1
|
Huang W, Jiang T, He J, Ruan J, Wu B, Tao R, Xu P, Wang Y, Chen R, Wang H, Yang Q, Zhang K, Jin L, Sun D, You J. Modulation of Intestinal Flora: a Novel Immunotherapeutic Approach for Enhancing Thyroid Cancer Treatment. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10471-z. [PMID: 39890752 DOI: 10.1007/s12602-025-10471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Over the past 3 years, there has been a growing interest in clinical research regarding the potential involvement of intestinal flora in thyroid cancer (TC). This review delves into the intricate connection between intestinal flora and TC, focusing on the particular intestinal flora that is directly linked to the disease and identifying which may be able to predict potential microbial markers of TC. In order to shed light on the inflammatory pathways connected to the onset of TC, we investigated the impact of intestinal flora on immune modulation and the connection between chronic inflammation when investigating the role of intestinal flora in the pathogenesis of TC. Furthermore, the potential role of intestinal flora metabolites in the regulation of thyroid function was clarified by exploring the effects of short-chain fatty acids and lipopolysaccharide on thyroid hormone synthesis and metabolism. Based on these findings, we further explore the effects of probiotics, prebiotics, postbiotics, vitamins, and trace elements.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Tao Jiang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Baihui Wu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yongpan Wang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Hanbing Wang
- The University of Hong Kong School of Biomedical Sciences, Hong Kong, 999077, SAR, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
2
|
Zhang D, Fan J, Liu X, Gao X, Zhou Q, Zhao J, Xu Y, Zhong W, Oh IJ, Chen M, Wang M. Lower respiratory tract microbiome is associated with checkpoint inhibitor pneumonitis in lung cancer patients. Transl Lung Cancer Res 2024; 13:3189-3201. [PMID: 39670023 PMCID: PMC11632428 DOI: 10.21037/tlcr-24-853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Background The gut microbiome is associated with the occurrence and severity of immune-related adverse events (irAEs) in cancer patients undergoing immunotherapy. However, the relationship between the lower respiratory tract (LRT) microbiome and checkpoint inhibitor pneumonitis (CIP) in lung cancer patients who underwent immunotherapy is unclear. The aim of the present study was to investigate the associations between the LRT microbiome and CIP in lung cancer patients receiving immunotherapy. Methods This retrospective study included lung cancer patients who received immunotherapy and had metagenomic next-generation sequencing (mNGS) results of LRT specimens [bronchoalveolar lavage fluid (BALF)]. Based on their final diagnosis, the patients were allocated to either the CIP group or the non-CIP group. We conducted an exploratory analysis of the LRT microbiome in the CIP and non-CIP patients, delineating the microbial composition, and comparing the differences between the two groups. Results In total, 52 lung patients were included in the study, of whom 33 were allocated to the CIP group and 19 to the non-CIP group. The alpha- and beta-diversity analyses revealed no significant differences between the two groups. In the CIP group, the dominant phyla were Firmicutes (41.7%), Acinetobacter (18.2%), and Proteobacteria (16.3%). In the non-CIP group, the dominant phyla were Firmicutes (38.2%), Acinetobacter (18.4%), and Proteobacteria (17.8%). Notably, the relative abundance of the Proteobacteria phylum (P<0.001) and Firmicutes phylum (P=0.01) was significantly higher in the CIP group than the non-CIP group. Conclusions The elevated relative abundance of the Proteobacteria and Firmicutes phyla in the LRT samples is associated with CIP in lung cancer patients.
Collapse
Affiliation(s)
- Dongming Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junping Fan
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoxing Gao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Zhong
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Altves S, Guclu E, Yetisgin E, Bilecen K, Vural H. Upregulation of Immune checkpoint PD-L1 in Colon cancer cell lines and activation of T cells by Leuconostoc mesenteroides. World J Microbiol Biotechnol 2024; 40:204. [PMID: 38755413 PMCID: PMC11098917 DOI: 10.1007/s11274-024-04018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Globally colorectal cancer ranks as the third most widespread disease and the third leading cause of cancer-associated mortality. Immunotherapy treatments like PD-L1 blockade have been used to inhibit the PD-L1 legend, which boosts the activity of cytotoxic T lymphocytes. Recently, studies suggest that some probiotics could potentially enhance the effectiveness of immunotherapy treatments for cancer patients. We found that in Caco-2 and HT-29 cells, the live Leuconostoc mesenteroides treatment resulted an increase in the PD-L1 expression and this treatment stimulated interferon-gamma (IFN-γ) production in Jurkat T-cells. Due to the well-established ability of IFN-γ to enhance PD-L1 expression, the combination of IFN-γ and L. mesenteroides was used in colon cancer cell lines and a resulting remarkable increase of over tenfold in PD-L1 expression was obtained. Interestingly, when L. mesenteroides and IFN-γ are present, the blockage of PD-L1 using PD-L1 antibodies not only improved the viability of Jurkat T-cells but also significantly boosted the levels of IFN-γ and IL-2, the T-cells activation marker cytokines. In addition to upregulating PD-L1, L. mesenteroides also activated Toll-like receptors (TLRs) and NOD-like receptors (NODs) pathways, specifically through TLR2 and NOD2, while also exerting a suppressive effect on autophagy in colon cancer cell lines. In conclusion, our findings demonstrate a significant upregulation of PD-L1 expression in colon cancer cells upon co-culturing with L. mesenteroides. Moreover, the presence of PD-L1 antibodies during co-culturing activates Jurkat T cells. The observed enhancement in PD-L1 expression may be attributed to the inhibition of the Autophagy pathway or activation of the hippo pathway. KEY POINTS: Co-culturing L. mesenteroides increases PD-L1 gene and protein transaction in colon cancer. L. mesenteroides existing enhances T cells viability and activity. GPCR41/42 is a possible link between L. mesenteroides, YAP-1 and PD-L1.
Collapse
Affiliation(s)
- Safaa Altves
- Department of Medical Biology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Turkey.
| | - Ebru Guclu
- Department of Basic Science and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Turkey
| | - Esra Yetisgin
- Department of Molecular Biology & Genetics, Faculty of Agriculture and Natural Sciences, Konya Food and Agriculture University, Safaa ALTVES, Konya, Turkey
| | - Kivanc Bilecen
- Department of Molecular Biology & Genetics, Faculty of Agriculture and Natural Sciences, Konya Food and Agriculture University, Safaa ALTVES, Konya, Turkey
| | - Hasibe Vural
- Department of Medical Biology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
4
|
Xin HY, Zou JX, Sun RQ, Hu ZQ, Chen Z, Luo CB, Zhou ZJ, Wang PC, Li J, Yu SY, Liu KX, Fan J, Zhou J, Zhou SL. Characterization of tumor microbiome and associations with prognosis in intrahepatic cholangiocarcinoma. J Gastroenterol 2024; 59:411-423. [PMID: 38461467 DOI: 10.1007/s00535-024-02090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The tumor microbiome has been characterized in several malignancies; however, no previous studies have investigated its role in intrahepatic cholangiocarcinoma (ICC). Hence, we explored the tumor microbiome and its association with prognosis in ICC. METHODS One hundred and twenty-one ICC tumor samples and 89 adjacent normal tissues were profiled by 16S rRNA sequencing. Microbial differences between tumor and adjacent nontumoral liver tissues were assessed. Tumor microbial composition was then evaluated to detect its association with prognosis. Finally, a risk score calculated by the tumor microbiota was accessed by the least absolute shrinkage and selector operator method (Lasso) to predict prognosis of ICC. RESULTS The tumor microbiome displayed a greater diversity than that in adjacent nontumoral liver tissues. Tumor samples were characterized by a higher abundance of Firmicutes, Actinobacteria, Bacteroidetes, and Acidobacteriota. Higher tumor microbial α diversity was associated with lymph node metastasis and predicted shortened overall survival (OS) and recurrence-free survival (RFS). A total of 11 bacteria were selected to generate the risk score by Lasso. This score showed potential in predicting OS, and was an independent risk factor for OS. CONCLUSION In conclusion, our study characterized the tumor microbiome and revealed its role in predicting prognosis in ICC.
Collapse
Affiliation(s)
- Hao-Yang Xin
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Ji-Xue Zou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Rong-Qi Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Zhi-Qiang Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Zhuo Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Chu-Bin Luo
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Zheng-Jun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Peng-Cheng Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Jia Li
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Song-Yang Yu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Kai-Xuan Liu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Shao-Lai Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
5
|
Dougé A, El Ghazzi N, Lemal R, Rouzaire P. Adoptive T Cell Therapy in Solid Tumors: State-of-the Art, Current Challenges, and Upcoming Improvements. Mol Cancer Ther 2024; 23:272-284. [PMID: 37903371 DOI: 10.1158/1535-7163.mct-23-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
In solid tumors, three main complementary approaches of adoptive T-cell therapies were successively developed: tumor-infiltrating lymphocytes, chimeric antigen receptor engineered T cells, and high-affinity T-cell receptor engineered T cells. In this review, we summarized rational and main results of these three adoptive T-cell therapies in solid tumors field and gave an overview of encouraging data and their limits. Then, we listed the major remaining challenges (including tumor antigen loss, on-target/off-tumor effect, tumor access difficulties and general/local immunosubversion) and their lines of research. Finally, we gave insight into the ongoing trials in solid tumor.
Collapse
Affiliation(s)
- Aurore Dougé
- Medical Oncology Department, University Hospital, Clermont-Ferrand, France
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
| | - Nathan El Ghazzi
- Medical Oncology Department, University Hospital, Clermont-Ferrand, France
| | - Richard Lemal
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
- Histocompatibility and Immunogenetic Department, University Hospital, Clermont-Ferrand, France
| | - Paul Rouzaire
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
- Histocompatibility and Immunogenetic Department, University Hospital, Clermont-Ferrand, France
| |
Collapse
|
6
|
Jiang H, Zhang Q. Gut microbiota influences the efficiency of immune checkpoint inhibitors by modulating the immune system (Review). Oncol Lett 2024; 27:87. [PMID: 38249807 PMCID: PMC10797324 DOI: 10.3892/ol.2024.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are commonly utilized in tumor treatment. However, they still have limitations, including insufficient effectiveness and unavoidable adverse events. It has been demonstrated that gut microbiota can influence the effectiveness of ICIs, although the precise mechanism remains unclear. Gut microbiota plays a crucial role in the formation and development of the immune system. Gut microbiota and their associated metabolites play a regulatory role in immune balance. Tumor occurrence and development are linked to their ability to evade recognition and destruction by the immune system. The purpose of ICIs treatment is to reinitiate the immune system's elimination of tumor cells. Thus, the immune system acts as a communication bridge between gut microbiota and ICIs. Varied composition and characteristics of gut microbiota result in diverse outcomes in ICIs treatment. Certain gut microbiota-related metabolites also influence the therapeutic efficacy of ICIs to some extent. The administration of antibiotics before or during ICIs treatment can diminish treatment effectiveness. The utilization of probiotics and fecal transplantation can partially alter the outcome of ICIs treatment. The present review synthesized previous studies to examine the association between gut microbiota and ICIs, elucidated the role of gut microbiota and its associated factors in ICIs treatment, and offered direction for future research.
Collapse
Affiliation(s)
- Haihong Jiang
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Qinlu Zhang
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| |
Collapse
|
7
|
David A, Lev-Ari S. Targeting the Gut Microbiome to Improve Immunotherapy Outcomes: A Review. Integr Cancer Ther 2024; 23:15347354241269870. [PMID: 39223798 PMCID: PMC11369881 DOI: 10.1177/15347354241269870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The following narrative review embarks on a comprehensive exploration of the role played by the gut microbiome within the Diet-Microbiota-Immunity (DMI) tripartite, aiming to enhance anti-cancer immunotherapy efficacy. While revolutionizing cancer treatment, resistance to immunotherapy and immune-related adverse events (irAEs) remain challenges. The tumor microenvironment (TME), shaped by cancer cells, influences immunotherapy resistance. The gut microbiome, influenced by genetics, environment, diet, and interventions, emerges as a critical player in TME reshaping, thereby modulating immune responses and treatment outcomes. Dietary patterns like the Mediterranean diet, caloric restriction modifications, and specific nutritional components show promise in influencing the tumor microenvironment and gut microbiome for better treatment outcomes. Antibiotics, disrupting gut microbiota diversity, may compromise immunotherapy efficacy. This review emphasizes the need for tailored nutritional strategies to manipulate microbial communities, enhance immune regulation, and improve immunotherapy accessibility while minimizing side effects. Ongoing studies investigate the impact of dietary interventions on cancer immunotherapy, pointing toward promising developments in personalized cancer care. This narrative review synthesizes existing knowledge and charts a course for future investigations, presenting a holistic perspective on the dynamic interplay between dietary interventions, the gut microbiome, and cancer immunotherapy within the DMI tripartite.
Collapse
Affiliation(s)
- Adi David
- Tal Center for Integrative Medicine, Institute of Oncology, Sheba Medical Center, Ramat-Gan, Israel
| | - Shaked Lev-Ari
- Ella Lemelbaum Institute For Immuno-Oncology, Sheba Medical Center, Ramat-Gan, Israel
- Education Authority, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
8
|
Ren Q, Li Q, Shao C, Zhang P, Hu Z, Li J, Wang W, Yu Y. Establishing a prognostic model based on immune-related genes and identification of BIRC5 as a potential biomarker for lung adenocarcinoma patients. BMC Cancer 2023; 23:897. [PMID: 37741993 PMCID: PMC10517491 DOI: 10.1186/s12885-023-11249-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/03/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is an extraordinarily malignant tumor, with rapidly increasing morbidity and poor prognosis. Immunotherapy has emerged as a hopeful therapeutic modality for lung adenocarcinoma. Furthermore, a prognostic model (based on immune genes) can fulfill the purpose of early diagnosis and accurate prognostic prediction. METHODS Immune-related mRNAs (IRmRNAs) were utilized to construct a prognostic model that sorted patients into high- and low-risk groups. Then, the prediction efficacy of our model was evaluated using a nomogram. The differences in overall survival (OS), the tumor mutation landscape, and the tumor microenvironment were further explored between different risk groups. In addition, the immune genes comprising the prognostic model were subjected to single-cell RNA sequencing to investigate the expression of these immune genes in different cells. Finally, the functions of BIRC5 were validated through in vitro experiments. RESULTS Patients in different risk groups exhibited sharply significant variations in OS, pathway activity, immune cell infiltration, mutation patterns, and immune response. Single-cell RNA sequencing revealed that the expression level of BIRC5 was significantly high in T cells. Cell experiments further revealed that BIRC5 knockdown markedly reduced LUAD cell proliferation. CONCLUSION This model can function as an instrumental variable in the prognostic, molecular, and therapeutic prediction of LUAD, shedding new light on the optimal clinical practice guidelines for LUAD patients.
Collapse
Affiliation(s)
- Qianhe Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qifan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenye Shao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuangzhuang Hu
- Department of Urology, Shuyang First People's Hospital, Suqian, China
| | - Jun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Pratap Singh R, Kumari N, Gupta S, Jaiswal R, Mehrotra D, Singh S, Mukherjee S, Kumar R. Intratumoral Microbiota Changes with Tumor Stage and Influences the Immune Signature of Oral Squamous Cell Carcinoma. Microbiol Spectr 2023; 11:e0459622. [PMID: 37409975 PMCID: PMC10434029 DOI: 10.1128/spectrum.04596-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Characterization of the oral microbiota profile through various studies has shown an association between the microbiome and oral cancer; however, stage-specific determinants of dynamic changes in microbial communities of oral cancer remain elusive. Additionally, the influence of the intratumoral microbiota on the intratumoral immune system remains largely unexplored. Therefore, this study aims to stratify microbial abundance in the early-onset and subsequent stages of oral cancer and analyze their influence on clinical-pathological and immunological features. The microbiome composition of tissue biopsy samples was identified using 16S rRNA amplicon sequencing, while intratumoral and systemic immune profiling was done with flow cytometry and immunohistochemistry-based analysis. The bacterial composition differed significantly among precancer, early cancer, and late cancer stages with the enrichment of genera Capnocytophaga, Fusobacterium, and Treponema in the cancer group, while Streptococcus and Rothia were enriched in the precancer group. Late cancer stages were significantly associated with Capnocytophaga with high predicting accuracy, while Fusobacterium was associated with early stages of cancer. A dense intermicrobial and microbiome-immune network was observed in the precancer group. At the cellular level, intratumoral immune cell infiltration of B cells and T cells (CD4+ and CD8+) was observed with enrichment of the effector memory phenotype. Naive and effector subsets of tumor-infiltrating lymphocytes (TILs) and related gene expression were found to be distinctly associated with bacterial communities; most importantly, highly abundant bacterial genera of the tumor microenvironment were either negatively correlated or not associated with the effector lymphocytes, which led to the conclusion that the tumor microenvironment favors an immunosuppressive and nonimmunogenic microbiota. IMPORTANCE The gut microbiome has been explored extensively for its importance in the modulation of systemic inflammation and immune response; in contrast, the intratumoral microbiome is less studied for its influence on immunity in cancer. Given the established correlation between intratumoral lymphocyte infiltration and patient survival in cases of solid tumors, it was pertinent to explore the extrinsic factor influencing immune cell infiltration in the tumor. Modulation of intratumoral microbiota could have a beneficial effect on the antitumor immune response. This study stratifies the microbial profile of oral squamous cell carcinoma starting from precancer to late-stage cancer and provides evidence for their immunomodulatory role in the tumor microenvironment. Our results suggest combining microbiome study with immunological signatures of tumors for their prognostic and diagnostic application.
Collapse
Affiliation(s)
- Raghwendra Pratap Singh
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naina Kumari
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Riddhi Jaiswal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Sudhir Singh
- Department of Radiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Souvik Mukherjee
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Rashmi Kumar
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Senchukova MA. Genetic heterogeneity of colorectal cancer and the microbiome. World J Gastrointest Oncol 2023; 15:443-463. [PMID: 37009315 PMCID: PMC10052667 DOI: 10.4251/wjgo.v15.i3.443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
In 2020, the International Agency for Research on Cancer and the World Health Organization's GLOBOCAN database ranked colorectal cancer (CRC) as the third most common cancer in the world. Most cases of CRC (> 95%) are sporadic and develop from colorectal polyps that can progress to intramucosal carcinoma and CRC. Increasing evidence is accumulating that the gut microbiota can play a key role in the initiation and progression of CRC, as well as in the treatment of CRC, acting as an important metabolic and immunological regulator. Factors that may determine the microbiota role in CRC carcinogenesis include inflammation, changes in intestinal stem cell function, impact of bacterial metabolites on gut mucosa, accumulation of genetic mutations and other factors. In this review, I discuss the major mechanisms of the development of sporadic CRC, provide detailed characteristics of the bacteria that are most often associated with CRC, and analyze the role of the microbiome and microbial metabolites in inflammation initiation, activation of proliferative activity in intestinal epithelial and stem cells, and the development of genetic and epigenetic changes in CRC. I consider long-term studies in this direction to be very important, as they open up new opportunities for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
11
|
Thippabhotla S, Liu B, Podgorny A, Yooseph S, Yang Y, Zhang J, Zhong C. Integrated de novo gene prediction and peptide assembly of metagenomic sequencing data. NAR Genom Bioinform 2023; 5:lqad023. [PMID: 36915411 PMCID: PMC10006731 DOI: 10.1093/nargab/lqad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 03/16/2023] Open
Abstract
Metagenomics is the study of all genomic content contained in given microbial communities. Metagenomic functional analysis aims to quantify protein families and reconstruct metabolic pathways from the metagenome. It plays a central role in understanding the interaction between the microbial community and its host or environment. De novo functional analysis, which allows the discovery of novel protein families, remains challenging for high-complexity communities. There are currently three main approaches for recovering novel genes or proteins: de novo nucleotide assembly, gene calling and peptide assembly. Unfortunately, their information dependency has been overlooked, and each has been formulated as an independent problem. In this work, we develop a sophisticated workflow called integrated Metagenomic Protein Predictor (iMPP), which leverages the information dependencies for better de novo functional analysis. iMPP contains three novel modules: a hybrid assembly graph generation module, a graph-based gene calling module, and a peptide assembly-based refinement module. iMPP significantly improved the existing gene calling sensitivity on unassembled metagenomic reads, achieving a 92-97% recall rate at a high precision level (>85%). iMPP further allowed for more sensitive and accurate peptide assembly, recovering more reference proteins and delivering more hypothetical protein sequences. The high performance of iMPP can provide a more comprehensive and unbiased view of the microbial communities under investigation. iMPP is freely available from https://github.com/Sirisha-t/iMPP.
Collapse
Affiliation(s)
- Sirisha Thippabhotla
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045, USA
| | - Ben Liu
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045, USA
| | - Adam Podgorny
- Center for Computational Biology, The University of Kansas, Lawrence, KS 66045, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Youngik Yang
- National Marine Biodiversity Institute of Korea, 101-75, Jangsan-ro, Janghang-eup, Seochun-gun, Chungchungnam-do, 33662, South Korea
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Department of Cancer Biology, University of Kansas Cancer Center; Kansas City, KS 66160, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
12
|
Kian N, Behrouzieh S, Razi S, Rezaei N. Diet Influences Immunotherapy Outcomes in Cancer Patients: A Literature Review. Nutr Cancer 2023; 75:415-429. [PMID: 36254373 DOI: 10.1080/01635581.2022.2133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The outbreak of immunotherapy has revolutionized cancer treatment. Despite the results confirming the effectiveness of immunotherapy, some studies have reported poor responsiveness to this therapeutic approach. The effectiveness of immunotherapy is dependent on numerous factors related to patients' lifestyles and health status. Diet, as an essential component of lifestyle, plays a major role in determining immunotherapy outcomes. It can significantly influence the body, gut microbiome composition, and metabolism, both in general and in tumor microenvironment. Consuming certain diets has resulted in either improved or worsened outcomes in patients receiving immunotherapy. For example, several recent studies have associated ketogenic, plant-based, and microbiome-favoring diets with promising outcomes. Moreover, obesity and dietary deprivation have impacted immunotherapy responsiveness, yet the studies are inconsistent in this context. This narrative review aims to integrate the results from many articles that have studied the contribution of diet to immunotherapy. We will start by introducing the multiple effects of dietary status on cancer progression and treatment. Then we will proceed to discuss various regimens known to affect immunotherapy outcomes, including ketogenic, high-fiber, and obesity-inducing diets and regimens that either contain or lack specific nutrients. Finally, we will elaborate on how composition of the gut microbiome may influence immunotherapy.
Collapse
Affiliation(s)
- Naghmeh Kian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sadra Behrouzieh
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
13
|
Dora D, Bokhari SMZ, Aloss K, Takacs P, Desnoix JZ, Szklenárik G, Hurley PD, Lohinai Z. Implication of the Gut Microbiome and Microbial-Derived Metabolites in Immune-Related Adverse Events: Emergence of Novel Biomarkers for Cancer Immunotherapy. Int J Mol Sci 2023; 24:ijms24032769. [PMID: 36769093 PMCID: PMC9916922 DOI: 10.3390/ijms24032769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed how we think about tumor management. Combinations of anti-programmed death ligand-1 (PD-L1) immunotherapy have become the standard of care in many advanced-stage cancers, including as a first-line therapy. Aside from improved anti-tumor immunity, the mechanism of action of immune checkpoint inhibitors (ICIs) exposes a new toxicity profile known as immune-related adverse effects (irAEs). This novel toxicity can damage any organ, but the skin, digestive and endocrine systems are the most frequently afflicted. Most ICI-attributed toxicity symptoms are mild, but some are severe and necessitate multidisciplinary side effect management. Obtaining knowledge on the various forms of immune-related toxicities and swiftly changing treatment techniques to lower the probability of experiencing severe irAEs has become a priority in oncological care. In recent years, there has been a growing understanding of an intriguing link between the gut microbiome and ICI outcomes. Multiple studies have demonstrated a connection between microbial metagenomic and metatranscriptomic patterns and ICI efficacy in malignant melanoma, lung and colorectal cancer. The immunomodulatory effect of the gut microbiome can have a real effect on the biological background of irAEs as well. Furthermore, specific microbial signatures and metabolites might be associated with the onset and severity of toxicity symptoms. By identifying these biological factors, novel biomarkers can be used in clinical practice to predict and manage potential irAEs. This comprehensive review aims to summarize the clinical aspects and biological background of ICI-related irAEs and their potential association with the gut microbiome and metabolome. We aim to explore the current state of knowledge on the most important and reliable irAE-related biomarkers of microbial origin and discuss the intriguing connection between ICI efficacy and toxicity.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| | | | - Kenan Aloss
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - Juliane Zsuzsanna Desnoix
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - György Szklenárik
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- National Korányi Institute of Pulmonology, Pihenő út 1-3, 1121 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| |
Collapse
|
14
|
Ross TJ, Zhang J. The Microbiome-TIME Axis: A Host of Possibilities. Microorganisms 2023; 11:288. [PMID: 36838253 PMCID: PMC9965696 DOI: 10.3390/microorganisms11020288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer continues to be a significant source of mortality and morbidity worldwide despite progress in cancer prevention, early detection, and treatment. Fortunately, immunotherapy has been a breakthrough in the treatment of many cancers. However, the response to immunotherapy treatment and the experience of associated side effects varies significantly between patients. Recently, attention has been given to understanding the role of the tumor immune microenvironment (TIME) in the development, progression, and treatment response of cancer. A new understanding of the role of the microbiota in the modulation of the TIME has further complicated the story but also unlocked a new area of adjuvant therapeutic research. The complex balance of tumor-permissive and tumor-suppressive immune environments requires further elucidation in order to be harnessed as a therapeutic target. Because both the TIME and the microbiome show importance in these areas, we propose here the concept of the "microbiome-TIME axis" to review the current field of research and future directions.
Collapse
Affiliation(s)
- Tyler Joel Ross
- School of Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Jun Zhang
- Department of Cancer Biology, University of Kansas Comprehensive Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Comprehensive Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
de Oliveira Andrade F, Verma V, Hilakivi-Clarke L. Maternal obesity and resistance to breast cancer treatments among offspring: Link to gut dysbiosis. Cancer Rep (Hoboken) 2022; 5:e1752. [PMID: 36411524 PMCID: PMC9780430 DOI: 10.1002/cnr2.1752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND About 50 000 new cases of cancer in the United States are attributed to obesity. The adverse effects of obesity on breast cancer may be most profound when affecting the early development; that is, in the womb of a pregnant obese mother. Maternal obesity has several long-lasting adverse health effects on the offspring, including increasing offspring's breast cancer risk and mortality. Gut microbiota is a player in obesity as well as may impact breast carcinogenesis. Gut microbiota is established early in life and the microbial composition of an infant's gut becomes permanently dysregulated because of maternal obesity. Metabolites from the microbiota, especially short chain fatty acids (SCFAs), play a critical role in mediating the effect of gut bacteria on multiple biological functions, such as immune system, including tumor immune responses. RECENT FINDINGS Maternal obesity can pre-program daughter's breast cancer to be more aggressive, less responsive to treatments and consequently more likely to cause breast cancer related death. Maternal obesity may also induce poor response to immune checkpoint inhibitor (ICB) therapy through increased abundance of inflammation associated microbiome and decreased abundance of bacteria that are linked to production of SCFAs. Dietary interventions that increase the abundance of bacteria producing SCFAs potentially reverses offspring's resistance to breast cancer therapy. CONCLUSION Since immunotherapies have emerged as highly effective treatments for many cancers, albeit there is an urgent need to enlarge the patient population who will be responsive to these treatments. One of the factors which may cause ICB refractoriness could be maternal obesity, based on its effects on the microbiota markers of ICB therapy response among the offspring. Since about 40% of children are born to obese mothers in the Western societies, it is important to determine if maternal obesity impairs offspring's response to cancer immunotherapies.
Collapse
Affiliation(s)
| | - Vivek Verma
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | |
Collapse
|
16
|
Li S, Li Q, Lu W. Intratumoral microbiome and gastrointestinal cancers. Front Oncol 2022; 12:1047015. [PMID: 36523986 PMCID: PMC9745085 DOI: 10.3389/fonc.2022.1047015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/11/2022] [Indexed: 12/21/2024] Open
Abstract
Emerging studies have revealed the role of microbiota in regulating tumorigenesis, development, and response to antitumor treatment. However, most studies have focused on gut microbiota, and little is known about the intratumoral microbiome. To date, the latest research has indicated that the intratumoral microbiome is a key component of the tumor microenvironment (TME), and can promote a heterogeneous immune microenvironment, reprogram tumor metabolism to affect tumor invasion and metastasis. In this review, we will summarize existing studies on the intratumoral microbiome of gastrointestinal cancers and reveal their crosstalk. This will provide a better understanding of this emerging field and help to explore new therapeutic approaches for cancer patients by targeting the intratumoral microbiome.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin Institute of Hepatology, Tianjin, China
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Qian Li
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Liu B, Chau J, Dai Q, Zhong C, Zhang J. Exploring Gut Microbiome in Predicting the Efficacy of Immunotherapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:5401. [PMID: 36358819 PMCID: PMC9656313 DOI: 10.3390/cancers14215401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 11/02/2023] Open
Abstract
We performed various analyses on the taxonomic and functional features of the gut microbiome from NSCLC patients treated with immunotherapy to establish a model that may predict whether a patient will benefit from immunotherapy. We collected 65 published whole metagenome shotgun sequencing samples along with 14 samples from our previous study. We systematically studied the taxonomical characteristics of the dataset and used both the random forest (RF) and the multilayer perceptron (MLP) neural network models to predict patients with progression-free survival (PFS) above 6 months versus those below 3 months. Our results showed that the RF classifier achieved the highest F-score (85.2%) and the area under the receiver operating characteristic curve (AUC) (95%) using the protein families (Pfam) profile, and the MLP neural network classifier achieved a 99.9% F-score and 100% AUC using the same Pfam profile. When applying the model trained in the Pfam profile directly to predict the treatment response, we found that both trained RF and MLP classifiers significantly outperformed the stochastic predictor in F-score. Our results suggested that such a predictive model based on functional (e.g., Pfam) rather than taxonomic profile might be clinically useful to predict whether an NSCLC patient will benefit from immunotherapy, as both the F-score and AUC of functional profile outperform that of taxonomic profile. In addition, our model suggested that interactive biological processes such as methanogenesis, one-carbon, and amino acid metabolism might be important in regulating the immunotherapy response that warrants further investigation.
Collapse
Affiliation(s)
- Ben Liu
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, USA
| | - Justin Chau
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Qun Dai
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS 66045, USA
- Center for Computational Biology, University of Kansa, Lawrence, KS 66045, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
18
|
The Crosstalk between Microbiome and Immunotherapeutics: Myth or Reality. Cancers (Basel) 2022; 14:cancers14194641. [PMID: 36230563 PMCID: PMC9563484 DOI: 10.3390/cancers14194641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiome refers to microorganisms and their genetic material influencing local and systemic inflammation. Inflammation is known to contribute to cancer development, progression, and treatment. Evidence suggests that modulating the gut microbiome may affect responses to various cancer therapies. The gut microbiota has been suggested to have an impact on immunotherapy efficacy, especially the currently widely used immune checkpoint inhibitors in various malignancies. Microbial interventions like fecal microbiota transplantation, various probiotics, or even antibiotics can increase or decrease the tumor’s sensitivity to immunotherapy. However, not all tumors react in the same manner, highlighting the tumor microenvironment heterogeneity across tumor types and the influence this has on the crosstalk between the microbiome and therapy outcomes. In this study, we intend to review the association between the gut microbiota and immunotherapy response in cancer patients and the factors regulating this interaction.
Collapse
|
19
|
Deluce J, Maleki Vareki S, Fernandes R. The role of gut microbiome in immune modulation in metastatic renal cell carcinoma. Ther Adv Med Oncol 2022; 14:17588359221122714. [PMID: 36105887 PMCID: PMC9465582 DOI: 10.1177/17588359221122714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Treatment of metastatic renal cell carcinomas (mRCC) has drastically improved
since the advent of immunotherapy with immune checkpoint inhibitors (ICIs), with
a significant proportion of patients achieving durable responses. While this has
revolutionized treatment and improved outcomes for mRCC patients, a large subset
of patients still does not respond to treatment with ICIs. Moreover, ICIs can
induce various immune-related adverse events, limiting their use in many
patients. Therefore, there is a need to identify the predictive biomarkers of
both efficacy and toxicity associated with ICIs, which would allow for a more
personalized approach and help with clinical decision-making. This review aims
to explore the role of the gut microbiome in RCC to overcome primary resistance
and predict response to treatment with ICIs. First, current therapeutic
strategies and mechanisms of action of ICI therapies for RCC treatment will be
reviewed. With the technological development of shotgun whole-genome sequencing,
the gut microbiome has emerged as an exciting field of research within oncology.
Thus, the role of the microbiome and its bidirectional interaction with ICIs and
other drugs will be explored, with a particular focus on the microbiome profile
in RCC. Lastly, the rationale for future clinical interventions to overcome
resistance to ICIs using fecal microbiota transplantation in patients with RCC
will be presented.
Collapse
Affiliation(s)
- Jasna Deluce
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Saman Maleki Vareki
- Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, CanadaDepartment of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London Regional Cancer Program, Room A4-130A, Cancer Research Laboratory Program, London, ON N6A 3K7, Canada.Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON, Canada
| | - Ricardo Fernandes
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, 800 Commissioners Road East, Room A3-940, London ON N6A 5W9, Canada.Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
20
|
Li Y, Huang X, Tong D, Jiang C, Zhu X, Wei Z, Gong T, Jin C. Relationships among microbiota, gastric cancer, and immunotherapy. Front Microbiol 2022; 13:987763. [PMID: 36171746 PMCID: PMC9511979 DOI: 10.3389/fmicb.2022.987763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 12/07/2022] Open
Abstract
Currently, conventional neoadjuvant therapy or postoperative adjuvant therapy, such as chemotherapy and radiation therapy, can only bring limited survival benefits to gastric cancer (GC). Median survival after palliative chemotherapy is also low, at about 8–10 months. Immunotargeting is a new option for the treatment of GC, but has not been widely replicated. The highly immunosuppressed tumor microenvironment (TME) discounts the efficacy of immunotherapy for GC. Therefore, new strategies are needed to enhance the immune response of the TME. This paper reviewed the relationship between microorganisms and GC, potential links between microorganisms and immunotherapy and research of microorganisms combined immunotherapy.
Collapse
Affiliation(s)
- Yuzhen Li
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiaona Huang
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Desheng Tong
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Chenyu Jiang
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiaodan Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Zhipeng Wei
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Tingjie Gong
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Chunhui Jin
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- *Correspondence: Chunhui Jin,
| |
Collapse
|
21
|
Tan B, Liu YX, Tang H, Chen D, Xu Y, Chen MJ, Li Y, Wang MZ, Qian JM. Gut microbiota shed new light on the management of immune-related adverse events. Thorac Cancer 2022; 13:2681-2691. [PMID: 36043345 PMCID: PMC9527168 DOI: 10.1111/1759-7714.14626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Immunotherapy has dramatically revolutionized the therapeutic landscape for patients with cancer. Although immune checkpoint inhibitors are now accepted as effective anticancer therapies, they introduce a novel class of toxicity, termed immune‐related adverse events, which can lead to the temporary or permanent discontinuation of immunotherapy and life‐threatening tumor progression. Therefore, the effective prevention and treatment of immune‐related adverse events is a clinical imperative to maximize the utility of immunotherapies. Immune‐related adverse events are related to the intestinal microbiota, baseline gut microbiota composition is an important determinant of immune checkpoint inhibitor‐related colitis, and antibiotics exacerbate these undesirable side‐effects. Supplementation with specific probiotics reduces immune checkpoint inhibitor‐related colitis in mice, and fecal microbiota transplantation has now been shown to effectively treat refractory immune checkpoint inhibitor‐related colitis in the clinic. Hence, modifying the microbiota holds great promise for preventing and treating immune‐related adverse events. Microbiomes and their metabolites play important roles in the potential underlying mechanisms through interactions with both innate and adaptive immune cells. Here we review the gut microbiota and immune regulation; the changes occurring in the microbiota during immune checkpoint inhibitor therapy; the relationship between the microbiota and immune‐related adverse events, antibiotics, probiotics/prebiotics, and fecal microbiota transplantation in immune checkpoint inhibitor‐related colitis; and the protective mechanisms mediated by the microbiome and metabolites in immune‐related adverse events.
Collapse
Affiliation(s)
- Bei Tan
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yun-Xin Liu
- Medical Doctor Program, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Hao Tang
- Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Dan Chen
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Min-Jiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yue Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Meng-Zhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jia-Ming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
22
|
Westheim AJF, Stoffels LM, Dubois LJ, van Bergenhenegouwen J, van Helvoort A, Langen RCJ, Shiri-Sverdlov R, Theys J. Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy. Front Nutr 2022; 9:868436. [PMID: 35811951 PMCID: PMC9260274 DOI: 10.3389/fnut.2022.868436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Although immunotherapy represents one of the most potent therapeutic anti-cancer approaches, only a limited number of patients shows clinical benefit. Recent evidence suggests that patients' nutritional status plays a major role in immunotherapy outcome. Fatty acids are essential in a balanced diet and well-known to influence the immune response. Moreover, short-chain fatty acids (SCFAs) show beneficial effects in metabolic disorders as well as in cancer and polyunsaturated fatty acids (PUFAs) contribute to body weight and fat free mass preservation in cancer patients. In line with these data, several studies imply a role for SCFAs and PUFAs in boosting the outcome of immunotherapy. In this review, we specifically focus on mechanistic data showing that SCFAs modulate the immunogenicity of tumor cells and we discuss the direct effects of SCFAs and PUFAs on the immune system in the context of cancer. We provide preclinical and clinical evidence indicating that SCFAs and PUFAs may have the potential to boost immunotherapy efficacy. Finally, we describe the challenges and address opportunities for successful application of nutritional interventions focusing on SCFAs and PUFAs to increase the therapeutic potential of immunotherapeutic approaches for cancer.
Collapse
Affiliation(s)
- Annemarie J. F. Westheim
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Lara M. Stoffels
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ludwig J. Dubois
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ardy van Helvoort
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- *Correspondence: Jan Theys
| |
Collapse
|
23
|
Interaction of Gut Microbiota with Endocrine Homeostasis and Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14112656. [PMID: 35681636 PMCID: PMC9179244 DOI: 10.3390/cancers14112656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
The gut microbiota plays a crucial role in healthy individuals as well as in patients with thyroid diseases, including thyroid cancer. Although the prognosis of differentiated thyroid cancer is predictable, that of some poorly differentiated, medullary, and anaplastic thyroid cancers remains unpromising. As the interaction between the gut microbiota and thyroid cancer has been gradually revealed in recent years, the thyroid gland, a crucial endocrine organ, is shown to have a complex connection with the body's metabolism and is involved in inflammation, autoimmunity, or cancer progression. Dysbiosis of the gut microbiota and its metabolites can influence changes in hormone levels and susceptibility to thyroid cancer through multiple pathways. In this review, we focus on the interactions of the gut microbiota with thyroid function diseases and thyroid cancer. In addition, we also discuss some potential new strategies for the prevention and treatment of thyroid disease and thyroid cancer. Our aim is to provide some possible clinical applications of gut microbiota markers for early diagnosis, treatment, and postoperative management of thyroid cancer. These findings were used to establish a better multi-disciplinary treatment and prevention management strategy and to individualize the treatment of patients in relation to their gut microbiota composition and pathological characteristics.
Collapse
|
24
|
Poizeau F, Kerbrat S, Balusson F, Tattevin P, Revest M, Cattoir V, Luque-Paz D, Lesimple T, Pracht M, Dinulescu M, Russo D, Oger E, Dupuy A. The Association Between Antibiotic Use and Outcome Among Metastatic Melanoma Patients Receiving Immunotherapy. J Natl Cancer Inst 2022; 114:686-694. [PMID: 35253890 PMCID: PMC9086805 DOI: 10.1093/jnci/djac019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/23/2021] [Accepted: 01/18/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Several observational studies have reported a decreased response to immune checkpoint inhibitors (ICI) following antibiotic use. ICI activity has been hypothesized to be impaired by antibiotic-induced gut dysbiosis. METHODS Patients with advanced melanoma receiving an anti-PD-1 antibody as a first-line therapy between 2015 and 2017 in France were selected using the French Health Insurance database. We compared overall survival and time-to-treatment discontinuation according to antibiotic exposure in the 3 months prior to the initiation of anti-PD-1 antibody. To disentangle a causal effect of antibiotics from a confounding bias, we balanced characteristics of patients exposed and nonexposed to antibiotics using an overlap weighting method based on a propensity score. We also evaluated a control cohort of patients with advanced melanoma receiving first-line targeted therapy, as there is no rationale for decreased efficacy of targeted therapy following antibiotic treatment. RESULTS The anti-PD-1 antibody cohort comprised 2605 individuals. Antibiotic exposure in the 3 months prior to anti-PD-1 antibody initiation was not associated with shorter overall survival (weighted hazard ratio = 1.01, 95% confidence interval = 0.88 to 1.17) or time-to-treatment discontinuation (weighted hazard ratio = 1.00, 95% confidence interval = 0.89 to 1.11). Consistent results were observed when the time frame of antibiotics was narrowed to 1 month prior to anti-PD-1 initiation or when exposure was restricted to antibiotics leading to more profound gut dysbiosis. Similar results were observed in the targeted therapy cohort. CONCLUSIONS In a large cohort of advanced melanoma patients, we showed that antibiotic use preceding anti-PD-1 antibody was not associated with worse outcome. Physicians should not delay immunotherapy for patients who have recently received antibiotics.
Collapse
Affiliation(s)
- Florence Poizeau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Institut de recherche en santé, environnement et travail (Irset) - UMR_S 1085, Rennes, France.,Department of Dermatology, Univ Rennes, CHU Rennes, Rennes, France
| | - Sandrine Kerbrat
- Univ Rennes, CHU Rennes, Pharmacoepidemiology and Health Services Research (REPERES), Rennes, France
| | - Frédéric Balusson
- Univ Rennes, CHU Rennes, Inserm, EHESP, Institut de recherche en santé, environnement et travail (Irset) - UMR_S 1085, Rennes, France
| | - Pierre Tattevin
- Univ Rennes, CHU Rennes, Infectious Diseases and Intensive Care Unit, Rennes, France
| | - Matthieu Revest
- Univ Rennes, CHU Rennes, Infectious Diseases and Intensive Care Unit, Rennes, France.,Univ Rennes, Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| | - Vincent Cattoir
- Department of Bacteriology, Univ Rennes, CHU Rennes, Rennes, France
| | - David Luque-Paz
- Univ Rennes, CHU Rennes, Infectious Diseases and Intensive Care Unit, Rennes, France
| | - Thierry Lesimple
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | - Marc Pracht
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | | | - David Russo
- Department of Dermatology, CHU Rennes, Rennes, France
| | - Emmanuel Oger
- Univ Rennes, CHU Rennes, Pharmacoepidemiology and Health Services Research (REPERES), Rennes, France
| | - Alain Dupuy
- Univ Rennes, CHU Rennes, Inserm, EHESP, Institut de recherche en santé, environnement et travail (Irset) - UMR_S 1085, Rennes, France.,Department of Dermatology, Univ Rennes, CHU Rennes, Rennes, France
| |
Collapse
|
25
|
Abstract
OPINION STATEMENT Immunotherapy is revolutionizing tumor treatment by activating the immune response to tumors. Among them, immunotherapy represented by immune checkpoint inhibitors is considered to be a milestone in tumor treatment. It has revolutionized the management of advanced malignant tumors by activating T cells, promoting cytotoxic signaling pathways, and killing tumor cells, effectively improving the overall survival of patients. However, resistance to immunotherapy and immune-related adverse events remain challenges for immunotherapy. It has been demonstrated in previous studies that modulating intestinal microbiota can enhance immunotherapy response and reduce complications. Currently, the more mature method for microbiota regulation is fecal microbiota transplantation, which involves transfering a donor's microbiome to the recipient in the form of capsules or fecal microbiota suspension to restore the richness of the recipient's intestinal microbiota. In terms of cancer immunotherapy, fecal microbiota transplantation in patients who fail to respond to immune checkpoint inhibitors is expected to produce better prognosis for patients.
Collapse
|
26
|
Bonvalet M, Danlos FX, Champiat S, Rouanne M, Marabelle A. Cancer immunotherapy efficacy is driven by tumour biology, not by its histology. Impact on drug development and approvals. Eur J Cancer 2022; 162:130-132. [PMID: 34983015 DOI: 10.1016/j.ejca.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Mélodie Bonvalet
- Laboratoire de Recherche Translationnelle en Immunotherapie (LRTI), INSERM U1015, Villejuif, France; Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France.
| | - François-Xavier Danlos
- Laboratoire de Recherche Translationnelle en Immunotherapie (LRTI), INSERM U1015, Villejuif, France; Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France; Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France; Faculté de Médecine, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Stéphane Champiat
- Laboratoire de Recherche Translationnelle en Immunotherapie (LRTI), INSERM U1015, Villejuif, France; Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France; Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Mathieu Rouanne
- Laboratoire de Recherche Translationnelle en Immunotherapie (LRTI), INSERM U1015, Villejuif, France; Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Département d'Urologie, Hôpital Foch, UVSQ-Université Paris-Saclay, Suresnes, France
| | - Aurélien Marabelle
- Laboratoire de Recherche Translationnelle en Immunotherapie (LRTI), INSERM U1015, Villejuif, France; Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France; Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France; Faculté de Médecine, Université Paris Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
27
|
Microbiota in Health and Disease-Potential Clinical Applications. Nutrients 2021; 13:nu13113866. [PMID: 34836121 PMCID: PMC8622281 DOI: 10.3390/nu13113866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Within the last two decades tremendous efforts in biomedicine have been undertaken to understand the interplay of commensal bacteria living in and on our human body with our own human physiology. It became clear that (1) a high diversity especially of the microbial communities in the gut are important to preserve health and that (2) certain bacteria via nutrition-microbe-host metabolic axes are beneficially affecting various functions of the host, including metabolic control, energy balance and immune function. While a large set of evidence indicate a special role for small chain fatty acids (SCFA) in that context, recently also metabolites of amino acids (e.g., tryptophan and arginine) moved into scientific attention. Of interest, microbiome alterations are not only important in nutrition associated diseases like obesity and diabetes, but also in many chronic inflammatory, oncological and neurological abnormalities. From a clinician’s point of view, it should be mentioned, that the microbiome is not only interesting to develop novel therapies, but also as a modifiable factor to improve efficiency of modern pharmaceutics, e.g., immune-therapeutics in oncology. However, so far, most data rely on animal experiments or human association studies, whereas controlled clinical intervention studies are spare. Hence, the translation of the knowledge of the last decades into clinical routine will be the challenge of microbiome based biomedical research for the next years. This review aims to provide examples for future clinical applications in various entities and to suggest bacterial species and/or microbial effector molecules as potential targets for intervention studies.
Collapse
|
28
|
Oh B, Boyle F, Pavlakis N, Clarke S, Eade T, Hruby G, Lamoury G, Carroll S, Morgia M, Kneebone A, Stevens M, Liu W, Corless B, Molloy M, Kong B, Libermann T, Rosenthal D, Back M. The Gut Microbiome and Cancer Immunotherapy: Can We Use the Gut Microbiome as a Predictive Biomarker for Clinical Response in Cancer Immunotherapy? Cancers (Basel) 2021; 13:cancers13194824. [PMID: 34638308 PMCID: PMC8508052 DOI: 10.3390/cancers13194824] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The current review assessed the effects of the gut microbiome on clinical outcomes of immunotherapy and related adverse events (AEs) in cancer patients. Studies (n = 10) consistently reported that the gut microbiome prior to administering immune checkpoint inhibitors (ICIs) was associated with enhanced efficacy of ICIs and reduced AEs. Recent fecal microbiome transplant (FMT) studies demonstrated the modulatory effects of FMT on the composition and diversity of the gut microbiome in patients with refractory cancers and the potential to improve the efficacy of ICIs. Abstract Background: Emerging evidence suggests that gut microbiota influences the clinical response to immunotherapy. This review of clinical studies examines the relationship between gut microbiota and immunotherapy outcomes. Method: A literature search was conducted in electronic databases Medline, PubMed and ScienceDirect, with searches for “cancer” and “immunotherapy/immune checkpoint inhibitor” and “microbiome/microbiota” and/or “fecal microbiome transplant FMT”. The relevant literature was selected for this article. Results: Ten studies examined patients diagnosed with advanced metastatic melanoma (n = 6), hepatocellular carcinoma (HCC) (n = 2), non-small cell lung carcinoma (NSCLC) (n = 1) and one study examined combination both NSCLC and renal cell carcinoma (RCC) (n = 1). These studies consistently reported that the gut microbiome profile prior to administering immune checkpoint inhibitors (ICIs) was related to clinical response as measured by progression-free survival (PFS) and overall survival (OS). Two studies reported that a low abundance of Bacteroidetes was associated with colitis. Two studies showed that patients with anti-PD-1 refractory metastatic melanoma experienced improved response rates and no added toxicity when receiving fecal microbiota transplant (FMT) from patients with anti-PD-1 responsive disease. Conclusions: Overall, significant differences in the diversity and composition of the gut microbiome were identified in ICIs responders and non-responders. Our findings provide new insights into the value of assessing the gut microbiome in immunotherapy. Further robust randomized controlled trials (RCTs) examining the modulatory effects of the gut microbiome and FMT on ICIs in patients not responding to immunotherapy are warranted.
Collapse
Affiliation(s)
- Byeongsang Oh
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- The Mater Hospital, North Sydney, NSW 2065, Australia;
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- University of Kansas Medical Center, Kansas City, KS 66160-7601, USA;
- Correspondence:
| | - Frances Boyle
- The Mater Hospital, North Sydney, NSW 2065, Australia;
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Pavlakis
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen Clarke
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- The Mater Hospital, North Sydney, NSW 2065, Australia;
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - George Hruby
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- The Mater Hospital, North Sydney, NSW 2065, Australia;
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gillian Lamoury
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- The Mater Hospital, North Sydney, NSW 2065, Australia;
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Susan Carroll
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- The Mater Hospital, North Sydney, NSW 2065, Australia;
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Marita Morgia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- The Mater Hospital, North Sydney, NSW 2065, Australia;
| | - Andrew Kneebone
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- The Mater Hospital, North Sydney, NSW 2065, Australia;
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Stevens
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- The Mater Hospital, North Sydney, NSW 2065, Australia;
| | - Wen Liu
- University of Kansas Medical Center, Kansas City, KS 66160-7601, USA;
| | - Brian Corless
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
| | - Mark Molloy
- Bowel Cancer and Biomarker Laboratory, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2065, Australia;
| | - Benjamin Kong
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Towia Libermann
- Harvard Medical School, Boston, MA 02115, USA; (T.L.); (D.R.)
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - David Rosenthal
- Harvard Medical School, Boston, MA 02115, USA; (T.L.); (D.R.)
| | - Michael Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (N.P.); (S.C.); (T.E.); (G.H.); (G.L.); (S.C.); (M.M.); (A.K.); (M.S.); (B.C.); (B.K.); (M.B.)
- The Mater Hospital, North Sydney, NSW 2065, Australia;
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
The Role of Gut Microbiota in Tumor Immunotherapy. J Immunol Res 2021; 2021:5061570. [PMID: 34485534 PMCID: PMC8413023 DOI: 10.1155/2021/5061570] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy is the fourth therapy after surgery, chemotherapy, and radiotherapy. It has made great breakthroughs in the treatment of some epithelial tumors and hematological tumors. However, its adverse reactions are common or even more serious, and the response rate in some solid tumors is not satisfactory. With the maturity of genomics and metabolomics technologies, the effect of intestinal microbiota in tumor development and treatment has gradually been recognized. The microbiota may affect tumor immunity by regulating the host immune system and tumor microenvironment. Some bacteria help fight tumors by activating immunity, while some bacteria mediate immunosuppression to help cancer cells escape from the immune system. More and more studies have revealed that the effects and complications of tumor immunotherapy are related to the composition of the gut microbiota. The composition of the intestinal microbiota that is sensitive to treatment or prone to adverse reactions has certain characteristics. These characteristics may be used as biomarkers to predict the prognosis of immunotherapy and may also be developed as “immune potentiators” to assist immunotherapy. Some clinical and preclinical studies have proved that microbial intervention, including microbial transplantation, can improve the sensitivity of immunotherapy or reduce adverse reactions to a certain extent. With the development of gene editing technology and nanotechnology, the design and development of engineered bacteria that contribute to immunotherapy has become a new research hotspot. Based on the relationship between the intestinal microbiota and immunotherapy, the correct mining of microbial information and the development of reasonable and feasible microbial intervention methods are expected to optimize tumor immunotherapy to a large extent and bring new breakthroughs in tumor treatment.
Collapse
|
30
|
Chau J, Zhang J. Tying Small Changes to Large Outcomes: The Cautious Promise in Incorporating the Microbiome into Immunotherapy. Int J Mol Sci 2021; 22:ijms22157900. [PMID: 34360663 PMCID: PMC8347117 DOI: 10.3390/ijms22157900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
The role of the microbiome in immunology is a rapidly burgeoning topic of study. Given the increasing use of immune checkpoint inhibitor (ICI) therapy in cancers, along with the recognition that carcinogenesis has been linked to dysregulations of the immune system, much attention is now directed at potentiation of ICI efficacy, as well as minimizing the incidence of treatment-associated immune-related adverse events (irAEs). We provide an overview of the major research establishing links between the microbiome to tumorigenesis, chemotherapy and radiation potentiation, and ICI efficacy and irAE development.
Collapse
Affiliation(s)
- Justin Chau
- Division of Hematology, Oncology and Blood & Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA 52246, USA;
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Cancer Center, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-(913)-588-8150; Fax: +1-(913)-588-4085
| |
Collapse
|
31
|
Chau J, Yadav M, Liu B, Furqan M, Dai Q, Shahi S, Gupta A, Mercer KN, Eastman E, Hejleh TA, Chan C, Weiner GJ, Cherwin C, Lee STM, Zhong C, Mangalam A, Zhang J. Prospective correlation between the patient microbiome with response to and development of immune-mediated adverse effects to immunotherapy in lung cancer. BMC Cancer 2021; 21:808. [PMID: 34256732 PMCID: PMC8278634 DOI: 10.1186/s12885-021-08530-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Though the gut microbiome has been associated with efficacy of immunotherapy (ICI) in certain cancers, similar findings have not been identified for microbiomes from other body sites and their correlation to treatment response and immune related adverse events (irAEs) in lung cancer (LC) patients receiving ICIs. METHODS We designed a prospective cohort study conducted from 2018 to 2020 at a single-center academic institution to assess for correlations between the microbiome in various body sites with treatment response and development of irAEs in LC patients treated with ICIs. Patients must have had measurable disease, ECOG 0-2, and good organ function to be included. Data was collected for analysis from January 2019 to October 2020. Patients with histopathologically confirmed, advanced/metastatic LC planned to undergo immunotherapy-based treatment were enrolled between September 2018 and June 2019. Nasal, buccal and gut microbiome samples were obtained prior to initiation of immunotherapy +/- chemotherapy, at development of adverse events (irAEs), and at improvement of irAEs to grade 1 or less. RESULTS Thirty-seven patients were enrolled, and 34 patients were evaluable for this report. 32 healthy controls (HC) from the same geographic region were included to compare baseline gut microbiota. Compared to HC, LC gut microbiota exhibited significantly lower α-diversity. The gut microbiome of patients who did not suffer irAEs were found to have relative enrichment of Bifidobacterium (p = 0.001) and Desulfovibrio (p = 0.0002). Responders to combined chemoimmunotherapy exhibited increased Clostridiales (p = 0.018) but reduced Rikenellaceae (p = 0.016). In responders to chemoimmunotherapy we also observed enrichment of Finegoldia in nasal microbiome, and increased Megasphaera but reduced Actinobacillus in buccal samples. Longitudinal samples exhibited a trend of α-diversity and certain microbial changes during the development and resolution of irAEs. CONCLUSIONS This pilot study identifies significant differences in the gut microbiome between HC and LC patients, and their correlation to treatment response and irAEs in LC. In addition, it suggests potential predictive utility in nasal and buccal microbiomes, warranting further validation with a larger cohort and mechanistic dissection using preclinical models. TRIAL REGISTRATION ClinicalTrials.gov, NCT03688347 . Retrospectively registered 09/28/2018.
Collapse
Affiliation(s)
- Justin Chau
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - Meeta Yadav
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - Ben Liu
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, USA
| | - Muhammad Furqan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - Qun Dai
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Shailesh Shahi
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - Arnav Gupta
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, USA
- Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Zuarinagar, India
| | - Keri Nace Mercer
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - Evan Eastman
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - Taher Abu Hejleh
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - Carlos Chan
- Department of Surgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - George J Weiner
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, USA
| | | | - Sonny T M Lee
- Division of Biology, Kansas State University, Manhattan, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, USA
| | - Ashutosh Mangalam
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, USA.
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, USA.
- Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, USA.
| |
Collapse
|