effect) were present.
Collapse
Affiliation(s)
- Jesús Brezmes
- Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Maria Llambrich
- Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Raquel Cumeras
- Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
- Oncology Department, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain
| | - Josep Gumà
- Oncology Department, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain
| |
Collapse
|