1
|
Palollathil A, Nandakumar R, Ahmed M, Velikkakath AKG, Nisar M, Nisar M, Devasahayam Arokia Balaya R, Parate SS, Hanehalli V, Mahin A, Mathew RT, Shetty R, Codi JAK, Revikumar A, Vijayakumar M, Prasad TSK, Raju R. HNCDrugResDb: a platform for deciphering drug resistance in head and neck cancers. Sci Rep 2024; 14:25327. [PMID: 39455682 PMCID: PMC11511878 DOI: 10.1038/s41598-024-75861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Drug resistance poses a significant obstacle to the success of anti-cancer therapy in head and neck cancers (HNCs). We aim to develop a platform for visualizing and analyzing molecular expression alterations associated with HNC drug resistance. Through data mining, we convened differentially expressed molecules and context-specific signaling events involved in drug resistance. The driver genes, interaction networks and transcriptional regulations were explored using bioinformatics approaches. A total of 2364 differentially expressed molecules were identified in 78 distinct drug-resistant cells against 14 anti-cancer drugs, comprising 1131 mRNAs, 746 proteins, 62 lncRNAs, 257 miRNAs, 1 circRNA, and 166 post-translational modifications. Among these, 255 molecules were considerably, the signature driver genes of HNC drug resistance. Further, we also developed a landscape of signaling pathways and their cross-talk with diverse signaling modules involved in drug resistance. Additionally, a publicly-accessible database named "HNCDrugResDb" was designed with browse, query, and pathway explorer options to fetch and enrich molecular alterations and signaling pathways altered in drug resistance. HNCDrugResDb is also enabled with a Drug Resistance Analysis tool as an initial platform to infer the likelihood of resistance based on the expression pattern of driver genes. HNCDrugResDb is anticipated to have substantial implications for future advancements in drug discovery and optimization of personalized medicine approaches.
Collapse
Affiliation(s)
- Akhina Palollathil
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Revathy Nandakumar
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Kingdom of Saudi Arabia, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anoop Kumar G Velikkakath
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Muhammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Rex Devasahayam Arokia Balaya
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Vidyarashmi Hanehalli
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Althaf Mahin
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Rohan Thomas Mathew
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| |
Collapse
|
2
|
Sun Z, Guo X, Li C, Ling J, Chang A, Zhao H, Zhuo X. Exploring the therapeutic mechanisms of resveratrol for treating arecoline-induced malignant transformation in oral epithelial cells: insights into hub targets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8290-8305. [PMID: 38934557 DOI: 10.1002/jsfa.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Betel nut chewing is a significant risk factor for oral cancer due to arecoline, its primary active component. Resveratrol, a non-flavonoid polyphenol, possesses anti-cancer properties. It has been shown to inhibit arecoline-induced oral malignant cells in preliminary experiments but the underlying mechanism remains unclear. This research therefore aimed to explore the potential therapeutic targets of resveratrol in treating arecoline-induced oral cancer. METHODS Data mining identified common targets and hub targets of resveratrol in arecoline-induced oral cancer. Gene set variation analysis (GSVA) was used to score and validate the expression and clinical significance of these hub targets in head and neck cancer (HNC) tissues. Molecular docking analysis was conducted on the hub targets. The effect of resveratrol intervention on hub targets was verified by experiments. RESULTS Sixty-one common targets and 15 hub targets were identified. Hub targets were highly expressed in HNC and were associated with unfavorable prognoses. They played a role in HNC metastasis, epithelial-mesenchymal transition, and invasion. Their expression also affected immune cell infiltration and correlated negatively with sensitivity to chemotherapeutic agents such as bleomycin and docetaxel. Experiments demonstrated that resveratrol down-regulated the expression of the hub targets, inhibited their proliferation and invasion, and induced apoptosis. CONCLUSION Resveratrol inhibits the arecoline-induced malignant phenotype of oral epithelial cells by regulating the expression of some target genes, suggesting that resveratrol may be used not only as an adjuvant treatment for oral cancer, but also as an adjuvant for oral cancer prevention due to its low toxicity and high efficacy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Sun
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaopeng Guo
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Changya Li
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Suleiman R, McGarrah P, Baral B, Owen D, Vera Aguilera J, Halfdanarson TR, Price KA, Fuentes Bayne HE. Alpelisib and Immunotherapy: A Promising Combination for Recurrent and Metastatic Squamous Cell Carcinoma of the Head and Neck. Cancer Rep (Hoboken) 2024; 7:e70023. [PMID: 39376013 PMCID: PMC11458888 DOI: 10.1002/cnr2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Recurrent squamous cell carcinoma (SCC) of the head and neck (SCCHN) remains a formidable clinical challenge despite available treatments. The phosphatidylinositol 3-kinase (PI3K) pathway has been identified as a potential therapeutic target, and alpelisib, a selective PI3Kα inhibitor, has demonstrated efficacy in certain malignancies. Combining this targeted therapy with immunotherapy has been suggested in previous studies as a promising strategy to bolster the immune response against cancer. CASES A 69-year-old woman with locoregional recurrence of PIK3CA-mutated SCC of the left maxilla and cervical nodal metastases. Several chemotherapeutic regimens, including cisplatin, docetaxel, 5FU, chemoradiotherapy, and mono-immunotherapy, resulted in disease progression. Alpelisib combined with pembrolizumab led to a sustained response for 9 months. A 58-year-old man with recurrent metastatic PIK3CA-mutated SCC of the oropharynx, involving the left lung, hilar, and mediastinal lymph nodes. Despite prior palliative radiation and platinum-based chemotherapy with pembrolizumab and cetuximab, treatment with alpelisib and nivolumab resulted in a partial response. Severe hyperglycemia and rash led to treatment discontinuation. CONCLUSION Our findings highlight the potential of this innovative therapeutic combination, suggesting a need for further investigations in this setting.
Collapse
Affiliation(s)
- Riham Suleiman
- Division of Medical OncologyMayo ClinicRochesterMinnesotaUSA
| | | | - Binav Baral
- Division of Medical OncologyMayo ClinicRochesterMinnesotaUSA
| | - Dawn Owen
- Division of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | | |
Collapse
|
4
|
Caglar HO, Aytatli A, Barlak N, Aydin Karatas E, Tatar A, Sahin A, Karatas OF. Bioinformatics approach combined with experimental verification reveals OAS3 gene implicated in paclitaxel resistance in head and neck cancer. Head Neck 2024; 46:2178-2196. [PMID: 38752376 DOI: 10.1002/hed.27803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND This study aimed to identify a candidate gene associated with paclitaxel (PTX) resistance and to evaluate functionally its biological role in the PTX-resistant head and neck squamous cell carcinoma (HNSCC) cell lines and clinical specimens. METHODS Microarray data series containing samples of different types of cancers resistant to PTX were analyzed and then a candidate gene associated with PTX resistance was identified using various bioinformatics tools. After the suppression of the target gene expression, changes in cell viability and colony-forming ability were evaluated in PTX-resistant FaDu and SCC-9 cell lines. RESULTS Bioinformatics analyses of upregulated genes in PTX-resistant cancer cells indicated that OAS3 was associated with PTX resistance. The downregulation of OAS3 expression significantly reduced the viability and colony-forming capacity of PTX-resistant SCC-9 cells by inducing apoptosis and cell cycle arrest at G0/G1 phase. CONCLUSIONS The therapeutic targeting of OAS3 may resensitize PTX-resistant HNSCC cells with high OAS3 expression to PTX treatment.
Collapse
Affiliation(s)
- Hasan Onur Caglar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Abdulmelik Aytatli
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Neslisah Barlak
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Elanur Aydin Karatas
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulkadir Sahin
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
5
|
Liu Y, Zhang N, Wen Y, Wen J. Head and neck cancer: pathogenesis and targeted therapy. MedComm (Beijing) 2024; 5:e702. [PMID: 39170944 PMCID: PMC11338281 DOI: 10.1002/mco2.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Head and neck cancer (HNC) is a highly aggressive type of tumor characterized by delayed diagnosis, recurrence, metastasis, relapse, and drug resistance. The occurrence of HNC were associated with smoking, alcohol abuse (or both), human papillomavirus infection, and complex genetic and epigenetic predisposition. Currently, surgery and radiotherapy are the standard treatments for most patients with early-stage HNC. For recurrent or metastatic (R/M) HNC, the first-line treatment is platinum-based chemotherapy combined with the antiepidermal growth factor receptor drug cetuximab, when resurgery and radiation therapy are not an option. However, curing HNC remains challenging, especially in cases with metastasis. In this review, we summarize the pathogenesis of HNC, including genetic and epigenetic changes, abnormal signaling pathways, and immune regulation mechanisms, along with all potential therapeutic strategies such as molecular targeted therapy, immunotherapy, gene therapy, epigenetic modifications, and combination therapies. Recent preclinical and clinical studies that may offer therapeutic strategies for future research on HNC are also discussed. Additionally, new targets and treatment methods, including antibody-drug conjugates, photodynamic therapy, radionuclide therapy, and mRNA vaccines, have shown promising results in clinical trials, offering new prospects for the treatment of HNC.
Collapse
Affiliation(s)
- Yan Liu
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
- National Facility for Translational Medicine (Sichuan)West China Hospital of Sichuan UniversityChengduChina
| | - Nannan Zhang
- National Center for Birth Defect MonitoringKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengduChina
| | - Yi Wen
- State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Jiaolin Wen
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
6
|
Adeleye K, Li A, Xie Y, Pochampally S, Hamilton D, Garcia-Godoy F, Miller D, Li W. Novel Antimitotic Agent SP-1-39 Inhibits Head and Neck Squamous Cell Carcinoma. J Dent Res 2024; 103:926-936. [PMID: 39101715 PMCID: PMC11465348 DOI: 10.1177/00220345241261982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Effective management of head and neck cancer (HNC) poses a significant challenge in the field of oncology, due to its intricate pathophysiology and limited treatment options. The most common HNC malignancy is head and neck squamous cell carcinoma (HNSCC). HNSCC treatment includes a combination of surgery, radiation, and chemotherapy. While HNSCC is treatable if diagnosed early, this is often not the case and is considered incurable once in its late stages and metastatic disease has developed. Therapies are also limited once resistant disease has occurred. SP-1-39, a novel colchicine-binding site inhibitor (CBSI), has been recently reported for its potential efficacy in a variety of cancer cell lines including breast, melanoma, pancreatic, and prostate. SP-1-39 also shows abilities to overcome paclitaxel resistance in a paclitaxel-resistant prostate cancer xenograft model. To evaluate the potential of SP-1-39 as a new HNSCC treatment option, herein we systematically performed preclinical studies in HNSCC models using SP-1-39 and demonstrated that, in vitro, SP-1-39 inhibits the proliferation of 2 HNSCC cell lines with low nanomolar IC50 values (1.4 to 2.1 nM), induces HNSCC cell apoptosis in a dose-dependent manner, interferes with migration of HNSCC cells, and leads to HNSCC cell cycle arrest in the G2/M phase. In vivo, SP-1-39 suppresses the primary tumor growth of a Detroit 562 subcutaneous xenograft mouse model in 6- to 8-wk-old, male NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice, with no detectable cytotoxic effects at a low dose of 2.5 mg/kg. This efficacy of SP-1-39 is better when compared with the treatment using a reference chemotherapy drug, paclitaxel at 10 mg/kg. Collectively, these data demonstrate that SP-1-39 is a promising candidate for further development for more efficacious HNSCC treatment.
Collapse
Affiliation(s)
- K.L. Adeleye
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A.R. Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Y. Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S. Pochampally
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D. Hamilton
- Department of Comparative Medicine, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - F. Garcia-Godoy
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D.D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - W. Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
7
|
Su L, Xu J, Lu C, Gao K, Hu Y, Xue C, Yan X. Nano-flow cytometry unveils mitochondrial permeability transition process and multi-pathway cell death induction for cancer therapy. Cell Death Discov 2024; 10:176. [PMID: 38622121 PMCID: PMC11018844 DOI: 10.1038/s41420-024-01947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Mitochondrial permeability transition (mPT)-mediated mitochondrial dysfunction plays a pivotal role in various human diseases. However, the intricate details of its mechanisms and the sequence of events remain elusive, primarily due to the interference caused by Bax/Bak-induced mitochondrial outer membrane permeabilization (MOMP). To address these, we have developed a methodology that utilizes nano-flow cytometry (nFCM) to quantitatively analyze the opening of mitochondrial permeability transition pore (mPTP), dissipation of mitochondrial membrane potential ( Δ Ψm), release of cytochrome c (Cyt c), and other molecular alternations of isolated mitochondria in response to mPT induction at the single-mitochondrion level. It was identified that betulinic acid (BetA) and antimycin A can directly induce mitochondrial dysfunction through mPT-mediated mechanisms, while cisplatin and staurosporine cannot. In addition, the nFCM analysis also revealed that BetA primarily induces mPTP opening through a reduction in Bcl-2 and Bcl-xL protein levels, along with an elevation in ROS content. Employing dose and time-dependent strategies of BetA, for the first time, we experimentally verified the sequential occurrence of mPTP opening and Δ Ψm depolarization prior to the release of Cyt c during mPT-mediated mitochondrial dysfunction. Notably, our study uncovers a simultaneous release of cell-death-associated factors, including Cyt c, AIF, PNPT1, and mtDNA during mPT, implying the initiation of multiple cell death pathways. Intriguingly, BetA induces caspase-independent cell death, even in the absence of Bax/Bak, thereby overcoming drug resistance. The presented findings offer new insights into mPT-mediated mitochondrial dysfunction using nFCM, emphasizing the potential for targeting such dysfunction in innovative cancer therapies and interventions.
Collapse
Affiliation(s)
- Liyun Su
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jingyi Xu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Cheng Lu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kaimin Gao
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yunyun Hu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Chengfeng Xue
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
8
|
Zhao RR, Wu JH, Tong LW, Li JY, Lu YS, Shao JW. Multifunctional metal-coordinated Co-assembled carrier-free nanoplatform based on dual-drugs for ferroptosis-mediated cocktail therapy of hepatocellular carcinoma growth and metastasis. J Colloid Interface Sci 2024; 660:257-276. [PMID: 38244494 DOI: 10.1016/j.jcis.2024.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The heterogeneity of hepatocellular carcinoma (HCC) and the complexity of the tumor microenvironment (TME) pose challenges to efficient drug delivery and the antitumor efficacy of combined or synergistic therapies. Herein, a metal-coordinated carrier-free nanodrug (named as USFe3+ LA NPs) was developed for ferroptosis-mediated multimodal synergistic anti-HCC. Natural product ursolic acid (UA) was incorporated to enhance the sensitivity of tumor cells to sorafenib (SRF). Surface decoration of cell penetration peptide and epithelial cell adhesion molecule aptamer facilitated the uptake of USFe3+ LA NPs by HepG2 cells. Meanwhile, Fe3+ ions could react with intracellular hydrogen peroxide, generating toxic hydroxyl radical (·OH) for chemodynamical therapy (CDT) and amplified ferroptosis by cystine/glutamate antiporter system (System Xc-), which promoted the consumption of glutathione (GSH) and inhibited the expression of glutathione peroxidase 4 (GPX4). Notably, these all-in-one nanodrugs could inhibit tumor metastasis and induced immunogenic cell death (ICD). Last but not least, the nanodrugs demonstrated favorable biocompatibility, augmenting the immune response against the programmed death-ligand 1 (PD-L1) by increasing cytotoxic T cell infiltration. In vivo studies revealed significant suppression of tumor growth and distant metastasis. Overall, our work introduced a novel strategy for applications of metal-coordinated co-assembled carrier-free nano-delivery system in HCC combination therapy, especially in the realms of cancer metastasis prevention and immunotherapy.
Collapse
Affiliation(s)
- Rui-Rui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ju-Hong Wu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ling-Wu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jin-Yu Li
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu-Sheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
9
|
Arnold L, Gomez JP, Barry M, Yap M, Jackson L, Ly T, Standing D, Padhye SB, Biersack B, Anant S, Thomas SM. Acryl-3,5-bis(2,4-difluorobenzylidene)-4-piperidone targeting cellular JUN proto-oncogene, AP-1 transcription factor subunit inhibits head and neck squamous cell carcinoma progression. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1104-1121. [PMID: 38023989 PMCID: PMC10651473 DOI: 10.37349/etat.2023.00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a survival rate below fifty percent. Addressing meager therapeutic options, a series of small molecule inhibitors were screened for antitumor efficacy. The most potent analog, acryl-3,5-bis(2,4-difluorobenzylidene)-4-piperidone (DiFiD; A-DiFiD), demonstrated strong cellular JUN proto-oncogene, activator protein 1 (AP-1) transcription factor subunit (JUN, c-Jun) antagonism. c-Jun, an oncogenic transcription factor, promotes cancer progression, invasion, and adhesion; high (JUN) mRNA expression correlates with poorer HNSCC survival. Methods Four new small molecules were generated for cytotoxicity screening in HNSCC cell lines. A-DiFiD-treated HNSCC cells were assessed for cytotoxicity, colony formation, invasion, migration, and adhesion. Dot blot array was used to identify targets. Phospho-c-Jun (p-c-Jun) expression was analyzed using immunoblotting. The Cancer Genome Atlas (TCGA) head and neck cancer datasets were utilized to determine overall patient survival. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets interfaced with University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) were analyzed to determine protein levels of c-Jun in HNSCC patients and correlate levels with patient. Results Of the small molecules tested, A-DiFiD was the most potent in HNSCC lines, while demonstrating low half-maximal drug inhibitory concentration (IC50) in non-malignant Het-1A cells. Additionally, A-DiFiD abrogated cell invasion, migration, and colony formation. Phospho-kinase in vitro array demonstrated A-DiFiD reduced p-c-Jun. Likewise, a time dependent reduction in p-c-Jun was observed starting at 3 min post A-DiFiD treatment. TCGA Firehose Legacy vs. recurrent and metastatic head and neck cancer reveal a nearly 3% DNA amplification in recurrent/metastatic tumor compared to below 1% in primary tumors that had no lymph node metastasis. CPTAC analysis show higher tumor c-Jun levels compared to normal. Patients with high JUN expression had significantly reduced 3-year survival. Conclusions A-DiFiD targets c-Jun, a clinical HNSCC driver, with potent anti-tumor effects.
Collapse
Affiliation(s)
- Levi Arnold
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Juan Pineda Gomez
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael Barry
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Marrion Yap
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Laura Jackson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Subhash B. Padhye
- Interdisciplinary Science and Technology Research Academy, University of Pune, Pune 411007, Maharashtra, India
| | - Bernhard Biersack
- Department of Biology, Chemistry, Earth Sciences, University of Bayreuth, 95440 Bayreuth, Germany
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
10
|
Santer M, Riechelmann H, Hofauer B, Schmutzhard J, Freysinger W, Runge A, Gottfried TM, Zelger P, Widmann G, Kranebitter H, Mangesius S, Mangesius J, Kocher F, Dejaco D. Radiomic Assessment of Radiation-Induced Alterations of Skeletal Muscle Composition in Head and Neck Squamous Cell Carcinoma within the Currently Clinically Defined Optimal Time Window for Salvage Surgery-A Pilot Study. Cancers (Basel) 2023; 15:4650. [PMID: 37760620 PMCID: PMC10527389 DOI: 10.3390/cancers15184650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) frequently require primary radiochemotherapy (RCT). Despite intensity modulation, the desired radiation-induced effects observed in HNSCC may also be observed as side effects in healthy tissue, e.g., the sternocleidomastoid muscle (SCM). These side effects (e.g., tissue fibrosis) depend on the interval between the completion of RCT and restaging CT. For salvage surgery, the optimal time window for surgery is currently clinically postulated at between 6 and 12 weeks after completion of RCT. Thus, no extensive tissue fibrosis is to be expected. This interval is based on clinical studies exploring surgical complications. Studies directly exploring radiation-induced changes of the SCM in HNSCC patients are sparse. The present study quantified tissue alterations in the SCM and paravertebral musculature (PVM) after RCT, applying radiomics to determine the optimal time window for salvage surgery. Three radiomic key parameters, (1) volume, (2) mean positivity of pixels (MPP), and (3) uniformity, were extracted with mint LesionTM in the staging CTs and restaging CTs of 98 HNSCC patients. Of these, 25 were female, the mean age was 62 (±9.6) years, and 80.9% were UICC Stage IV. The mean restaging interval was 55 (±28; range 29-229) days. Only the mean volume significantly decreased after RCT, from 9.0 to 8.4 and 96.5 to 91.9 mL for the SCM and PVM, respectively (both p = 0.007, both Cohen's d = 0.28). In addition, the mean body mass index (BMI) decreased from 23.9 (±4.2) to 21.0 (±3.6) kg/m² (p < 0.001; Cohen's d = 0.9). The mean BMI decreased significantly and was correlated with the volume decrease for the SCM (r = 0.27; p = 0.007) and PVM (r = 0.41; p < 0.001). If t-test p-values were adjusted for the BMI decrease, no significant change in volumes for the SCM and PVM was observed (both p > 0.05). The present data support the clinically postulated optimal interval for salvage surgery of 6 to 12 weeks.
Collapse
Affiliation(s)
- Matthias Santer
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (H.R.); (B.H.); (J.S.); (W.F.); (A.R.); (T.M.G.)
| | - Herbert Riechelmann
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (H.R.); (B.H.); (J.S.); (W.F.); (A.R.); (T.M.G.)
| | - Benedikt Hofauer
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (H.R.); (B.H.); (J.S.); (W.F.); (A.R.); (T.M.G.)
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (H.R.); (B.H.); (J.S.); (W.F.); (A.R.); (T.M.G.)
| | - Wolfgang Freysinger
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (H.R.); (B.H.); (J.S.); (W.F.); (A.R.); (T.M.G.)
| | - Annette Runge
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (H.R.); (B.H.); (J.S.); (W.F.); (A.R.); (T.M.G.)
| | - Timo Maria Gottfried
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (H.R.); (B.H.); (J.S.); (W.F.); (A.R.); (T.M.G.)
| | - Philipp Zelger
- Department for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Gerlig Widmann
- Department of Radiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.W.); (H.K.)
| | - Hanna Kranebitter
- Department of Radiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.W.); (H.K.)
| | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Julian Mangesius
- Department of Radiation-Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Florian Kocher
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniel Dejaco
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (H.R.); (B.H.); (J.S.); (W.F.); (A.R.); (T.M.G.)
| |
Collapse
|
11
|
Barroso T, Melo-Alvim C, Ribeiro LA, Casimiro S, Costa L. Targeting Inhibitor of Apoptosis Proteins to Overcome Chemotherapy Resistance-A Marriage between Targeted Therapy and Cytotoxic Chemotherapy. Int J Mol Sci 2023; 24:13385. [PMID: 37686191 PMCID: PMC10487656 DOI: 10.3390/ijms241713385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Precision oncology is the ultimate goal of cancer treatment, i.e., to treat cancer and only cancer, leaving all the remaining cells and tissues as intact as possible. Classical chemotherapy and radiotherapy, however, are still effective in many patients with cancer by effectively inducing apoptosis of cancer cells. Cancer cells might resist apoptosis via the anti-apoptotic effects of the inhibitor of apoptosis proteins. Recently, the inhibitors of those proteins have been developed with the goal of enhancing the cytotoxic effects of chemotherapy and radiotherapy, and one of them, xevinapant, has already demonstrated effectiveness in a phase II clinical trial. This class of drugs represents an example of synergism between classical cytotoxic chemo- and radiotherapy and new targeted therapy.
Collapse
Affiliation(s)
- Tiago Barroso
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal; (C.M.-A.); (L.A.R.); (L.C.)
| | - Cecília Melo-Alvim
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal; (C.M.-A.); (L.A.R.); (L.C.)
| | - Leonor Abreu Ribeiro
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal; (C.M.-A.); (L.A.R.); (L.C.)
| | - Sandra Casimiro
- Luís Costa Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Luís Costa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal; (C.M.-A.); (L.A.R.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
12
|
Yan J, Xu F, Zhou D, Zhang S, Zhang B, Meng Q, Lv Q. Metabolic reprogramming of three major nutrients in platinum-resistant ovarian cancer. Front Oncol 2023; 13:1231460. [PMID: 37681030 PMCID: PMC10482409 DOI: 10.3389/fonc.2023.1231460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Metabolic reprogramming is a phenomenon in which cancer cells alter their metabolic pathways to support their uncontrolled growth and survival. Platinum-based chemotherapy resistance is associated with changes in glucose metabolism, amino acid metabolism, fatty acid metabolism, and tricarboxylic acid cycle. These changes lead to the creation of metabolic intermediates that can provide precursors for the biosynthesis of cellular components and help maintain cellular energy homeostasis. This article reviews the research progress of the metabolic reprogramming mechanism of platinumbased chemotherapy resistance caused by three major nutrients in ovarian cancer.
Collapse
Affiliation(s)
- Jinbowen Yan
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fangzhi Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Dan Zhou
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingwei Meng
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiubo Lv
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Cierpikowski P, Leszczyszyn A, Bar J. The Role of Hedgehog Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:2083. [PMID: 37626893 PMCID: PMC10453169 DOI: 10.3390/cells12162083] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading malignancy worldwide, with a poor prognosis and limited treatment options. Molecularly targeted therapies for HNSCC are still lacking. However, recent reports provide novel insights about many molecular alterations in HNSCC that may be useful in future therapies. Therefore, it is necessary to identify new biomarkers that may provide a better prediction of the disease and promising targets for personalized therapy. The poor response of HNSCC to therapy is attributed to a small population of tumor cells called cancer stem cells (CSCs). Growing evidence indicates that the Hedgehog (HH) signaling pathway plays a crucial role in the development and maintenance of head and neck tissues. The HH pathway is normally involved in embryogenesis, stem cell renewal, and tissue regeneration. However, abnormal activation of the HH pathway is also associated with carcinogenesis and CSC regulation. Overactivation of the HH pathway was observed in several tumors, including basal cell carcinoma, that are successfully treated with HH inhibitors. However, clinical studies about HH pathways in HNSCC are still rare. In this review, we summarize the current knowledge and recent advances regarding the HH pathway in HNSCC and discuss its possible implications for prognosis and future therapy.
Collapse
Affiliation(s)
- Piotr Cierpikowski
- Department of Maxillofacial Surgery, The Ludwik Rydygier Specialist Hospital, Osiedle Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Anna Leszczyszyn
- Dental Surgery Outpatient Clinic, 4th Military Clinical Hospital, Weigla 5, 53-114 Wroclaw, Poland;
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|
14
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
15
|
Lee J, Roh JL. Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Lett 2023; 559:216119. [PMID: 36893895 DOI: 10.1016/j.canlet.2023.216119] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Cancer metabolic alterations have been emphasized to protect cancer cells from cell death. The metabolic reprogramming toward a mesenchymal state makes cancer cells resistant to therapy but vulnerable to ferroptosis induction. Ferroptosis is a new form of regulated cell death based on the iron-dependent accumulation of excessive lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the core regulator of ferroptosis by detoxifying cellular lipid peroxidation using glutathione as a cofactor. GPX4 synthesis requires selenium incorporation into the selenoprotein through isopentenylation and selenocysteine tRNA maturation. GPX4 synthesis and expression can be regulated by multiple levels of its transcription, translation, posttranslational modifications, and epigenetic modifications. Targeting GPX4 in cancer may be a promising strategy for effectively inducing ferroptosis and killing therapy-resistant cancer. Several pharmacological therapeutics targeting GPX4 have been developed constantly to activate ferroptosis induction in cancer. The potential therapeutic index of GPX4 inhibitors remains to be tested with thorough examinations of their safety and adverse effects in vivo and clinical trials. Many papers have been published continuously in recent years, requiring state-of-the-art updates in targeting GPX4 in cancer. Herein, we summarize targeting the GPX4 pathway in human cancer, which leads to implications of ferroptosis induction for tackling cancer resilience.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
16
|
Xie QH, Wang WM, Yang JG, Xia HF, Xiao BL, Chen GH, Huang J, Li RF, Chen G. ALIX promotes cell migration and invasion of head and neck squamous cell carcinoma by regulating the expression of MMP9, MMP14, VEGF-C. Arch Oral Biol 2023; 151:105696. [PMID: 37086494 DOI: 10.1016/j.archoralbio.2023.105696] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/24/2023]
Abstract
OBJECTIVE The poor survival rate of head and neck squamous cell carcinoma (HNSCC), one of the most prevalent human cancer, is attributed to frequent locoregional recurrence and lymph node metastases. Though it is reported that the expression of ALG-2 interacting protein X (ALIX) closely correlates with the progression of various tumors, its role in HNSCC remains unclear. The present study aims to investigate the role of ALIX in the development of HNSCC. DESIGN With immunohistochemical staining, the expression levels of ALIX and series of related functional proteins were compared in normal mucosal (n = 18), HNSCC tissues (n = 54), and metastatic lymph nodes (n = 11). Further, the correlation analysis was performed among the proteins detected. By knocking down ALIX in HNSCC cell lines, the correlation of ALIX with the proteins was verified in vitro. The role of ALIX in proliferation, migration, and invasion of HNSCC cells was further studied by flow cytometry, wounding healing, and transwell assays, respectively. RESULTS Higher expression level of ALIX was revealed in HNSCC samples, especially in metastatic lymph nodes, than in normal mucosal tissues. Accordingly, increasing levels of MMP9, MMP14, and VEGF-C were also discovered in metastatic lymph nodes and significantly correlated with the expression of ALIX. In vitro assays demonstrated that the knockdown of ALIX reduced both the transcriptional and protein levels of MMP9, MMP14, and VEGF-C, together with suppressed migration and weakened invasion of HNSCC cell lines. CONCLUSIONS ALIX up-regulated the expression of MMP9, MMP14 and VEGF-C, and promoted migration and invasion of HNSCC cells.
Collapse
Affiliation(s)
- Qi-Hui Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie-Gang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bo-Lin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gao-Hong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jue Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rui-Fang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
El-Mahdy HA, Mohamadin AM, Abulsoud AI, Khidr EG, El-Husseiny AA, Ismail A, Elsakka EGE, Mokhlis HA, El-Husseiny HM, Doghish AS. miRNAs as potential game-changers in head and neck cancer: Future clinical and medicinal uses. Pathol Res Pract 2023; 245:154457. [PMID: 37058745 DOI: 10.1016/j.prp.2023.154457] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Head and neck cancers (HNCs) are a group of heterogeneous tumors formed most frequently from epithelial cells of the larynx, lips, oropharynx, nasopharynx, and mouth. Numerous epigenetic components, including miRNAs, have been demonstrated to have an impact on HNCs characteristics like progression, angiogenesis, initiation, and resistance to therapeutic interventions. The miRNAs may control the production of numerous genes linked to HNCs pathogenesis. The roles that miRNAs play in angiogenesis, invasion, metastasis, cell cycle, proliferation, and apoptosis are responsible for this impact. The miRNAs also have an impact on crucial HNCs-related mechanistic networks like the WNT/β-catenin signaling, PTEN/Akt/mTOR pathway, TGFβ, and KRAS mutations. miRNAs may affect how the HNCs respond to treatments like radiation and chemotherapy in addition to pathophysiology. This review aims to demonstrate the relationship between miRNAs and HNCs with a particular emphasis on how miRNAs impact HNCs signaling networks.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed M Mohamadin
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hamada Ahmed Mokhlis
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Al Qalyubia 13736, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
18
|
Han D, Li X, Cheng Y. Transcription Factor ELF1 Modulates Cisplatin Sensitivity in Prostate Cancer by Targeting MEIS Homeobox 2. Chem Res Toxicol 2023; 36:360-368. [PMID: 36763086 DOI: 10.1021/acs.chemrestox.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
As a widely used first-line agent for prostate cancer treatment, cisplatin is facing drug resistance which has resulted in chemotherapy failure in many prostate cancer patients, while the related molecular mechanisms remain unclear. In this study, we discovered that MEIS homeobox 2 (MEIS2) was lowly expressed in prostate cancer tissues by bioinformatics analysis, which had a close connection with the T stage and N stage of the tumor. Cell function experiments demonstrated that MEIS2 overexpression was capable of significantly suppressing proliferation of tumor cells, arresting prostate cancer cells in G0/G1 phase, and promoting DNA damage, thereby enhancing the sensitivity of prostate cancer to cisplatin. Dual-luciferase assay and chromatin co-immunoprecipitation (ChIP) assays confirmed the binding relationship between MEIS2 and ELF1. The results of rescue assay showed that ELF1 could promote DNA damage and enhance the sensitivity of tumor cells to cisplatin by activating MEIS2. In conclusion, the results of this study demonstrated that ELF1 could modulate DNA damage through activating MEIS2 and thus enhance cisplatin sensitivity in prostate cancer. This study suggested that the ELF1/MEIS2 axis may be a therapeutic target to strengthen cisplatin sensitivity in prostate cancer.
Collapse
Affiliation(s)
- Dengjun Han
- Urology Department, Zigong Fourth People's Hospital, No.19 Tanmulin Street, Ziliujing District, Zigong City, Sichuan Province 643000, China
| | - Xianyong Li
- Urology Department, Zigong Fourth People's Hospital, No.19 Tanmulin Street, Ziliujing District, Zigong City, Sichuan Province 643000, China
| | - Yang Cheng
- Urology Department, Zigong Fourth People's Hospital, No.19 Tanmulin Street, Ziliujing District, Zigong City, Sichuan Province 643000, China
| |
Collapse
|
19
|
Head and neck cancer patient-derived tumouroid cultures: opportunities and challenges. Br J Cancer 2023; 128:1807-1818. [PMID: 36765173 PMCID: PMC10147637 DOI: 10.1038/s41416-023-02167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancers (HNC) are the seventh most prevalent cancer type globally. Despite their common categorisation, HNCs are a heterogeneous group of malignancies arising in various anatomical sites within the head and neck region. These cancers exhibit different clinical and biological manifestations, and this heterogeneity also contributes to the high rates of treatment failure and mortality. To evaluate patients who will respond to a particular treatment, there is a need to develop in vitro model systems that replicate in vivo tumour status. Among the methods developed, patient-derived cancer organoids, also known as tumouroids, recapitulate in vivo tumour characteristics including tumour architecture. Tumouroids have been used for general disease modelling and genetic instability studies in pan-cancer research. However, a limited number of studies have thus far been conducted using tumouroid-based drug screening. Studies have concluded that tumouroids can play an essential role in bringing precision medicine for highly heterogenous cancer types such as HNC.
Collapse
|
20
|
Naghashpour M, Dayer D, Karami H, Naghashpour M, Moghadam MT, Haeri SMJ, Suzuki K. Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020286. [PMID: 36837487 PMCID: PMC9963572 DOI: 10.3390/medicina59020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Background and Objectives: Combination therapy improves the effect of chemotherapy on tumor cells. Magnolol, used in treating gastrointestinal disorders, has been shown to have anti-cancer properties. We investigated the synergistic effect of cisplatin and magnolol on the viability and maintenance of MKN-45 gastric cancer cells. Materials and Methods: The toxicity of magnolol and/or cisplatin was determined using the MTT technique. The trypan blue method was used to test magnolol and/or cisplatin's effect on MKN-45 cell growth. Crystal violet staining was used to assess the treated cells' tendency for colony formation. The expression of genes linked to apoptosis, cell cycle arrest, and cell migration was examined using the qPCR method. Results: According to MTT data, using magnolol and/or cisplatin significantly reduced cell viability. The ability of the treated cells to proliferate and form colonies was also reduced considerably. Magnolol and/or cisplatin treatment resulted in a considerable elevation in Bax expression. However, the level of Bcl2 expression was dramatically reduced. p21 and p53 expression levels were significantly increased in the treated cells, while MMP-9 expression was significantly reduced. Conclusions: These findings show that magnolol has a remarkable anti-tumor effect on MKN-45 cells. In combination with cisplatin, magnolol may be utilized to overcome cisplatin resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Mahsa Naghashpour
- Department of Anatomical Sciences, Medical School, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
| | - Mahshid Naghashpour
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan 6313833177, Iran
| | - Mahin Taheri Moghadam
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15753, Iran
| | - Seyed Mohammad Jafar Haeri
- Department of Anatomical Sciences, Medical School, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
- Correspondence: (S.M.J.H.); (K.S.); Tel.: +98-9123276391 (S.M.J.H.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.J.H.); (K.S.); Tel.: +98-9123276391 (S.M.J.H.)
| |
Collapse
|
21
|
Chaudhary RK, Khanal P, Mateti UV, Shastry CS, Shetty J. Identification of hub genes involved in cisplatin resistance in head and neck cancer. J Genet Eng Biotechnol 2023; 21:9. [PMID: 36715825 PMCID: PMC9886788 DOI: 10.1186/s43141-023-00468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/14/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cisplatin resistance is one of the major contributors to the poor survival rate among head and neck cancer (HNC) patients. Focusing on the protein-protein interaction rather than a single protein could provide a better understanding of drug resistance. Thus, this study aimed to identify hub genes in a complex network of cisplatin resistance associated genes in HNC chemotherapy via a series of bioinformatic tools. METHODS The genes involved in cisplatin resistance were retrieved from the NCBI gene database using "head and neck cancer" and "cisplatin resistance" as key words. The human genes retrieved were analyzed for their interactions and enriched using the STRING database. The interaction between KEGG pathways and genes was visualized in Cytoscape 3.7.2. Further, the hub gene was identified using the Cytohubba plugin of Cytoscape and validated using UALCAN and Human Protein Atlas database. Validated genes were investigated for the drug-gene interaction using the DGIbd database. RESULTS Out of 137 genes obtained using key words, 133 were associated with cisplatin resistance in the human species. A total of 150 KEGG pathways, 82 cellular components, 123 molecular functions, and 1752 biological processes were modulated on enrichment analysis. Out of 37 hub genes, CCND1, AXL, CDKN2A, TERT, and EXH2 genes were found to have significant (p < 0.05) mRNA expression and effect on overall survival whereas protein expression was found to be positive for all the significant genes except TERT. Thus, they can be targeted with palbociclib, methotrexate, bortezomib and fluorouracil, sorafenib, dasatinib, carboplatin, paclitaxel, gemcitabine, imatinib, doxorubicin, and vorinostat. CONCLUSION As the pathogenesis of head and neck cancer is complex, targeting hub genes and associated pathways involved in cisplatin resistance could bring a milestone change in the drug discovery and management of drug resistance which might uplift overall survival among HNC patients.
Collapse
Affiliation(s)
- Raushan Kumar Chaudhary
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Pukar Khanal
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Uday Venkat Mateti
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India.
| | - C. S. Shastry
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Jayarama Shetty
- grid.414809.00000 0004 1765 9194Department of Radiation Therapy and Oncology, K.S. Hegde Medical Academy (KSHEMA), Justice K.S. Hegde Charitable Hospital, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| |
Collapse
|
22
|
Yamamoto V, Wang B, Lee AS. Suppression of head and neck cancer cell survival and cisplatin resistance by GRP78 small molecule inhibitor YUM70. Front Oncol 2023; 12:1044699. [PMID: 36713577 PMCID: PMC9875086 DOI: 10.3389/fonc.2022.1044699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the leading causes of cancer-related death worldwide. Surgical resection, radiation and chemotherapy are the mainstay of HNSCC treatment but are often unsatisfactory. Cisplatin is a commonly used chemotherapy in HNSCC; however, cisplatin resistance is a major cause of relapse and death. The 78-kD glucose-regulated protein (GRP78) is the master regulator of the unfolded protein response (UPR) and is implicated in therapeutic resistance in cancer. The role of GRP78 in cisplatin resistance in HNSCC remains unclear. YUM70 is a newly discovered hydroxyquinoline analogue and found to be an inhibitor of GRP78. The effect of YUM70 in HNSCC cell lines is unknown. Method Knockdown of GRP78 by siRNAs was performed to investigate the effect of GRP78 reduction in endoplasmic reticulum (ER)-stress induced and general apoptosis. Western blots examining apoptotic markers were performed on three HPV-negative HNSCC cell lines. WST-1 assay was performed to determine cell viability. In reverse, we utilized AA147, an ER proteostasis regulator to upregulate GRP78, and apoptotic markers and cell viability were determined. To test the ability of YUM70 to reverse cisplatin resistance, cisplatin-resistant HNSCC cell lines were generated by prolonged, repeated exposure to increasing concentrations of cisplatin. Colony formation assay using the cisplatin-resistant HNSCC cell line was performed to assess the in vitro reproductive cell survival. Furthermore, to test the ability of YUM70 to reverse cisplatin resistance in a physiologically relevant system, we subjected the 3D spheroids of the cisplatin-resistant HNSCC cell line to cisplatin treatment with or without YUM70 and monitored the onset of apoptosis. Results Reduction of GRP78 level induced HNSCC cell death while GRP78 upregulation conferred higher resistance to cisplatin. Combined cisplatin and YUM70 treatment increased apoptotic markers in the cisplatin-resistant HNSCC cell line, associating with reduced cell viability and clonogenicity. The combination treatment also increased apoptotic markers in the 3D spheroid model. Conclusion The GRP78 inhibitor YUM70 reduced HNSCC cell viability and re-sensitized cisplatin-resistant HNSCC cell line in both 2D and 3D spheroid models, suggesting the potential use of YUM70 in the treatment of HNSCC, including cisplatin-resistant HNSCC.
Collapse
Affiliation(s)
- Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States,USC Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Bintao Wang
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
| | - Amy S. Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States,USC Norris Comprehensive Cancer Center, Los Angeles, CA, United States,*Correspondence: Amy S. Lee,
| |
Collapse
|
23
|
Xue Y, Jiang X, Wang J, Zong Y, Yuan Z, Miao S, Mao X. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark Res 2023; 11:2. [PMID: 36600313 PMCID: PMC9814270 DOI: 10.1186/s40364-022-00433-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Head and neck cancer is a malignant tumour with a high mortality rate characterized by late diagnosis, high recurrence and metastasis rates, and poor prognosis. Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer. Various factors are involved in the occurrence and development of HNSCC, including external inflammatory stimuli and oncogenic viral infections. In recent years, studies on the regulation of cell death have provided new insights into the biology and therapeutic response of HNSCC, such as apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and recently the newly discovered cuproptosis. We explored how various cell deaths act as a unique defence mechanism against cancer emergence and how they can be exploited to inhibit tumorigenesis and progression, thus introducing regulatory cell death (RCD) as a novel strategy for tumour therapy. In contrast to accidental cell death, RCD is controlled by specific signal transduction pathways, including TP53 signalling, KRAS signalling, NOTCH signalling, hypoxia signalling, and metabolic reprogramming. In this review, we describe the molecular mechanisms of nonapoptotic RCD and its relationship to HNSCC and discuss the crosstalk between relevant signalling pathways in HNSCC cells. We also highlight novel approaches to tumour elimination through RCD.
Collapse
Affiliation(s)
- Yuting Xue
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuejiao Jiang
- grid.24696.3f0000 0004 0369 153XBeijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Junrong Wang
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxuan Zong
- Department of Breast Surgery, The First of hospital of Qiqihar, Qiqihar, China
| | - Zhennan Yuan
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Susheng Miao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
24
|
The Role of Extracellular Vesicles in Diseases of the Ear, Nose, and Throat. Med Sci (Basel) 2022; 11:medsci11010006. [PMID: 36649043 PMCID: PMC9844415 DOI: 10.3390/medsci11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous nanoparticles produced by most cell types into the extracellular space and play an important role in cell-to-cell communication. Historically, EVs were categorized based on their methods of biogenesis and size into three groups: exosomes, microvesicles, and apoptotic bodies. Most recently, EV nomenclature has evolved to categorize these nanoparticles based on their size, surface markers, and/or the cell type which secreted them. Many techniques have been adopted in recent years which leverage these characteristics to isolate them from cell culture media and biological fluids. EVs carry various "cargo", including DNA, RNA, proteins, and small signaling molecules. After isolation, EVs can be characterized by various methods to analyze their unique cargo profiles which define their role in cell-to-cell communication, normal physiology, and disease progression. The study of EV cargo has become more common recently as we continue to delineate their role in various human diseases. Further understanding these mechanisms may allow for the future use of EVs as novel biomarkers and therapeutic targets in diseases. Furthermore, their unique cargo delivery mechanisms may one day be exploited to selectively deliver therapeutic agents and drugs. Despite the growing research interest in EVs, limited studies have focused on the role of EVs in the diseases of the ear, nose, and throat. In this review, we will introduce EVs and their cargo, discuss methods of isolation and characterization, and summarize the most up-to-date literature thus far into the role of EVs in diseases of the ear, nose, and throat.
Collapse
|
25
|
Campagna R, Belloni A, Pozzi V, Salvucci A, Notarstefano V, Togni L, Mascitti M, Sartini D, Giorgini E, Salvolini E, Santarelli A, Lo Muzio L, Emanuelli M. Role Played by Paraoxonase-2 Enzyme in Cell Viability, Proliferation and Sensitivity to Chemotherapy of Oral Squamous Cell Carcinoma Cell Lines. Int J Mol Sci 2022; 24:ijms24010338. [PMID: 36613780 PMCID: PMC9820498 DOI: 10.3390/ijms24010338] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Oral squamous cell carcinoma represents the most aggressive and frequent form of head and neck cancer. Due to drug resistance, the 5-year survival rate of patients with advanced disease is less than 50%. In order to identify molecular targets for effective oral cancer treatment, we focused on paraoxonase-2 enzyme. Indeed, based on data previously obtained from preliminary immunohistochemistry and Western blot analyses performed on tissue specimens, the enzyme was found to be upregulated in tumor compared with normal oral mucosa. Therefore, paraoxonase-2 gene silencing was achieved in HSC-3 and HOC621 oral cancer cell lines, and the effect on cell proliferation, viability, apoptosis induction and sensitivity to cisplatin and 5-fluorouracil treatment was evaluated. Fourier Transform InfraRed Microspectroscopy analyzed alterations of cellular macromolecules upon treatment. Enzyme level and cell proliferation were also determined in cisplatin-resistant clones obtained from HOC621 cell line, as well as in parental cells. Reported data showed that paraoxonase-2 knockdown led to a reduction of cell proliferation and viability, as well as to an enhancement of sensitivity to cisplatin, together with the activation of apoptosis pathway. Spectroscopical data demonstrated that, under treatment with cisplatin, oxidative damage exerted on lipids and proteins was markedly more evident in cells down-regulating paraoxonase-2 compared to controls. Interestingly, enzyme expression, as well as cell proliferation were significantly higher in cisplatin-resistant compared with control HOC621 cells. Taken together these results seem to candidate the enzyme as a promising target for molecular treatment of this neoplasm.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Alessia Belloni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Alessia Salvucci
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Lucrezia Togni
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Marco Mascitti
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-0712204673
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Andrea Santarelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, 60124 Ancona, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
26
|
Burruss CP, Kacker A. The current status of nanotechnological approaches to therapy and drug delivery in otolaryngology: A contemporary review. Laryngoscope Investig Otolaryngol 2022; 7:1762-1772. [PMID: 36544970 PMCID: PMC9764775 DOI: 10.1002/lio2.952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives/Hypothesis To summarize the current standing of nanomedicine-based technology, particularly nanoparticles (NPs), for drug delivery and diagnostic mechanisms in otolaryngology and the otolaryngology subspecialties. Methods Literature searches were performed using PubMed and Ovid MEDLINE from 2010 to 2022. The search focused on original articles describing developments and applications of nanotechnology and drug delivery in otology, neurotology, cranial base surgery, head and neck oncology, laryngology, bronchoesophagology, and rhinology. Keyword searches and cross-referencing were also performed. No statistical analysis was performed. Results The PubMed search yielded 29 articles, and two Ovid MEDLINE searches both yielded 7 and 26 articles, respectively. Cross-referencing and keyword searches in PubMed and Google Scholar yielded numerous articles. The results indicate that currently, NPs are the most thoroughly studied nanotechnology for drug delivery and therapy in otolaryngology. Organic NPs have been utilized for drug delivery in otology and head and neck oncology due to their high biocompatibility. Inorganic NPs have similarly been utilized for drug delivery. However, inorganic NPs seem to be studied less extensively in these fields, likely due to an increased risk for heavy metal toxicity. Due to their magnetic properties, inorganic NPs have been utilized for magnetic-guided delivery in otology and thermoradiation and magnetic resonance imaging in head and neck oncology. Applications of nanotechnology to the fields of laryngology, bronchoesophagology, and rhinology have been studied less compared with otology and head and neck oncology. However, researchers have primarily employed NPs and other nanotechnologies such as nanofibers and nanoclusters for drug elution at mucosal surfaces to reduce airway and nasal inflammation. Conclusions Nanomedicine offers potential benefits in the treatment of patients in the field of otolaryngology due to enhanced control over drug release, cell-specific targeting, and the potential to reduce drug toxicity. Future work is needed to ensure the safety of these therapies to integrate this field of research into human therapies.
Collapse
Affiliation(s)
| | - Ashutosh Kacker
- Department of Otolaryngology–Head and Neck SurgeryWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
27
|
Lin NC, Shih YH, Chiu KC, Li PJ, Yang HW, Lan WC, Hsia SM, Wang TH, Shieh TM. Association of rs9679162 Genetic Polymorphism and Aberrant Expression of Polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14174217. [PMID: 36077753 PMCID: PMC9454803 DOI: 10.3390/cancers14174217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neoadjuvant chemotherapy was performed before surgery. Because the tumor itself and the surrounding vascular bed were not damaged, the chemotherapy we performed could have good drug delivery. After the operation, the volume of the tumor can be reduced to facilitate surgery or radiotherapy. However, neoadjuvant chemotherapy also delays the patient’s time to receive main therapy. The physician must make sure that it has a good response and does not allow disease progression in the patient during neoadjuvant chemotherapy. Therefore, predicting the treatment response of neoadjuvant chemotherapy can shorten the treatment time, reduce the harm of chemotherapy side effects, and avoid the occurrence of drug resistance. The results of this study showed that GALNT14-rs9679162 and mRNA expression were associated with post-treatment survival in head and neck cancer. It can be used as an indicator to predict the treatment response of neoadjuvant chemotherapy. Abstract The polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) rs9679162 and mRNA expression were associated with treatment outcome in various cancers. However, the relation of GALNT14 and head and neck cancer were nuclear. A total of 199 patients with head and neck squamous cell carcinoma (HNSCC) were collected in this study, including oral SCC (OSCC), oropharyngeal SCC (OPSCC), laryngeal SCC (LSCC), and others. The DNA and RNA of cancer tissues were extracted using the TRI Reagent method. The rs9679162 was analyzed using polymerase chain reaction (PCR) and sequencing methods in 199 DNA specimens, and the mRNA expression was analyzed using quantitative reverse transcription PCR (RT-qPCR) methods in 68 paired RNA specimens of non-cancerous matched tissues (NCMT) and tumor tissues. The results showed that the genotype of TT, TG, and GG appeared at 30%, 44%, and 26%, respectively. Non-TT genotype or G alleotype were associated with alcohol, betel nut, and cigarette using among patients with OSCC, and it also affected the treatment and survival of patients with OSCC and LSCC. High GALNT14 mRNA expression levels increased lymphatic metastasis of patients with HNSCC, and treatment and survival in patients with OPSCC. Overall, the GALNT14-rs9679162 genotype and mRNA expression level can be used as indicators of HNSCC treatment prognosis.
Collapse
Affiliation(s)
- Nan-Chin Lin
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua 500009, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Po-Jung Li
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Hui-Wu Yang
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: (S.-M.H.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33305, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
- Correspondence: (S.-M.H.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| |
Collapse
|
28
|
Chattopadhyay T, Biswal P, Lalruatfela A, Mallick B. Emerging roles of PIWI-interacting RNAs (piRNAs) and PIWI proteins in head and neck cancer and their potential clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188772. [PMID: 35931391 DOI: 10.1016/j.bbcan.2022.188772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are among the well-known neoplasms originating in the oral cavity, pharynx, and larynx. Despite advancements in chemotherapy, radiotherapy, and surgery, the survival rates of the patients are low, which has posed a major therapeutic challenge. A growing number of non-coding RNAs (ncRNAs), for instance, microRNAs, have been identified whose abnormal expression patterns have been implicated in HNSCC. However, more recently, several seminal research has shown that piwi-interacting RNAs (piRNAs), a promising and young class of small ncRNA, are linked to the emergence and progression of cancer. They can regulate transposable elements (TE) and gene expression through multiple mechanisms, making them potentially more powerful regulators than miRNAs. Hence, they can be more promising ncRNAs candidates for cancer therapeutic intervention. Here, we surveyed the roles and clinical implications of piRNAs and their PIWI proteins partners in tumorigenesis and associated molecular processes of cancer, with a particular focus on HNSCC, to offer a new avenue for diagnosis, prognosis, and therapeutic interventions for the malignancy, improving patient's outcomes.
Collapse
Affiliation(s)
- Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Priyajit Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Anthony Lalruatfela
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
29
|
Lagou MK, Anastasiadou DP, Karagiannis GS. A Proposed Link Between Acute Thymic Involution and Late Adverse Effects of Chemotherapy. Front Immunol 2022; 13:933547. [PMID: 35844592 PMCID: PMC9283860 DOI: 10.3389/fimmu.2022.933547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death "equals" new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.
Collapse
Affiliation(s)
- Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - Dimitra P. Anastasiadou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
30
|
Brunner TF, Probst FA, Troeltzsch M, Schwenk-Zieger S, Zimmermann JL, Morfill G, Becker S, Harréus U, Welz C. Primary cold atmospheric plasma combined with low dose cisplatin as a possible adjuvant combination therapy for HNSCC cells-an in-vitro study. Head Face Med 2022; 18:21. [PMID: 35768853 PMCID: PMC9245296 DOI: 10.1186/s13005-022-00322-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The aim of the present study was to examine the cytostatic effects of cold atmospheric plasma (CAP) on different head and neck squamous carcinoma (HNSCC) cell lines either in isolation or in combination with low dose cisplatin. The effect of CAP treatment was investigated by using three different HNSCC cell lines (chemo-resistant Cal 27, chemo-sensitive FaDu and OSC 19). MATERIALS AND METHOD Cell lines were exposed to CAP treatment for 30, 60, 90, 120 and 180 s (s). Cisplatin was added concurrently (cc) or 24 h after CAP application (cs). Cell viability, DNA damage and apoptosis was evaluated by dye exclusion, MTT, alkaline microgel electrophoresis assay and Annexin V-Fit-C/PI respectively. RESULTS In all cell lines, 120 s of CAP exposure resulted in a significant reduction of cell viability. DNA damage significantly increased after 60 s. Combined treatment of cells with CAP and low dose cisplatin showed additive effects. A possible sensitivity to cisplatin could be restored in Cal 27 cells by CAP application. CONCLUSION CAP shows strong cytostatic effects in HNSCC cell lines that can be increased by concurrent cisplatin treatment, suggesting that CAP may enhance the therapeutic efficacy of low dose cisplatin.
Collapse
Affiliation(s)
- Teresa F Brunner
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany.
| | - Florian A Probst
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany
| | - Matthias Troeltzsch
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otolaryngology, Head and Neck Surgery, University Hospital, LMU, Munich, Germany
| | | | | | - Sven Becker
- Department of Otolaryngology, Head and Neck Surgery, University Hospital, EKU , Tübingen, Germany
| | - Ulrich Harréus
- Department of ENT/Head and Neck Surgery, Asklepios Hospital, Bad Tölz, Germany
| | | |
Collapse
|
31
|
Huang S, Le H, Hong G, Chen G, Zhang F, Lu L, Zhang X, Qiu Y, Wang Z, Zhang Q, Ouyang G, Shen J. An all-in-one biomimetic iron-small interfering RNA nanoplatform induces ferroptosis for cancer therapy. Acta Biomater 2022; 148:244-257. [DOI: 10.1016/j.actbio.2022.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
|
32
|
Phase II Trial of CDX-3379 and Cetuximab in Recurrent/Metastatic, HPV-Negative, Cetuximab-Resistant Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14102355. [PMID: 35625959 PMCID: PMC9139981 DOI: 10.3390/cancers14102355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary This phase II, Simon 2-stage, multicenter study evaluated the efficacy of the combination of CDX-3379 and cetuximab, monoclonal antibodies against ErbB3 and EGFR, respectively, in patients with recurrent/metastatic, HPV-negative, cetuximab-resistant head and neck cancer. The primary endpoint was overall response rate (ORR) in genomically unselected patients. Enhanced response was hypothesized in the FAT1-mutated cohort. The ORR in genomically unselected patients was 2/30 (6.7%), which did not meet criteria for further investigation. The overall response rate was 1/10 (complete response; 10%) in the FAT1-mutated versus 0/17 (0%) in the FAT1-wildtype cohorts. The most common AEs were diarrhea (83%) and acneiform dermatitis (53%), leading to dose modification in 21 patients (70%). The modest ORR coupled to clinically significant and dose-limiting toxicity preclude further development of this combination. Abstract In phase I development, CDX-3379, an anti-ErbB3 monoclonal antibody, showed promising molecular and antitumor activity in head and neck squamous cell carcinoma (HNSCC), alone or in combination with cetuximab. Preliminary biomarker data raised the hypothesis of enhanced response in tumors harboring FAT1 mutations. This phase II, multicenter trial used a Simon 2-stage design to investigate the efficacy of CDX-3379 and cetuximab in 30 patients with recurrent/metastatic, HPV-negative, cetuximab-resistant HNSCC. The primary endpoint was objective response rate (ORR). Secondary endpoints included ORR in patients with somatic FAT1 mutations, progression-free survival (PFS), overall survival (OS), and safety. Thirty patients were enrolled from March 2018 to September 2020. The ORR in genomically unselected patients was 2/30 (6.7%; 95% confidence interval [CI], 0.8–22.1). Median PFS and OS were 2.2 (95% CI: 1.3–3.6) and 6.6 months (95% CI: 2.7–7.5), respectively. Tissue was available in 27 patients including one of two responders. ORR was 1/10 (complete response; 10%; 95% CI 0.30–44.5) in the FAT1-mutated versus 0/17 (0%; 95% CI: 0–19.5) in the FAT1-wildtype cohorts. Sixteen patients (53%) experienced treatment-related adverse events (AEs) ≥ grade 3. The most common AEs were diarrhea (83%) and acneiform dermatitis (53%). Dose modification was required in 21 patients (70%). The modest ORR coupled with excessive, dose-limiting toxicity of this combination precludes further clinical development. Dual ErbB3-EGFR inhibition remains of scientific interest in HPV-negative HNSCC. Should more tolerable combinations be identified, development in an earlier line of therapy and prospective evaluation of the FAT1 hypothesis warrant consideration.
Collapse
|
33
|
You GR, Chang JT, Li HF, Cheng AJ. Multifaceted and Intricate Oncogenic Mechanisms of NDRG1 in Head and Neck Cancer Depend on Its C-Terminal 3R-Motif. Cells 2022; 11:cells11091581. [PMID: 35563887 PMCID: PMC9104279 DOI: 10.3390/cells11091581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
N-Myc downstream-regulated 1 (NDRG1) has inconsistent oncogenic functions in various cancers. We surveyed and characterized the role of NDRG1 in head and neck cancer (HNC). Cellular methods included spheroid cell formation, clonogenic survival, cell viability, and Matrigel invasion assays. Molecular techniques included transcriptomic profiling, RT-qPCR, immunoblotting, in vitro phosphorylation, immunofluorescent staining, and confocal microscopy. Prognostic significance was assessed by Kaplan–Meier analysis. NDRG1 participated in diverse oncogenic functions in HNC cells, mainly stress response and cell motility. Notably, NDRG1 contributed to spheroid cell growth, radio-chemoresistance, and upregulation of stemness-related markers (CD44 and Twist1). NDRG1 facilitated cell migration and invasion, and was associated with modulation of the extracellular matrix molecules (fibronectin, vimentin). Characterizing the 3R-motif in NDRG1 revealed its mechanism in the differential regulation of the phenotypes. The 3R-motif displayed minimal effect on cancer stemness but was crucial for cell motility. Phosphorylating the motif by GSK3b at serine residues led to its nuclear translocation to promote motility. Clinical analyses supported the oncogenic function of NDRG1, which was overexpressed in HNC and associated with poor prognosis. The data elucidate the multifaceted and intricate mechanisms of NDRG1 in HNC. NDRG1 may be a prognostic indicator or therapeutic target for refractory HNC.
Collapse
Affiliation(s)
- Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiao-Fan Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Correspondence: ; Tel.: +886-3-211-8800
| |
Collapse
|
34
|
Rioja-Blanco E, Arroyo-Solera I, Álamo P, Casanova I, Gallardo A, Unzueta U, Serna N, Sánchez-García L, Quer M, Villaverde A, Vázquez E, León X, Alba-Castellón L, Mangues R. CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res 2022; 41:49. [PMID: 35120582 PMCID: PMC8815235 DOI: 10.1186/s13046-022-02267-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Therapy resistance, which leads to the development of loco-regional relapses and distant metastases after treatment, constitutes one of the major problems that head and neck squamous cell carcinoma (HNSCC) patients currently face. Thus, novel therapeutic strategies are urgently needed. Targeted drug delivery to the chemokine receptor 4 (CXCR4) represents a promising approach for HNSCC management. In this context, we have developed the self-assembling protein nanotoxins T22-PE24-H6 and T22-DITOX-H6, which incorporate the de-immunized catalytic domain of Pseudomonas aeruginosa (PE24) exotoxin A and the diphtheria exotoxin (DITOX) domain, respectively. Both nanotoxins contain the T22 peptide ligand to specifically target CXCR4-overexpressing HNSCC cells. In this study, we evaluate the potential use of T22-PE24-H6 and T22-DITOX-H6 nanotoxins for the treatment of HNSCC. METHODS T22-PE24-H6 and T22-DITOX-H6 CXCR4-dependent cytotoxic effect was evaluated in vitro in two different HNSCC cell lines. Both nanotoxins cell death mechanisms were assessed in HNSCC cell lines by phase-contrast microscopy, AnnexinV/ propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and western blotting. Nanotoxins antitumor effect in vivo was studied in a CXCR4+ HNSCC subcutaneous mouse model. Immunohistochemistry, histopathology, and toxicity analyses were used to evaluate both nanotoxins antitumor effect and possible treatment toxicity. GSMDE and CXCR4 expression in HNSCC patient tumor samples was also assessed by immunohistochemical staining. RESULTS First, we found that both nanotoxins exhibit a potent CXCR4-dependent cytotoxic effect in vitro. Importantly, nanotoxin treatment triggered caspase-3/Gasdermin E (GSDME)-mediated pyroptosis. The activation of this alternative cell death pathway that differs from traditional apoptosis, becomes a promising strategy to bypass therapy resistance. In addition, T22-PE24-H6 and T22-DITOX-H6 displayed a potent antitumor effect in the absence of systemic toxicity in a CXCR4+ subcutaneous HNSCC mouse model. Lastly, GSDME was found to be overexpressed in tumor tissue from HNSCC patients, highlighting the relevance of this strategy. CONCLUSIONS Altogether, our results show that T22-PE24-H6 and T22-DITOX-H6 represent a promising therapy for HNSCC patients. Remarkably, this is the first study showing that both nanotoxins are capable of activating caspase-3/GSDME-dependent pyroptosis, opening a novel avenue for HNSCC treatment.
Collapse
Affiliation(s)
- Elisa Rioja-Blanco
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain
| | - Irene Arroyo-Solera
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Patricia Álamo
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Isolda Casanova
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Alberto Gallardo
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Ugutz Unzueta
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Miquel Quer
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Otorhinolaryngology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí, 89, 08041, Barcelona, Spain
- Department of Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona and CIBER, Bellaterra, Barcelona, Spain.
| | - Xavier León
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Otorhinolaryngology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí, 89, 08041, Barcelona, Spain
- Department of Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Lorena Alba-Castellón
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain.
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau and Josep Carreras Research Institute, 08041, Barcelona, Spain.
| | - Ramon Mangues
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain.
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain.
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, CIBER and Josep Carreras Research Institute, 08041, Barcelona, Spain.
| |
Collapse
|
35
|
Hsu CM, Yang MY, Tsai MS, Chang GH, Yang YH, Tsai YT, Wu CY, Chang SF. Dihydroisotanshinone I as a Treatment Option for Head and Neck Squamous Cell Carcinomas. Int J Mol Sci 2021; 22:ijms22168881. [PMID: 34445585 PMCID: PMC8396193 DOI: 10.3390/ijms22168881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the most common cancers of the head and neck, and their prevalence is rapidly increasing. HNSCCs present a clinical challenge because of their high recurrence rate, therapeutic resistance to radiation and chemotherapy drugs, and adverse effects. Hence, traditional Chinese herbal treatment may be advantageous to therapeutic strategies for HNSCCs. Danshen (Salvia miltiorrhiza), a well-known Chinese herb, has been extensively applied in treatments for various diseases, including cancer, because of its high degree of safety and low rate of adverse effects despite its unclear mechanism. Thus, we aimed to explore the possible anticancer effects and mechanisms of dihydroisotanshinone I (DT), a compound in danshen (extract from danshen), on HNSCCs. Three HNSCCs cell lines were used for in vitro studies, and a Detroit 562 xenograft mouse model was chosen for in vivo studies. Our in vitro results showed that DT could initiate apoptosis, resulting in cell death, and the p38 signaling partially regulated DT-initiated cell apoptosis in the Detroit 562 model. In the xenograft mouse model, DT reduced tumor size with no obvious adverse effect of hepatotoxicity. The present study suggests that DT is a promising novel candidate for anti-HNSCCs therapy.
Collapse
Affiliation(s)
- Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-M.H.); (M.-S.T.); (G.-H.C.); (Y.-T.T.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ming-Yu Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ming-Shao Tsai
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-M.H.); (M.-S.T.); (G.-H.C.); (Y.-T.T.)
| | - Geng-He Chang
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-M.H.); (M.-S.T.); (G.-H.C.); (Y.-T.T.)
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Yao-Te Tsai
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-M.H.); (M.-S.T.); (G.-H.C.); (Y.-T.T.)
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (C.-Y.W.); (S.-F.C.)
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Correspondence: (C.-Y.W.); (S.-F.C.)
| |
Collapse
|
36
|
Targeting DNA Damage Response and Repair to Enhance Therapeutic Index in Cisplatin-Based Cancer Treatment. Int J Mol Sci 2021; 22:ijms22158199. [PMID: 34360968 PMCID: PMC8347825 DOI: 10.3390/ijms22158199] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapies, such as cisplatin, play a large role in cancer treatment. The development of resistance and treatment toxicity creates substantial barriers to disease control, yet. To enhance the therapeutic index of cisplatin-based chemotherapy, it is imperative to circumvent resistance and toxicity while optimizing tumor sensitization. One of the primary mechanisms by which cancer cells develop resistance to cisplatin is through upregulation of DNA repair pathways. In this review, we discuss the DNA damage response in the context of cisplatin-induced DNA damage. We describe the proteins involved in the pathways and their roles in resistance development. Common biomarkers for cisplatin resistance and their utilization to improve patient risk stratification and treatment personalization are addressed. Finally, we discuss some of the current treatments and future strategies to circumvent the development of cisplatin resistance.
Collapse
|