1
|
Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev 2024; 104:1611-1642. [PMID: 38696337 PMCID: PMC11495214 DOI: 10.1152/physrev.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, United States
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
2
|
Zhang D, Li D, Wang X, Sui Y, Ma F, Dai Y, Wang M, Qin W. Urine Proteomic Signatures of Mild Hypothermia Treatment in Cerebral Ischemia-Reperfusion Injury in Rats. Cell Mol Neurobiol 2024; 44:49. [PMID: 38836960 PMCID: PMC11153299 DOI: 10.1007/s10571-024-01483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Mild hypothermia (MH) is an effective measure to alleviate cerebral ischemia-reperfusion (I/R) injury. However, the underlying biological mechanisms remain unclear. This study set out to investigate dynamic changes in urinary proteome due to MH in rats with cerebral I/R injury and explore the neuroprotective mechanisms of MH. A Pulsinelli's four-vessel occlusion (4-VO) rat model was used to mimic global cerebral I/R injury. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the urinary proteome of rats with/without MH (32 °C) treatment after I/R injury. Representative differentially expressed proteins (DEPs) associated with MH were validated by western blotting in hippocampus. A total of 597 urinary proteins were identified, among which 119 demonstrated significant changes associated with MH. Gene Ontology (GO) annotation of the DEPs revealed that MH significantly enriched in endopeptidase activity, inflammatory response, aging, response to oxidative stress and reactive oxygen species, blood coagulation, and cell adhesion. Notably, changes in 12 DEPs were significantly reversed by MH treatment. Among them, 8 differential urinary proteins were previously reported to be closely associated with brain disease, including NP, FZD1, B2M, EPCR, ATRN, MB, CA1and VPS4A. Two representative proteins (FZD1, B2M) were further validated by western blotting in the hippocampus and the results were shown to be consistent with urinary proteomic analysis. Overall, this study strengthens the idea that urinary proteome can sensitively reflect pathophysiological changes in the brain, and appears to be the first study to explore the neuroprotective effects of MH by urinary proteomic analysis. FZD1 and B2M may be involved in the most fundamental molecular biological mechanisms of MH neuroprotection.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Dapeng Li
- Department of Bone and Joint Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Xueting Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Yanyan Sui
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Fuguo Ma
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Yuting Dai
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
| | - Weiwei Qin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
| |
Collapse
|
3
|
Morelli AM, Scholkmann F. The Significance of Lipids for the Absorption and Release of Oxygen in Biological Organisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1438:93-99. [PMID: 37845446 DOI: 10.1007/978-3-031-42003-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A critically important step for the uptake and transport of oxygen (O2) in living organisms is the crossing of the phase boundary between gas (or water) and lipid/proteins in the cell. Classically, this transport across the phase boundary is explained as a transport by proteins or protein-based structures. In our contribution here, we want to show the significance of passive transport of O2 also (and in some cases probably predominantly) through lipids in many if not all aerobic organisms. In plants, the significance of lipids for gas exchange (absorption of CO2 and release of O2) is well recognized. The leaves of plants have a cuticle layer as the last film on both sides formed by polyesters and lipids. In animals, the skin has sebum as its last layer consisting of a mixture of neutral fatty esters, cholesterol and waxes which are also at the border between the cells of the body and the air. The last cellular layers of skin are not vascularized therefore their metabolism totally depends on this extravasal O2 absorption, which cannot be replenished by the bloodstream. The human body absorbs about 0.5% of O2 through the skin. In the brain, myelin, surrounding nerve cell axons and being formed by oligodendrocytes, is most probably also responsible for enabling O2 transport from the extracellular space to the cells (neurons). Myelin, being not vascularized and consisting of water, lipids and proteins, seems to absorb O2 in order to transport it to the nerve cell axon as well as to perform extramitochondrial oxidative phosphorylation inside the myelin structure around the axons (i.e., myelin synthesizes ATP) - similarly to the metabolic process occurring in concentric multilamellar structures of cyanobacteria. Another example is the gas transport in the lung where lipids play a crucial role in the surfactant ensuring incorporation of O2 in the alveoli where there are lamellar body and tubular myelin which form multilayered surface films at the air-membrane border of the alveolus. According to our view, the role played by lipids in the physical absorption of gases appears to be crucial to the existence of many, if not all, of the living aerobic species.
Collapse
Affiliation(s)
| | - Felix Scholkmann
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland.
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Armbruster J, Aboouf MA, Gassmann M, Egert A, Schorle H, Hornung V, Schmidt T, Schmid-Burgk JL, Kristiansen G, Bicker A, Hankeln T, Zhu H, Gorr TA. Myoglobin regulates fatty acid trafficking and lipid metabolism in mammary epithelial cells. PLoS One 2022; 17:e0275725. [PMID: 36223378 PMCID: PMC9555620 DOI: 10.1371/journal.pone.0275725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Myoglobin (MB) is known to bind and deliver oxygen in striated muscles at high expression levels. MB is also expressed at much reduced levels in mammary epithelial cells, where the protein´s function is unclear. In this study, we aim to determine whether MB impacts fatty acid trafficking and facilitates aerobic fatty acid ß-oxidation in mammary epithelial cells. We utilized MB-wildtype versus MB-knockout mice and human breast cancer cells to examine the impact of MB and its oxygenation status on fatty acid metabolism in mouse milk and mammary epithelia. MB deficient cells were generated through CRISPR/Cas9 and TALEN approaches and exposed to various oxygen tensions. Fatty acid profiling of milk and cell extracts were performed along with cell labelling and immunocytochemistry. Our findings show that MB expression in mammary epithelial cells promoted fatty acid oxidation while reducing stearyl-CoA desaturase activity for lipogenesis. In cells and milk product, presence of oxygenated MB significantly elevated indices of limited fatty acid ß-oxidation, i.e., the organelle-bound removal of a C2 moiety from long-chain saturated or monounsaturated fatty acids, thus shifting the composition toward more saturated and shorter fatty acid species. Presence of the globin also increased cytoplasmic fatty acid solubility under normoxia and fatty acid deposition to lipid droplets under severe hypoxia. We conclude that MB can function in mammary epithelia as intracellular O2-dependent shuttle of oxidizable fatty acid substrates. MB's impact on limited oxidation of fatty acids could generate inflammatory mediator lipokines, such as 7-hexadecenoate. Thus, the novel functions of MB in breast epithelia described herein range from controlling fatty acid turnover and homeostasis to influencing inflammatory signalling cascade. Future work is needed to analyse to what extent these novel roles of MB also apply to myocytic cell physiology and malignant cell behaviour, respectively.
Collapse
Affiliation(s)
- Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mostafa A. Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Angela Egert
- Institute of Pathology, Department of Developmental Pathology, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University Hospital Bonn, Bonn, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Schmidt
- Institute of Clinical Chemistry and Clinical Pharmacology, University and University Hospital Bonn, Bonn, Germany
| | - Jonathan L. Schmid-Burgk
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Hao Zhu
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Thomas A. Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Scrima R, Agriesti F, Pacelli C, Piccoli C, Pucci P, Amoresano A, Cela O, Nappi L, Tataranni T, Mori G, Formisano P, Capitanio N. Myoglobin expression by alternative transcript in different mesenchymal stem cells compartments. Stem Cell Res Ther 2022; 13:209. [PMID: 35598009 PMCID: PMC9123686 DOI: 10.1186/s13287-022-02880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metabolic phenotype of stem cells is increasingly recognized as a hallmark of their pluripotency with mitochondrial and oxygen-related metabolism playing a not completely defined role in this context. In a previous study, we reported the ectopic expression of myoglobin (MB) in bone marrow-derived hematopoietic stem/progenitor cells. Here, we have extended the analysis to mesenchymal stem cells (MSCs) isolated from different tissues. METHODS MSCs were isolated from human placental membrane, mammary adipose tissue and dental pulp and subjected to RT-PCR, Western blotting and mass spectrometry to investigate the expression of MB. A combination of metabolic flux analysis and cyto-imaging was used to profile the metabolic phenotype and the mitochondria dynamics in the different MSCs. RESULTS As for the hematopoietic stem/progenitor cells, the expression of Mb was largely driven by an alternative transcript with the protein occurring both in the monomer and in the dimer forms as confirmed by mass spectrometry analysis. Comparing the metabolic fluxes between neonatal placental membrane-derived and adult mammary adipose tissue-derived MSCs, we showed a significantly more active bioenergetics profile in the former that correlated with a larger co-localization of myoglobin with the mitochondrial compartment. Differences in the structure of the mitochondrial network as well as in the expression of factors controlling the organelle dynamics were also observed between neonatal and adult mesenchymal stem cells. Finally, the expression of myoglobin was found to be strongly reduced following osteogenic differentiation of dental pulp-derived MSCs, while it was upregulated following reprogramming of human fibroblasts to induce pluripotent stem cells. CONCLUSIONS Ectopic expression of myoglobin in tissues other than muscle raises the question of understanding its function therein. Properties in addition to the canonical oxygen storage/delivery have been uncovered. Finding of Mb expressed via an alternative gene transcript in the context of different stem cells with metabolic phenotypes, its loss during differentiation and recovery in iPSCs suggest a hitherto unappreciated role of Mb in controlling the balance between aerobic metabolism and pluripotency. Understanding how Mb contributes through modulation of the mitochondrial physiology to the stem cell biology paves the way to novel perspectives in regenerative medicine as well as in cancer stem cell therapy.
Collapse
Affiliation(s)
- Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Francesca Agriesti
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.,Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pietro Pucci
- CEINGE Advanced Biotechnology and Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| | - Angela Amoresano
- CEINGE Advanced Biotechnology and Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Nappi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
6
|
Elkholi IE, Elsherbiny ME, Emara M. Myoglobin: From physiological role to potential implications in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188706. [PMID: 35247507 DOI: 10.1016/j.bbcan.2022.188706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
Abstract
Myoglobin (MB) belongs to the well-studied globin proteins superfamily. It has been extensively studied for its physiological roles in oxygen storage and transport for about a century now. However, the last two decades shed the light on unexpected aspects for MB research. Myoglobin has been suggested as a scavenger for nitric oxide and reactive oxygen species (ROS). Furthermore, MB was found to be expressed and regulated in different tissues, beyond the muscle lineage, including cancers. Current evidence suggest that MB is directly regulated by hypoxia and might be contributing to the metabolic rewiring in cancer tissues. In this article, we first discuss the MB physiological roles and then focus on the latter potential roles and regulatory networks of MB in cancer.
Collapse
Affiliation(s)
- Islam E Elkholi
- Center for Aging and Associated Diseases (CAAD), Zewail City of Science, Technology, and Innovation, 6th of October City, Giza 12578, Egypt; Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Marwan Emara
- Center for Aging and Associated Diseases (CAAD), Zewail City of Science, Technology, and Innovation, 6th of October City, Giza 12578, Egypt.
| |
Collapse
|