1
|
Farooq HMU, Yang L, Cao M, Chen Z, Qian A, Dang K. Recent Progress in the Research on RNA-Binding Proteins in Bone Development and Diseases. Int J Mol Sci 2024; 25:7735. [PMID: 39062974 PMCID: PMC11276800 DOI: 10.3390/ijms25147735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
RNA-binding proteins (RBPs), which regulate gene expression through post-transcriptional modifications of RNAs, play a role in diverse biological processes that include bone cell development and bone tissue formation. RBP dysregulation may result in aberrant bone homeostasis and contribute to various bone diseases. The function of RBPs in bone physiology and pathophysiology and the underlying molecular mechanisms have been extensively studied in recent years. This article provides a review of such studies, highlighting the potential of RBPs as pivotal targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | - Airong Qian
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (H.M.U.F.); (L.Y.); (Z.C.)
| | - Kai Dang
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (H.M.U.F.); (L.Y.); (Z.C.)
| |
Collapse
|
2
|
Maroni P, Pesce NA, Lombardi G. RNA-binding proteins in bone pathophysiology. Front Cell Dev Biol 2024; 12:1412268. [PMID: 38966428 PMCID: PMC11222650 DOI: 10.3389/fcell.2024.1412268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Bone remodelling is a highly regulated process that maintains mineral homeostasis and preserves bone integrity. During this process, intricate communication among all bone cells is required. Indeed, adapt to changing functional situations in the bone, the resorption activity of osteoclasts is tightly balanced with the bone formation activity of osteoblasts. Recent studies have reported that RNA Binding Proteins (RBPs) are involved in bone cell activity regulation. RBPs are critical effectors of gene expression and essential regulators of cell fate decision, due to their ability to bind and regulate the activity of cellular RNAs. Thus, a better understanding of these regulation mechanisms at molecular and cellular levels could generate new knowledge on the pathophysiologic conditions of bone. In this Review, we provide an overview of the basic properties and functions of selected RBPs, focusing on their physiological and pathological roles in the bone.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Noemi Anna Pesce
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
3
|
Yang S, Zou Q, Liang Y, Zhang D, Peng L, Li W, Li W, Liu M, Tong Y, Chen L, Xu P, Yang Z, Zhou K, Xiao J, Wang H, Yu W. miR-1246 promotes osteosarcoma cell migration via NamiRNA-enhancer network dependent on Argonaute 2. MedComm (Beijing) 2024; 5:e543. [PMID: 38585233 PMCID: PMC10999177 DOI: 10.1002/mco2.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
High metastatic propensity of osteosarcoma leads to its therapeutic failure and poor prognosis. Although nuclear activation miRNAs (NamiRNAs) are reported to activate gene transcription via targeting enhancer and further promote tumor metastasis, it remains uncertain whether NamiRNAs regulate osteosarcoma metastasis and their exact mechanism. Here, we found that extracellular vesicles of the malignant osteosarcoma cells (143B) remarkably increased the migratory abilities of MNNG cells representing the benign osteosarcoma cells by two folds, which attributed to their high miR-1246 levels. Specially, miR-1246 located in nucleus could activate the migration gene expression (such as MMP1) to accelerate MNNG cell migration through elevating the enhancer activities via increasing H3K27ac enrichment. Instead, MMP1 expression was dramatically inhibited after Argonaute 2 (AGO2) knockdown. Notably, in vitro assays demonstrated that AGO2 recognized the hybrids of miR-1246 and its enhancer DNA via PAZ domains to prevent their degradation from RNase H and these protective roles of AGO2 may favor the gene activation by miR-1246 in vivo. Collectively, our findings suggest that miR-1246 could facilitate osteosarcoma metastasis through interacting with enhancer to activate gene expression dependent on AGO2, highlighting the nuclear AGO2 as a guardian for NamiRNA-targeted gene activation and the potential of miR-1246 for osteosarcoma metastasis therapy.
Collapse
Affiliation(s)
- Shuai Yang
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qingping Zou
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ying Liang
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Centre for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Lina Peng
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wei Li
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wenxuan Li
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Mengxing Liu
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ying Tong
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lu Chen
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Peng Xu
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhicong Yang
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Kaicheng Zhou
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jianru Xiao
- Department of Orthopaedic OncologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Centre for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Wenqiang Yu
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Huai Y, Wang X, Mao W, Wang X, Zhao Y, Chu X, Huang Q, Ru K, Zhang L, Li Y, Chen Z, Qian A. HuR-positive stress granules: Potential targets for age-related osteoporosis. Aging Cell 2024; 23:e14053. [PMID: 38375951 PMCID: PMC10928564 DOI: 10.1111/acel.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
Aging impairs osteoblast function and bone turnover, resulting in age-related bone degeneration. Stress granules (SGs) are membrane-less organelles that assemble in response to stress via the recruitment of RNA-binding proteins (RBPs), and have emerged as a novel mechanism in age-related diseases. Here, we identified HuR as a bone-related RBP that aggregated into SGs and facilitated osteogenesis during aging. HuR-positive SG formation increased during osteoblast differentiation, and HuR overexpression mitigated the reduction in SG formation observed in senescent osteoblasts. Moreover, HuR positively regulated the mRNA stability and expression of its target β-catenin by binding and recruiting β-catenin into SGs. As a potential therapeutic target, HuR activator apigenin (API) enhanced its expression and thus aided osteoblasts differentiation. API treatment increased HuR nuclear export, enhanced the recruitment of β-catenin into HuR-positive SGs, facilitated β-catenin nuclear translocation, and contributed osteogenesis. Our findings highlight the roles of HuR and its SGs in promoting osteogenesis during skeletal aging and lay the groundwork for novel therapeutic strategies against age-related skeletal disorders.
Collapse
Affiliation(s)
- Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Department of OrthopedicsTangdu Hospital, Air Force Military Medical UniversityXi'anChina
| | - Xue Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Wenjing Mao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Xuehao Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yipu Zhao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Xiaohua Chu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Qian Huang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Kang Ru
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Ling Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yu Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
5
|
Abedeera SM, Davila-Calderon J, Haddad C, Henry B, King J, Penumutchu S, Tolbert BS. The Repurposing of Cellular Proteins during Enterovirus A71 Infection. Viruses 2023; 16:75. [PMID: 38257775 PMCID: PMC10821071 DOI: 10.3390/v16010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Viruses pose a great threat to people's lives. Enterovirus A71 (EV-A71) infects children and infants all over the world with no FDA-approved treatment to date. Understanding the basic mechanisms of viral processes aids in selecting more efficient drug targets and designing more effective antivirals to thwart this virus. The 5'-untranslated region (5'-UTR) of the viral RNA genome is composed of a cloverleaf structure and an internal ribosome entry site (IRES). Cellular proteins that bind to the cloverleaf structure regulate viral RNA synthesis, while those that bind to the IRES also known as IRES trans-acting factors (ITAFs) regulate viral translation. In this review, we survey the cellular proteins currently known to bind the 5'-UTR and influence viral gene expression with emphasis on comparing proteins' functions and localizations pre- and post-(EV-A71) infection. A comprehensive understanding of how the host cell's machinery is hijacked and reprogrammed by the virus to facilitate its replication is crucial for developing effective antivirals.
Collapse
Affiliation(s)
- Sudeshi M. Abedeera
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Jesse Davila-Calderon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Barrington Henry
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Josephine King
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Srinivasa Penumutchu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Blanton S. Tolbert
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
6
|
Wang S, Zeng X, Gui P, Xu S, Li Z, Chen D. LncRNA EBLN3P Facilitates Osteosarcoma Metastasis by Enhancing Annexin A3 mRNA Stability and Recruiting HuR. Ann Surg Oncol 2023; 30:8690-8703. [PMID: 37598115 PMCID: PMC10625973 DOI: 10.1245/s10434-023-14032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/09/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Osteosarcoma (OS) represents a common type of bone cancer. Long non-coding RNAs (LncRNAs) have shown their potential in therapeutic modalities for OS. This study's purpose was to reveal the action of lncRNA EBLN3P on OS growth and metastasis and its mechanism. METHODS Expressions of EBLN3P/Hu antigen R (HuR)/Annexin A3 (ANXA3) were determined by RT-qPCR/Western blot. Proliferation/migration/invasion of OS cells were assessed via CCK-8/Transwell assays after interfering EBLN3P/ANXA3/HuR. The co-localization of EBLN3P/ANXA3/HuR cells was observed by FISH/immunofluorescence assays. Interplays among EBLN3P/ANXA3/HuR and the half-life period of ANXA3 were assessed by RNA immunoprecipitation/RNA pull-down/RNA stability experiment. The nude mouse xenograft model was established, followed by EBLN3P treatment to assess the function of EBLN3P on OS. RESULTS EBLN3P/ANXA3 was highly expressed in OS cells. Silencing EBLN3P or ANXA3 limited the proliferation/migration/invasion of OS cells. Mechanically, EBLN3P/ANXA3 can bind to HuR, and EBLN3P enhanced ANXA3 mRNA stability by recruiting HuR, thus facilitating OS cell growth. Upregulated HuR or ANXA3 counteracted the suppressive action of silencing EBLN3P on OS cells. In vivo experiments revealed facilitated tumor growth and metastasis in vivo fomented by EBLN3P through manipulation of HuR/ANXA3. CONCLUSIONS EBLN3P enhanced proliferative/migrative/invasive potentials of OS cells via increasing ANXA3 mRNA stability and protein level by recruiting HuR, which provided new potential therapeutic targets for OS clinical treatment. EBLN3P and ANXA3 might have potential roles in OS diagnosis, treatment, and prognosis. This study provided a theoretical reference for further clinical research in tumor surgery.
Collapse
Affiliation(s)
- Shengtao Wang
- Department of Joint Surgery and Sports Medicine, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Xiangshan District, Guilin, Guangxi, China
| | - Xinxin Zeng
- Department of Pain, Banan Hospital of Chongqing Medical University, Banan District, Chongqing City, China
| | - Peng Gui
- Department of Trauma orthopedics and hand surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Xiangshan District, Guilin, Guangxi, China
| | - Shujuan Xu
- Department of Hematopathology, Affiliated Hospital of Guilin Medical University, Xiufeng District, Guilin, Guangxi, China
| | - Zhaoxu Li
- Department of Joint Surgery and Sports Medicine, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Xiangshan District, Guilin, Guangxi, China.
| | - Dongxu Chen
- Department of Joint Surgery and Sports Medicine, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Xiangshan District, Guilin, Guangxi, China.
| |
Collapse
|
7
|
Fletcher A, Clift D, de Vries E, Martinez Cuesta S, Malcolm T, Meghini F, Chaerkady R, Wang J, Chiang A, Weng SHS, Tart J, Wong E, Donohoe G, Rawlins P, Gordon E, Taylor JD, James L, Hunt J. A TRIM21-based bioPROTAC highlights the therapeutic benefit of HuR degradation. Nat Commun 2023; 14:7093. [PMID: 37925433 PMCID: PMC10625600 DOI: 10.1038/s41467-023-42546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023] Open
Abstract
Human antigen R (HuR) is a ubiquitously expressed RNA-binding protein, which functions as an RNA regulator. Overexpression of HuR correlates with high grade tumours and poor patient prognosis, implicating it as an attractive therapeutic target. However, an effective small molecule antagonist to HuR for clinical use remains elusive. Here, a single domain antibody (VHH) that binds HuR with low nanomolar affinity was identified and shown to inhibit HuR binding to RNA. This VHH was used to engineer a TRIM21-based biological PROTAC (bioPROTAC) that could degrade endogenous HuR. Significantly, HuR degradation reverses the tumour-promoting properties of cancer cells in vivo by altering the HuR-regulated proteome, highlighting the benefit of HuR degradation and paving the way for the development of HuR-degrading therapeutics. These observations have broader implications for degrading intractable therapeutic targets, with bioPROTACs presenting a unique opportunity to explore targeted-protein degradation through a modular approach.
Collapse
Affiliation(s)
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Emma de Vries
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Sergio Martinez Cuesta
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Raghothama Chaerkady
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Junmin Wang
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Abby Chiang
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Shao Huan Samuel Weng
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jonathan Tart
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - Philip Rawlins
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Euan Gordon
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Leo James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - James Hunt
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
8
|
Que Z, Yang K, Wang N, Li S, Li T. Functional Role of RBP in Osteosarcoma: Regulatory Mechanism and Clinical Therapy. Anal Cell Pathol (Amst) 2023; 2023:9849719. [PMID: 37426488 PMCID: PMC10328736 DOI: 10.1155/2023/9849719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
Malignant bone neoplasms can be represented by osteosarcoma (OS), which accounts for 36% of all sarcomas. To reduce tumor malignancy, extensive efforts have been devoted to find an ideal target from numerous candidates, among which RNA-binding proteins (RBPs) have shown their unparalleled competitiveness. With the special structure of RNA-binding domains, RBPs have the potential to establish relationships with RNAs or small molecules and are considered regulators of different sections of RNA processes, including splicing, transport, translation, and degradation of RNAs. RBPs have considerable significant roles in various cancers, and experiments revealed that there was a strong association of RBPs with tumorigenesis and tumor cell progression. Regarding OS, RBPs are a new orientation, but achievements in hand are noteworthy. Higher or lower expression of RBPs was first found in tumor cells compared to normal tissue. By binding to different molecules, RBPs are capable of influencing tumor cell phenotypes through different signaling pathways or other axes, and researches on medical treatment have been largely inspired. Exploring the prognostic and therapeutic values of RBPs in OS is a hotspot where diverse avenues on regulating RBPs have achieved dramatical effects. In this review, we briefly summarize the contribution of RBPs and their binding molecules to OS oncogenicity and generally introduce distinctive RBPs as samples. Moreover, we focus on the attempts to differentiate RBP's opposite functions in predicting prognosis and collect possible strategies for treatment. Our review provides forwards insight into improving the understanding of OS and suggests RBPs as potential biomarkers for therapies.
Collapse
Affiliation(s)
- Ziyuan Que
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Kang Yang
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Nan Wang
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Shuying Li
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Tao Li
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
9
|
Zhu G, Xia Y, Zhao Z, Li A, Li H, Xiao T. LncRNA XIST from the bone marrow mesenchymal stem cell derived exosome promotes osteosarcoma growth and metastasis through miR-655/ACLY signal. Cancer Cell Int 2022; 22:330. [PMID: 36309693 PMCID: PMC9617450 DOI: 10.1186/s12935-022-02746-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Long non-coding RNA X-inactive specific transcript (XIST) regulates the progression of a variety of tumors, including osteosarcoma. Bone marrow mesenchymal stem cells (BMSCs) can be recruited into osteosarcoma tissue and affect the progression by secreting exosomes. However, whether BMSCs derived exosomes transmit XIST to regulate the growth and metastasis of osteosarcoma and the related mechanism are still unclear. Method In this study, BMSCs derived exosomes were used to treat human osteosarcoma cells MG63 and 143B, and the level of XIST in BMSCs was intervened by siRNA. CCK-8, EdU, transwell assays were used to analyze the changes of cell proliferation, migration and invasion. Bioinformatics analysis, RNA pulldown and dual-luciferase reporter gene assays validated the targeted relationship of XIST with miR-655 and the interaction between miR-655 and ACLY 3’-UTR. 143B/LUC cell line was used to establish an animal model of in situ osteosarcoma to verify the found effects of XIST on osteosarcoma. Oil Red O staining, Western blot and so on were used to detect the changes of lipid deposition and protein expression. Results It was found that BMSCs derived exosomes promoted the proliferation, migration and invasion of osteosarcoma cells, and the down-regulation of XIST inhibited this effect. miR-655 mediated the role of BMSCs derived exosomal XIST in promoting the progression of osteosarcoma and down-regulation of miR-655 could reverse the effects of inhibiting XIST on the proliferation, migration and invasion of osteosarcoma cells. Meanwhile, animal level results confirmed that BMSCs derived exosomal XIST could promote osteosarcoma growth and lung metastasis by combining with miR-655. In-depth mechanism study showed that BMSCs derived exosomal XIST combined with miR-655 to increase the protein level of ACLY, which led to lipid deposition and activate β-catenin signal to promote the proliferation, migration and invasion of osteosarcoma cells. Conclusion This study showed that BMSCs derived exosomal XIST could enter osteosarcoma cells, bind and down-regulates the level of miR-655, resulting in an increase in the level of ACLY, thus increasing the lipid deposition and the activity of β-catenin signal to promote the growth and metastasis of osteosarcoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02746-0.
Collapse
|
10
|
He Z, Cai K, Zeng Z, Lei S, Cao W, Li X. Autophagy-associated circRNA circATG7 facilitates autophagy and promotes pancreatic cancer progression. Cell Death Dis 2022; 13:233. [PMID: 35288538 PMCID: PMC8921308 DOI: 10.1038/s41419-022-04677-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022]
Abstract
Dysregulation of autophagy and circular RNAs (circRNAs) are involved in the pancreatic cancer (PC) progression. However, the regulatory network between circRNAs, autophagy, and PC progression remains unknown. Herein, we demonstrated that autophagy-associated circRNA circ-autophagy related 7 (circATG7) was elevated in PC tissues compared to adjacent tissues, and in PC cells treated with EBSS and hypoxia. circATG7 expression was positively associated with tumor diameter and lymph node invasion in patients with PC. circATG7 overexpression promoted PC cell proliferation, mobility, and autophagy in vitro, while circATG7 knockdown induced the opposite effects. ATG7 inhibition attenuated the effects of circATG7 on the biological functions of PC cells. CircATG7 is located in the cell cytoplasm and nucleus. Cytoplasmic circATG7 sponged miR-766-5p and decreased its expression, and increased the expression of ATG7, a target gene of miR-766-5p. Nuclear circATG7 acted as a scaffold to increase the interaction between the human antigen R protein and ATG7 mRNA and enhanced ATG mRNA stability. Furthermore, we demonstrated that circATG7 regulates PC cell proliferation and metastasis in vivo via ATG7-dependent autophagy. In conclusion, our results demonstrated that circATG7 accelerates PC progression via miR-766-5p/ATG7 and that HUR/ATG7 depends on autophagic flux. Thus, circATG7 may be a potential therapeutic target for PC.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases & Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Kun Cai
- Guizhou Medical University, Guiyang, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Shan Lei
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Wenpeng Cao
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China.
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases & Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, 518055, China.
- Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|