1
|
El-Masry AS, Medhat AM, El-Bendary M, Mohamed RH. Vitamin D receptor rs3782905 and vitamin D binding protein rs7041 polymorphisms are associated with hepatocellular carcinoma susceptibility in cirrhotic HCV patients. BMC Med Genomics 2023; 16:319. [PMID: 38066559 PMCID: PMC10704848 DOI: 10.1186/s12920-023-01749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The severity of chronic hepatitis C and susceptibility to hepatocellular carcinoma (HCC) are associated with genetic variations within vitamin D receptor (VDR) in several populations. This study aims to determine the significance of the VDRs (rs2228570, rs3782905, rs11568820) and DBP (rs7041) for the susceptibility to HCC in Egyptian patients with chronic HCV infection and their effect on the progression of liver cirrhosis to carcinogenesis. METHODS Single nucleotide polymorphisms (SNPs) VDR (rs2228570, rs3782905), and DBP rs7041 were genotyped using restriction fragment length-PCR (RFLP-PCR) technique and VDR rs11568820 was genotyped using single strand polymorphism PCR (SSP PCR). These SNPs genotypes, haplotypes and linkage disequilibrium analyses were examined in 299 Egyptian individuals (100 HCV-cirrhotic patients, 99 HCC- HCV patients, and 100 healthy controls). RESULT The VDR rs2228570 CC genotype, VDR rs3782905 GC and CC genotypes, and DBP rs7041 GG genotype are significantly higher in HCC. It is noteworthy that, VDR rs3782905 CC and DBP rs7041 TG genotypes are higher in HCV induced liver cirrhosis than with HCC progression in HCV infected patients. Furthermore, among patients, the relationship between these SNPs and smoking status, gender, and HCC susceptibility was reported. CONCLUSION Among the four investigated SNPs, there are associations between VDR rs3782905 and DBP rs7041 and the HCC progression in Egyptian patients chronically infected with HCV. These SNPs are considered as risk factors in HCV induced liver cirrhosis and HCC. The combinations of these SNPs with smoking status and gender are statistically linked to a high risk of HCC. Future research with a larger sample size of subjects with HCV infection is advised, because chronic liver disease induced by HCV infection is the primary cause of HCC in Egypt. We recommend screening of these SNPs for prediction of LC and HCC development in HCV infected patients, which may improve the used therapeutic protocol. These results suggest that VDR polymorphisms may be potential determinants for HCC susceptibility in Egyptian HCV patients.
Collapse
Affiliation(s)
- Asmaa Samir El-Masry
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amina M Medhat
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mahmoud El-Bendary
- Department of Tropical Medicine and Hepatology, Faculty of Medicine, Mansoura University, Dakahlia, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Luna-Marco C, Ubink A, Kopsida M, Heindryckx F. Endoplasmic Reticulum Stress and Metabolism in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1377-1388. [PMID: 36309104 DOI: 10.1016/j.ajpath.2022.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for 85% to 90% of all liver cancer cases. It is a hepatocyte-derived primary tumor, causing 550,000 deaths per year, ranking it as one of the most common cancers worldwide. The liver is a highly metabolic organ with multiple functions, including digestion, detoxification, breakdown of fats, and production of bile and cholesterol, in addition to storage of vitamins, glycogen, and minerals, and synthesizing plasma proteins and clotting factors. Due to these fundamental and diverse functions, the malignant transformation of hepatic cells can have a severe impact on the liver's metabolism. Furthermore, tumorigenesis is often accompanied by activation of the endoplasmic reticulum (ER) stress pathways, which are known to be highly intertwined with several metabolic pathways. Because HCC is characterized by changes in the metabolome and by an aberrant activation of the ER stress pathways, the aim of this review was to summarize the current knowledge that links ER stress and metabolism in HCC, thereby focusing on potential therapeutic targets.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anna Ubink
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Nankabirwa JI, Rek J, Arinaitwe E, Namuganga JF, Nsobya SL, Asua V, Mawejje HD, Epstein A, Greenhouse B, Rodriguez-Barraquer I, Briggs J, Krezanoski PJ, Rosenthal PJ, Conrad M, Smith D, Staedke SG, Drakeley C, Bousema T, Andolina C, Donnelly MJ, Kamya MR, Dorsey G. East Africa International Center of Excellence for Malaria Research: Summary of Key Research Findings. Am J Trop Med Hyg 2022; 107:21-32. [PMID: 36228916 PMCID: PMC9662228 DOI: 10.4269/ajtmh.21-1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
The Program for Resistance, Immunology, Surveillance, and Modeling of Malaria (PRISM) has been conducting malaria research in Uganda since 2010 to improve the understanding of the disease and measure the impact of population-level control interventions in the country. Here, we will summarize key research findings from a series of studies addressing routine health facility-based surveillance, comprehensive cohort studies, studies of the molecular epidemiology, and transmission of malaria, evaluation of antimalarial drug efficacy, and resistance across the country, and assessments of insecticide resistance. Among our key findings are the following. First, we found that in historically high transmission areas of Uganda, a combination of universal distribution of long-lasting insecticidal-treated nets (LLINs) and sustained indoor residual spraying (IRS) of insecticides lowered the malaria burden greatly, but marked resurgences occurred if IRS was discontinued. Second, submicroscopic infections are common and key drivers of malaria transmission, especially in school-age children (5-15 years). Third, markers of drug resistance have changed over time, with new concerning emergence of markers predicting resistance to artemisinin antimalarials. Fourth, insecticide resistance monitoring has demonstrated high levels of resistance to pyrethroids, appreciable impact of the synergist piperonyl butoxide to pyrethroid susceptibility, emerging resistance to carbamates, and complete susceptibility of malaria vectors to organophosphates, which could have important implications for vector control interventions. Overall, PRISM has yielded a wealth of information informing researchers and policy-makers on the malaria burden and opportunities for improved malaria control and eventual elimination in Uganda. Continued studies concerning all the types of surveillance discussed above are ongoing.
Collapse
Affiliation(s)
- Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Sam L. Nsobya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Adrienne Epstein
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Paul J. Krezanoski
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Melissa Conrad
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - David Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, Washington
| | - Sarah G. Staedke
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
4
|
Bone Densities Assessed by Hounsfield Units at L5 in Computed Tomography Image Independently Predict Hepatocellular Carcinoma Development in Cirrhotic Patients. J Clin Med 2022; 11:jcm11195562. [PMID: 36233438 PMCID: PMC9573236 DOI: 10.3390/jcm11195562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
A previous study identified that bone density (BD) assessed by Hounsfield unit (HU) at T12 in computed tomography (CT) image was a predictor for hepatocellular carcinoma (HCC) development in cirrhotic patients. Here, we conducted a verification study, where clinical variables together with BDs (assessed from three different bone areas: T12, L5, and femur trochanter) were assessed for their predictive values for time-to-HCC development in cirrhotic patients. Univariate Cox proportional hazard analysis showed that age (p = 0.017), T12 BD (p = 0.013) and L5 BD (p = 0.005), but not femur BD, were significant predictors. Multivariate analysis revealed that L5 BD was the only independent factor associated with time-to-HCC development (adjusted p = 0.007). Kaplan-Meier analysis confirmed that BD which was lower than median HU was associated with a shorter time-to-HCC development for both T12 BD and L5 BD (p = 0.001 each). Longitudinal follow-ups for BDs in HCC patients having received serial CT imaging studies unveiled a significantly rapid reduction in BD, right before HCC was diagnosed (p = 0.025 when compared with the average BD reduction rate). In conclusion, BD assessed by HU at L5 was an independent predictor for HCC development in cirrhotic patients. Rapid BD reduction during CT scan follow-ups could serve as a warning sign for HCC development.
Collapse
|
5
|
Huang Y, Yuan Y, Chen S, Xu D, Xiao L, Wang X, Qin W, Liu B. Identifying potential pharmacological targets and mechanisms of vitamin D for hepatocellular carcinoma and COVID-19. Front Immunol 2022; 13:985781. [PMID: 36275701 PMCID: PMC9583923 DOI: 10.3389/fimmu.2022.985781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID‐19) is a severe pandemic that has posed an unprecedented challenge to public health worldwide. Hepatocellular carcinoma (HCC) is a common digestive system malignancy, with high aggressiveness and poor prognosis. HCC patients may be vulnerable to COVID-19. Since the anti-inflammatory, immunomodulatory and antiviral effects of vitamin D, we aimed to investigate the possible therapeutic effects and underlying action mechanisms of vitamin D in COVID-19 and HCC in this study. By using a range of bioinformatics and network pharmacology analyses, we identified many COVID-19/HCC target genes and analyzed their prognostic significance in HCC patients. Further, a risk score model with good predictive performance was developed to evaluate the prognosis of HCC patients with COVID-19 based on these target genes. Moreover, we identified seven possible pharmacological targets of vitamin D against COVID-19/HCC, including HMOX1, MB, TLR4, ALB, TTR, ACTA1 and RBP4. And we revealed the biological functions, signaling pathways and TF-miRNA coregulatory network of vitamin D in COVID-19/HCC. The enrichment analysis revealed that vitamin D could help in treating COVID-19/HCC effects through regulation of immune response, epithelial structure maintenance, regulation of chemokine and cytokine production involved in immune response and anti-inflammatory action. Finally, the molecular docking analyses were performed and showed that vitamin D possessed effective binding activity in COVID-19. Overall, we revealed the possible molecular mechanisms and pharmacological targets of vitamin D for treating COVID-19/HCC for the first time. But these findings need to be further validated in actual HCC patients with COVID-19 and need further investigation to confirm.
Collapse
Affiliation(s)
- Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chen
- Department of general surgery, Shangrao People's Hospital, Shangrao, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu,
| |
Collapse
|
6
|
Zheng M, Gao R. Vitamin D: A Potential Star for Treating Chronic Pancreatitis. Front Pharmacol 2022; 13:902639. [PMID: 35734414 PMCID: PMC9207250 DOI: 10.3389/fphar.2022.902639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory and fibrotic disease of the pancreas. The incidence of CP is increasing worldwide but the effective therapies are lacking. Hence, it is necessary to identify economical and effective agents for the treatment of CP patients. Vitamin D (VD) and its analogues have been confirmed as pleiotropic regulators of cell proliferation, apoptosis, differentiation and autophagy. Clinical studies show that VD deficiency is prevalent in CP patients. However, the correlation between VD level and the risk of CP remains controversial. VD and its analogues have been demonstrated to inhibit pancreatic fibrosis by suppressing the activation of pancreatic stellate cells and the production of extracellular matrix. Limited clinical trials have shown that the supplement of VD can improve VD deficiency in patients with CP, suggesting a potential therapeutic value of VD in CP. However, the mechanisms by which VD and its analogues inhibit pancreatic fibrosis have not been fully elucidated. We are reviewing the current literature concerning the risk factors for developing CP, prevalence of VD deficiency in CP, mechanisms of VD action in PSC-mediated fibrogenesis during the development of CP and potential therapeutic applications of VD and its analogues in the treatment of CP.
Collapse
|
7
|
Isewon I, Soremekun C, Adebiyi M, Adetunji C, Ogunleye AJ, Bajeh AO, Asani EO, Gbadamosi B, Soremekun O, Udosen B, Kintu C, Ogundokun R, Arowolo MO, Matiluko O, Nashiru O, Adebiyi E, Ekenna C, Fatumo S. Strengthening Bioinformatics and Genomics Analyses Skills in Africa for Attainment of the Sustainable Development Goals: Report of the 2nd Conference of the Nigerian Bioinformatics and Genomics Network. Am J Trop Med Hyg 2022; 107:tpmd211164. [PMID: 35576945 PMCID: PMC9294681 DOI: 10.4269/ajtmh.21-1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/16/2022] [Indexed: 11/07/2022] Open
Abstract
The second conference of the Nigerian Bioinformatics and Genomics Network (NBGN21) was held from October 11 to October 13, 2021. The event was organized by the Nigerian Bioinformatics and Genomics Network. A 1-day genomic analysis workshop on genome-wide association study and polygenic risk score analysis was organized as part of the conference. It was organized primarily as a research capacity building initiative to empower Nigerian researchers to take a leading role in this cutting-edge field of genomic data science. The theme of the conference was "Leveraging Bioinformatics and Genomics for the attainments of the Sustainable Development Goals." The conference used a hybrid approach-virtual and in-person. It served as a platform to bring together 235 registered participants mainly from Nigeria and virtually, from all over the world. NBGN21 had four keynote speakers and four leading Nigerian scientists received awards for their contributions to genomics and bioinformatics development in Nigeria. A total of 100 travel fellowships were awarded to delegates within Nigeria. A major topic of discussion was the application of bioinformatics and genomics in the achievement of the Sustainable Development Goals (SDG3-Good Health and Well-Being, SDG4-Quality Education, and SDG 15-Life on Land [Biodiversity]). In closing, most of the NBGN21 conference participants were interviewed and interestingly they agreed that bioinformatics and genomic analysis of African genomes are vital in identifying population-specific genetic variants that confer susceptibility to different diseases that are endemic in Africa. The knowledge of this can empower African healthcare systems and governments for timely intervention, thereby enhancing good health and well-being.
Collapse
Affiliation(s)
- Itunuoluwa Isewon
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Chisom Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- Department of Immunology and Molecular Biology, College of Health Science, Makerere University, Kampala, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Marion Adebiyi
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Computer Science, Landmark University, Omu-Aran, Nigeria
| | - Charles Adetunji
- Department of Microbiology, Edo State University Uzairue, Edo State, Nigeria
| | | | - Amos Orenyi Bajeh
- Department of Computer Science, Landmark University, Omu-Aran, Nigeria
| | | | | | - Opeyemi Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| | - Brenda Udosen
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Christopher Kintu
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- Department of Immunology and Molecular Biology, College of Health Science, Makerere University, Kampala, Uganda
| | | | | | - Opeyemi Matiluko
- Department of Computer Science, Landmark University, Omu-Aran, Nigeria
| | - Oyekanmi Nashiru
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Ezekiel Adebiyi
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chinwe Ekenna
- Department of Computer Science, University at Albany, Albany, New York
| | - Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
8
|
Zhang S, Xu J, Cao H, Jiang M, Xiong J. KB-68A7.1 Inhibits Hepatocellular Carcinoma Development Through Binding to NSD1 and Suppressing Wnt/β-Catenin Signalling. Front Oncol 2022; 11:808291. [PMID: 35127520 PMCID: PMC8810504 DOI: 10.3389/fonc.2021.808291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies with extremely poor prognosis. Therefore, revealing the critical molecules involved in HCC progression and prognosis is urgently needed. In this study, through combining public dataset and our cohort, we found a novel prognosis-related long non-coding RNA KB-68A7.1 in HCC. KB-68A7.1 was lowly expressed in HCC, whose low expression was associated with large tumour size, aggressive clinical characteristic, and poor survival. Gain- and loss-of-function assays demonstrated that KB-68A7.1 restricted HCC cellular proliferation, induced HCC cellular apoptosis, and suppressed HCC cellular migration and invasion in vitro. Xenograft assays demonstrated that KB-68A7.1 suppressed HCC tumour growth and metastasis in vivo. These functional assays suggested KB-68A7.1 as a tumour suppressor in HCC. Histone methyltransferase nuclear receptor binding SET domain-containing protein 1 (NSD1) was found to bind to KB-68A7.1. KB-68A7.1 was mainly distributed in the cytoplasm. The binding of KB-68A7.1 to NSD1 sequestrated NSD1 in the cytoplasm, leading to the reduction in nuclear NSD1 level. Through decreasing nuclear NSD1 level, KB-68A7.1 reduced di-methylation of histone H3 at lysine 36 (H3K36me2) and increased tri-methylation of histone H3 at lysine 27 (H3K27me3) at the promoter of WNT10B, a target of NSD1. Thus, KB-68A7.1 repressed WNT10B transcription. The expression of WNT10B was negatively correlated with that of KB-68A7.1 in HCC tissues. Through repressing WNT10B, KB-68A7.1 further repressed Wnt/β-catenin signalling. Functional rescue assays showed that overexpression of WNT10B reversed the tumour-suppressive roles of KB-68A7.1, whereas the oncogenic roles of KB-68A7.1 depletion were abolished by Wnt/β-catenin signalling inhibitor. Overall, this study identified KB-68A7.1 as a lowly expressed and prognosis-related lncRNA in HCC, which suppressed HCC progression through binding to NSD1 and repressing Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Shuhua Zhang
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianqun Xu
- Department of Respiratory Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jianqun Xu,
| | - Huan Cao
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Jiang
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. Genetics, Immunity and Nutrition Boost the Switching from NASH to HCC. Biomedicines 2021; 9:1524. [PMID: 34829753 PMCID: PMC8614742 DOI: 10.3390/biomedicines9111524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading contributor to the global burden of chronic liver diseases. The phenotypic umbrella of NAFLD spans from simple and reversible steatosis to nonalcoholic steatohepatitis (NASH), which may worsen into cirrhosis and hepatocellular carcinoma (HCC). Notwithstanding, HCC may develop also in the absence of advanced fibrosis, causing a delayed time in diagnosis as a consequence of the lack of HCC screening in these patients. The precise event cascade that may precipitate NASH into HCC is intricate and it entails diverse triggers, encompassing exaggerated immune response, endoplasmic reticulum (ER) and oxidative stress, organelle derangement and DNA aberrancies. All these events may be accelerated by both genetic and environmental factors. On one side, common and rare inherited variations that affect hepatic lipid remodeling, immune microenvironment and cell survival may boost the switching from steatohepatitis to liver cancer, on the other, diet-induced dysbiosis as well as nutritional and behavioral habits may furtherly precipitate tumor onset. Therefore, dietary and lifestyle interventions aimed to restore patients' health contribute to counteract NASH progression towards HCC. Even more, the combination of therapeutic strategies with dietary advice may maximize benefits, with the pursuit to improve liver function and prolong survival.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Silvia Fargion
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|