1
|
Li Y, Zhang H, Yang F, Zhu D, Chen S, Wang Z, Wei Z, Yang Z, Jia J, Zhang Y, Wang D, Ma M, Kang X. Mechanisms and therapeutic potential of disulphidptosis in cancer. Cell Prolif 2024:e13752. [PMID: 39354653 DOI: 10.1111/cpr.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction-oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Haijun Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
- The Second People's Hospital of Gansu Province, Lanzhou, PR China
| | - Fengguang Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Shijie Chen
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Ziyan Wei
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhili Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Jingwen Jia
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Yizhi Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Dongxin Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Mingdong Ma
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| |
Collapse
|
2
|
Wang X, Liu R, Zhou L, Liu T, Wu H, Chen T, Liu L, Zhang X, Yang Y, Guo Y, Wang Y, Fu S, He G, Zheng C, Deng X. Filamentous Actin in the Nucleus in Triple-Negative Breast Cancer Stem Cells: A Key to Drug-Induced Nucleolar Stress and Stemness Inhibition? J Cancer 2024; 15:5636-5642. [PMID: 39308680 PMCID: PMC11414619 DOI: 10.7150/jca.98113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/09/2024] [Indexed: 09/25/2024] Open
Abstract
Actin, primarily a cytoplasmic cytoskeleton protein, is transported in and out of the nucleus with the help of actin-binding proteins (ABPs). Actin exists in two forms, i.e., monomeric globular (G-actin) and polymerized filamentous (F-actin). While G-actin promotes gene transcription by associating with RNA polymerases, F-actin can inhibit this effect in the nucleus. Unexpectedly, we found that lovastatin, an FDA-approved lipid-lowering drug, induces actin redistribution and its translocation into the nucleus in triple-negative breast cancer (TNBC) cancer stem cells. Lovastatin treatment also decreased levels of rRNAs and stemness markers, which are transcription products of RNA Pol I and Pol II, respectively. Bioinformatics analysis showed that actin genes were positively correlated with ABP genes involved in the translocation/polymerization and transcriptional regulation of nuclear actin in breast cancer. Similar correlations were found between actin genes and RNA Pol I genes and stemness-related genes. We propose a model to explain the roles of lovastatin in inducing nucleolar stress and inhibiting stemness in TNBC cancer stem cells. In our model, lovastatin induces translocation/accumulation of F-actin in the nucleus/nucleolus, which, in turn, induces nucleolar stress and stemness inhibition by suppressing the synthesis of rRNAs and decreasing the expression of stemness-related genes. Our model has opened up a new field of research on the roles of nuclear actin in cancer biology, offering potential therapeutic targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Runhong Liu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Linli Zhou
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Tianyi Liu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Hongyuan Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Tiechui Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Linya Liu
- College of Acupuncture-Moxibustion and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xian Zhang
- College of Acupuncture-Moxibustion and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yiyuan Yang
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Yuxuan Guo
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Yian Wang
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| |
Collapse
|
3
|
Chan ET, Kural C. Targeting endocytosis to sensitize cancer cells to programmed cell death. Biochem Soc Trans 2024; 52:1703-1713. [PMID: 39092762 PMCID: PMC11519968 DOI: 10.1042/bst20231332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Evading programmed cell death (PCD) is a hallmark of cancer that allows tumor cells to survive and proliferate unchecked. Endocytosis, the process by which cells internalize extracellular materials, has emerged as a key regulator of cell death pathways in cancer. Many tumor types exhibit dysregulated endocytic dynamics that fuel their metabolic demands, promote resistance to cytotoxic therapies, and facilitate immune evasion. This review examines the roles of endocytosis in apoptotic resistance and immune escape mechanisms utilized by cancer cells. We highlight how inhibiting endocytosis can sensitize malignant cells to therapeutic agents and restore susceptibility to PCD. Strategies to modulate endocytosis for enhanced cancer treatment are discussed, including targeting endocytic regulatory proteins, altering membrane biophysical properties, and inhibiting Rho-associated kinases. While promising, challenges remain regarding the specificity and selectivity of endocytosis-targeting agents. Nonetheless, harnessing endocytic pathways represents an attractive approach to overcome apoptotic resistance and could yield more effective therapies by rendering cancer cells vulnerable to PCD. Understanding the interplay between endocytosis and PCD regulation is crucial for developing novel anticancer strategies that selectively induce tumor cell death.
Collapse
Affiliation(s)
- Emily T. Chan
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Cömert Kural
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Physics, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
4
|
Kong L, He Q, Ma D, Shi W, Xin Q, Jiang C, Wu J. Ezetimibe inhibits the migration and invasion of triple-negative breast cancer cells by targeting TGFβ2 and EMT. FEBS Open Bio 2024; 14:831-842. [PMID: 38531630 PMCID: PMC11073500 DOI: 10.1002/2211-5463.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The important role of cholesterol in tumor metastasis has been widely studied in recent years. Ezetimibe is currently the only selective cholesterol uptake inhibitor on the market. Here, we explored the effect of ezetimibe on breast cancer metastasis by studying its impact on breast cancer cell migration, invasion, and epithelial-mesenchymal transition (EMT). Differential gene expression analysis and validation were also carried out to compare ezetimibe-treated and untreated breast cancer cells. Finally, breast cancer cells overexpressing TGFβ2 were constructed, and the effect of TGFβ2 on the migration and invasion of ezetimibe-treated breast cancer cells was examined. Our results show that ezetimibe treatment of breast cancer cells inhibited cell migration, invasion, and EMT, and it significantly suppressed the expression of TGFβ2. Overexpression of TGFβ2 reversed the inhibitory effect of ezetimibe on the migration and invasion of breast cancer cells. Taken together, our results suggest that ezetimibe might be a potential candidate for the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Lingkai Kong
- Jinan Microecological Biomedicine Shandong LaboratoryChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| | - Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| | - Weiwei Shi
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong LaboratoryChina
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong LaboratoryChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong LaboratoryChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| |
Collapse
|
5
|
Zheng C, Yao H, Lu L, Li H, Zhou L, He X, Xu X, Xia H, Ding S, Yang Y, Wang X, Wu M, Xue L, Chen S, Peng X, Cheng Z, Wang Y, He G, Fu S, Keller ET, Liu S, Jiang YZ, Deng X. Dysregulated Ribosome Biogenesis Is a Targetable Vulnerability in Triple-Negative Breast Cancer: MRPS27 as a Key Mediator of the Stemness-inhibitory Effect of Lovastatin. Int J Biol Sci 2024; 20:2130-2148. [PMID: 38617541 PMCID: PMC11008279 DOI: 10.7150/ijbs.94058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/16/2024] [Indexed: 04/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hui Yao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Lu Lu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hongqi Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lei Zhou
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xi Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hongzhuo Xia
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Xiaojun Peng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Evan T. Keller
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yi-zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
6
|
Weth FR, Hoggarth GB, Weth AF, Paterson E, White MPJ, Tan ST, Peng L, Gray C. Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br J Cancer 2024; 130:703-715. [PMID: 38012383 PMCID: PMC10912636 DOI: 10.1038/s41416-023-02502-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
High rates of failure, exorbitant costs, and the sluggish pace of new drug discovery and development have led to a growing interest in repurposing "old" drugs to treat both common and rare diseases, particularly cancer. Cancer, a complex and heterogeneous disease, often necessitates a combination of different treatment modalities to achieve optimal outcomes. The intrinsic polygenicity of cancer, intricate biological signalling networks, and feedback loops make the inhibition of a single target frequently insufficient for achieving the desired therapeutic impact. As a result, addressing these complex or "smart" malignancies demands equally sophisticated treatment strategies. Combinatory treatments that target the multifaceted oncogenic signalling network hold immense promise. Repurposed drugs offer a potential solution to this challenge, harnessing known compounds for new indications. By avoiding the prohibitive costs and long development timelines associated with novel cancer drugs, this approach holds the potential to usher in more effective, efficient, and cost-effective cancer treatments. The pursuit of combinatory therapies through drug repurposing may hold the key to achieving superior outcomes for cancer patients. However, drug repurposing faces significant commercial, technological and regulatory challenges that need to be addressed. This review explores the diverse approaches employed in drug repurposing, delves into the challenges faced by the drug repurposing community, and presents innovative solutions to overcome these obstacles. By emphasising the significance of combinatory treatments within the context of drug repurposing, we aim to unlock the full potential of this approach for enhancing cancer therapy. The positive aspects of drug repurposing in oncology are underscored here; encompassing personalized treatment, accelerated development, market opportunities for shelved drugs, cancer prevention, expanded patient reach, improved patient access, multi-partner collaborations, increased likelihood of approval, reduced costs, and enhanced combination therapy.
Collapse
Affiliation(s)
- Freya R Weth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | - Georgia B Hoggarth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | - Anya F Weth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | - Erin Paterson
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | | | - Swee T Tan
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, 5040, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
7
|
Shi H, Cui W, Qin Y, Chen L, Yu T, Lv J. A glimpse into novel acylations and their emerging role in regulating cancer metastasis. Cell Mol Life Sci 2024; 81:76. [PMID: 38315203 PMCID: PMC10844364 DOI: 10.1007/s00018-023-05104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Metastatic cancer is a major cause of cancer-related mortality; however, the complex regulation process remains to be further elucidated. A large amount of preliminary investigations focus on the role of epigenetic mechanisms in cancer metastasis. Notably, the posttranslational modifications were found to be critically involved in malignancy, thus attracting considerable attention. Beyond acetylation, novel forms of acylation have been recently identified following advances in mass spectrometry, proteomics technologies, and bioinformatics, such as propionylation, butyrylation, malonylation, succinylation, crotonylation, 2-hydroxyisobutyrylation, lactylation, among others. These novel acylations play pivotal roles in regulating different aspects of energy mechanism and mediating signal transduction by covalently modifying histone or nonhistone proteins. Furthermore, these acylations and their modifying enzymes show promise regarding the diagnosis and treatment of tumors, especially tumor metastasis. Here, we comprehensively review the identification and characterization of 11 novel acylations, and the corresponding modifying enzymes, highlighting their significance for tumor metastasis. We also focus on their potential application as clinical therapeutic targets and diagnostic predictors, discussing the current obstacles and future research prospects.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Weigang Cui
- Central Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China.
| |
Collapse
|
8
|
Che G, Wang W, Wang J, He C, Yin J, Chen Z, He C, Wang X, Yang Y, Liu J. Sulfotransferase SULT2B1 facilitates colon cancer metastasis by promoting SCD1-mediated lipid metabolism. Clin Transl Med 2024; 14:e1587. [PMID: 38372484 PMCID: PMC10875708 DOI: 10.1002/ctm2.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Metastasis is responsible for at least 90% of colon cancer (CC)-related deaths. Lipid metabolism is a critical factor in cancer metastasis, yet the underlying mechanism requires further investigation. Herein, through the utilisation of single-cell sequencing and proteomics, we identified sulfotransferase SULT2B1 as a novel metastatic tumour marker of CC, which was associated with poor prognosis. CC orthotopic model and in vitro assays showed that SULT2B1 promoted lipid metabolism and metastasis. Moreover, SULT2B1 directly interacted with SCD1 to facilitate lipid metabolism and promoted metastasis of CC cells. And the combined application of SCD1 inhibitor CAY with SULT2B1- konockout (KO) demonstrated a more robust inhibitory effect on lipid metabolism and metastasis of CC cells in comparison to sole application of SULT2B1-KO. Notably, we revealed that lovastatin can block the SULT2B1-induced promotion of lipid metabolism and distant metastasis in vivo. Further evidence showed that SMC1A transcriptionally upregulated the expression of SULT2B1. Our findings unveiled the critical role of SULT2B1 in CC metastasis and provided a new perspective for the treatment of CC patients with distant metastasis.
Collapse
Affiliation(s)
- Gang Che
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Wankun Wang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jiawei Wang
- Department of Colorectal SurgerySir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Cheng He
- Department of Thoracic SurgeryThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jie Yin
- Department of Colorectal MedicineZhejiang Cancer HospitalHangzhouZhejiangChina
| | - Zhendong Chen
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Chao He
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Xujing Wang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Yan Yang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jian Liu
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
9
|
Dong Y, Zhang T, Shao S, Li X, Jiang P, Guo Y, Gu D. Knockdown of ABHD11‑AS1 prevents the procession of TNBC by upregulating miR‑199a‑5p. Biomed Rep 2023; 19:69. [PMID: 37719680 PMCID: PMC10502577 DOI: 10.3892/br.2023.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/03/2023] [Indexed: 09/19/2023] Open
Abstract
Breast cancer (BC) has become a threat to women's health. In addition, patients with triple-negative BC (TNBC) have the worst prognosis among all patients with BC. Furthermore, long non-coding RNA ABHD11-AS1 is aberrantly highly expressed in TNBC, suggesting that RNA ABHD11-AS1 may serve as an important role in the progression of TNBC. However, the detailed function of ABHD11-AS1 in TNBC remains largely unknown. The levels of ABHD11-AS1 in MDA-MB-231 cells were assessed by reverse transcription-quantitative PCR. To investigate the effect of ABHD11-AS1 on the progression of TNBC, a xenograft animal model was established. Knockdown of ABHD11-AS1 inhibited the epithelial-mesenchymal transition and migration of TNBC cells. In addition, ABHD11-AS1 promoted the viability and migration of TNBC cells by upregulating microRNA (miR)-199a-5p. Furthermore, knockdown of ABHD11-AS1 suppressed TNBC tumor growth in vivo by upregulating miR-199a-5p. In conclusion, knockdown of ABHD11-AS1 suppressed the progression of TNBC via upregulation of miR-199a-5p. The data of the present study may provide novel directions and a theoretical basis for TNBC treatment.
Collapse
Affiliation(s)
- Ying Dong
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Ting Zhang
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Shengwen Shao
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Xining Li
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Peiyu Jiang
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Yue Guo
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Donghua Gu
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|
10
|
Szymanowska A, Rodriguez-Aguayo C, Lopez-Berestein G, Amero P. Non-Coding RNAs: Foes or Friends for Targeting Tumor Microenvironment. Noncoding RNA 2023; 9:52. [PMID: 37736898 PMCID: PMC10514839 DOI: 10.3390/ncrna9050052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a group of molecules critical for cell development and growth regulation. They are key regulators of important cellular pathways in the tumor microenvironment. To analyze ncRNAs in the tumor microenvironment, the use of RNA sequencing technology has revolutionized the field. The advancement of this technique has broadened our understanding of the molecular biology of cancer, presenting abundant possibilities for the exploration of novel biomarkers for cancer treatment. In this review, we will summarize recent achievements in understanding the complex role of ncRNA in the tumor microenvironment, we will report the latest studies on the tumor microenvironment using RNA sequencing, and we will discuss the potential use of ncRNAs as therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
| |
Collapse
|
11
|
Jang S, Choi HG, Kwon MJ, Kim JH, Kim JH, Kim SY. Association between the Use of Statins and Brain Tumors. Biomedicines 2023; 11:2247. [PMID: 37626743 PMCID: PMC10452399 DOI: 10.3390/biomedicines11082247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to investigate the effects of statin use on the incidence of brain tumors. The Korean National Health Insurance Service-National Sample Cohort from 2005 to 2019 was used. The 1893 patients who were diagnosed with brain tumors were matched with 7572 control patients for demographic variables. The history of dyslipidemia was collected, and their history of prescription of statins before diagnosis of brain tumor was examined. The participants without dyslipidemia were set as a reference population. Then, the odds for brain tumors were analyzed in dyslipidemia patients without statin use, dyslipidemia patients who were prescribed statins for less than 365 days, and dyslipidemia patients who were prescribed statins for 365 days or more. Propensity score overlap weighted multivariable logistic regression analysis was used and adjusted for demographics and comorbidities. Secondary analyses were conducted according to types of statins, malignancy of brain tumors, and histories of demographics or comorbidities. A total of 11.78% of brain tumor patients and 10.95% of control participants had histories of statin use for 365 days or more. Dyslipidemia patients with 365 days or more duration of statin use demonstrated 1.22 times higher odds for brain tumors than normal participants (95% confidence intervals [CI] = 1.06-1.14, p = 0.007). Dyslipidemia patients with less than 365 days of statin use had higher odds of brain tumors than other groups (odds ratio = 1.60, 95% CI = 1.36-1.87, p < 0.001). The higher odds for brain tumors in short-term statin users (<365 days) than in long-term statin users (≥365 days) were consistent in secondary analyses according to types of statins, malignancy of brain tumors, and histories of demographics or comorbidities. Long-term statin use in dyslipidemia patients was related to a lower risk of brain tumors than short-term statin use in patients with dyslipidemia.
Collapse
Affiliation(s)
- Sarang Jang
- Department of Public Health, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Hyo Gun Choi
- Mdanalytics, Seoul 06349, Republic of Korea;
- Suseoseoulent Clinic, Seoul 06349, Republic of Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Joo-Hee Kim
- Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| |
Collapse
|
12
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
13
|
Biomechanics of cancer stem cells. Essays Biochem 2022; 66:359-369. [PMID: 35942932 DOI: 10.1042/ebc20220014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/27/2022]
Abstract
Cancer stem cells (CSCs) have been believed to be one driving force for tumor progression and drug resistance. Despite the significance of biochemical signaling in malignancy, highly malignant tumor cells or CSCs exhibit lower cellular stiffness than weakly malignant cells or non-CSCs, which are softer than their healthy counterparts, suggesting the inverse correlation between cell stiffness and malignancy. Recent years have witnessed the rapid accumulation of evidence illustrating the reciprocity between cell cytoskeleton/mechanics and CSC functions and the potential of cellular stiffness for specific targeting of CSCs. However, a systematic understanding of tumor cell mechanics and their role in CSCs and tumor progression is still lacking. The present review summarizes the recent progress in the alterations of tumor cell cytoskeleton and stiffness at different stages of tumor progression and recapitulates the relationship between cellular stiffness and CSC functions. The altered cell mechanics may mediate the mechanoadaptive responses that possibly empower CSCs to survive and thrive during metastasis. Furthermore, we highlight the possible impact of tumor cell mechanics on CSC malignancy, which may potentiate low cell stiffness as a mechanical marker for CSC targeting.
Collapse
|
14
|
Cholesterol Synthesis Is Important for Breast Cancer Cell Tumor Sphere Formation and Invasion. Biomedicines 2022; 10:biomedicines10081908. [PMID: 36009455 PMCID: PMC9405659 DOI: 10.3390/biomedicines10081908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer has a high risk of recurrence and distant metastasis after remission. Controlling distant metastasis is important for reducing breast cancer mortality, but accomplishing this goal remains elusive. In this study, we investigated the molecular pathways underlying metastasis using cells that mimic the breast cancer distant metastasis process. HCC1143 breast cancer cells were cultured under two-dimensional (2D)-adherent, tumor sphere (TS), and reattached (ReA) culture conditions to mimic primary tumors, circulating tumor cells, and metastasized tumors, respectively. ReA cells demonstrated increased TS formation and enhanced invasion capacity compared to the original 2D-cultured parental cells. In addition, ReA cells had a higher frequency of ESA+CD44+CD24− population, which represents a stem-cell-like cell population. RNA sequencing identified the cholesterol synthesis pathway as one of the most significantly increased pathways in TS and ReA cells compared to parental cells, which was verified by measuring intracellular cholesterol levels. Furthermore, the pharmacological inhibition of the cholesterol synthesis pathway decreased the ability of cancer cells to form TSs and invade. Our results suggest that the cholesterol synthesis pathway plays an important role in the distant metastasis of breast cancer cells by augmenting TS formation and invasion capacity.
Collapse
|
15
|
Liu S, Yang P, Wang M, Zhang S, Wang J, Pan T, Zhou P. Inhibitory effect of lovastatin on human lung cancer cell proliferation by regulating the ERK1/2 and COX-2 pathways. Transl Cancer Res 2022; 11:813-822. [PMID: 35571660 PMCID: PMC9091021 DOI: 10.21037/tcr-22-346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022]
Abstract
Background Lovastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, effectively inhibiting cholesterol synthesis. Previous research findings showed that lovastatin markedly suppressed tumor cell proliferation and metastasis and induced apoptosis. The present study aimed to determine the underlying mechanism of the suppressive effect of lovastatin on the growth of human lung cancer cells. Methods The A549 cell line was treated with different concentrations of lovastatin. Subsequently, cell proliferation and colony formation were analyzed, along with the expression of apoptosis-related proteins (ERK1/2, c-JUN, COX-2, BCL-2, and BAX) by western blotting and immunofluorescence staining. Experimental data were analyzed with SPSS 25.0 and expressed as the mean ± SEM. One-way ANOVA or two-way independent samples t-test were used. Results The results confirmed that lovastatin suppressed cell viability and reduced the numbers of cell colonies, and a concentration-dependent response was observed with increasing lovastatin concentrations (P<0.05). Accordingly, these suppressive effects were related to decreased protein expression levels of p-ERK1/2/ERK1/2, p-c-JUN/c-JUN, COX-2, and BCL-2 and increased BAX protein expression (P<0.05). Furthermore, we conducted an experimental intervention with low-dose LPS+ATP to stimulate A549 cell growth, and then examined the proliferation and apoptosis of A549 cells after LPS+ATP+50 µM lovastatin intervention. The principal finding of this research was that lovastatin still suppressed A549 cell growth after LPS+ATP stimulation via modulation of ERK1/2, c-JUN, COX-2, BCL-2, and BAX protein levels (P<0.05). Conclusions Collectively, the findings presented in this study confirmed that lovastatin can inhibit A549 cell proliferation by regulating the ERK1/2 and COX-2 pathways.
Collapse
Affiliation(s)
- Sha Liu
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ping Yang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Mingkung Wang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shuang Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jie Wang
- Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tao Pan
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ping Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
16
|
Hu ZY, Zheng C, Yang J, Ding S, Tian C, Xie N, Xue L, Wu M, Fu S, Rao Z, Price MA, McCarthy JB, Ouyang Q, Lin J, Deng X. Co-Expression and Combined Prognostic Value of CSPG4 and PDL1 in TP53-Aberrant Triple-Negative Breast Cancer. Front Oncol 2022; 12:804466. [PMID: 35280756 PMCID: PMC8907582 DOI: 10.3389/fonc.2022.804466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Background In triple-negative breast cancer (TNBC), PDL1/PD1-directed immunotherapy is effective in less than 20% of patients. In our preliminary study, we have found CSPG4 to be highly expressed together with PDL1 in TNBCs, particularly those harboring TP53 aberrations. However, the clinical implications of co-expressed CSPG4 and PDL1 in TNBCs remain elusive. Methods A total of 85 advanced TNBC patients treated in the Hunan Cancer Hospital between January 2017 and August 2019 were recruited. The expressions of CSPG4 and PDL1 in TNBC tissues were investigated using immunohistochemistry (IHC). The RNA-seq dataset from the TCGA-BRCA project was further used to analyze the mRNA expression of CSPG4 and PDL1 in TP53-aberrant TNBCs. Cox proportional hazards model and Kaplan-Meier curves with Logrank test was used to analyze the effects of CSPG4 and PDL1 on survival. TNBC cell lines were further used to investigate the molecular mechanism that were involved. Results TP53 aberrations occurred in more than 50% of metastatic TNBCs and were related to higher tumor mutation burden (TMB). In TCGA-BRCA RNA-seq dataset analysis, both CSPG4 and PDL1 levels were high in TNBCs, especially in TP53-aberrant TNBCs. IHC assay showed nearly 60% of advanced TNBCs to be CSPG4-positive and about 25% to be both CSPG4-positive and PDL1-positive. The levels of CSPG4 and PDL1 were high in TNBC cell lines as revealed by flow cytometry and immunoblotting compared with non-TNBC cells. Univariate Cox regression analysis indicated that CSPG4 positivity was a significant risk factor for progression-free survival in metastatic TNBCs, with a hazard ratio (HR) of 2.26 (P = 0.05). KM curves with Logrank test also identified high level of CSPG4 as a significant risk factor for overall survival in advanced breast cancers in TCGA-BRCA samples (P = 0.02). The immunoblotting assays showed that EMT-related pathways were involved in CSPG4-mediated invasion. Conclusions CSPG4 expression level is associated with PDL1 positivity in TP53-aberrant TNBC cells. Patients with CSPG4 expression have poor treatment response and poor overall survival. Co-expressed CSPG4 and PDL1 may have an important prognostic value and provide new therapeutic targets in TNBC patients. CSPG4 might mediate tumor invasion and PDL1 overexpression through EMT-related pathway.
Collapse
Affiliation(s)
- Zhe-Yu Hu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, China.,Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Jianbo Yang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China.,Department of Laboratory Medicine and Pathology and Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN, United States.,The Cancer Center, Union Hospital, Fujian Medical Center, Fuzhou, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Can Tian
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, China.,Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Ning Xie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, China.,Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Zhouzhou Rao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Matthew A Price
- Department of Laboratory Medicine and Pathology and Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology and Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Quchang Ouyang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, China.,Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Jizhen Lin
- The Cancer Center, Union Hospital, Fujian Medical Center, Fuzhou, China.,Department of Otolaryngology, Cancer Center, University of Minnesota Medical School, Minnesota, MN, United States
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| |
Collapse
|
17
|
Chen S, Li Y, Wu M, Xue L, Zhu J, Wu M, Zhang Q, He G, Li G, Fu S, Zheng C, Deng X. Nucleolar and Coiled-Body Phosphoprotein 1 Is Associated With Stemness and Represents a Potential Therapeutic Target in Triple-Negative Breast Cancer. Front Oncol 2022; 12:731528. [PMID: 35174077 PMCID: PMC8841672 DOI: 10.3389/fonc.2022.731528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks approved specific targeted therapies. One of the major reasons why TNBC is difficult to treat is the high proportion of cancer stem cells within the tumor tissue. Nucleolus is the location of ribosome biogenesis which is frequently overactivated in cancer cells and overactivation of ribosome biogenesis frequently drives the malignant transformation of cancer. Nucleolar and coiled-body phosphoprotein 1 (NOLC1) is a nucleolar protein responsible for nucleolus organization and rRNA synthesis and plays an important role in ribosome biogenesis. However, the correlation of NOLC1 expression with patient prognosis and its value as a therapeutic target have not been evaluated in TNBC. In the current study, based on bioinformatics analysis of the online databases, we found that the expression of NOLC1 was higher in breast cancer tissues than normal tissues, and NOLC1 was expressed at a higher level in TNBC than other subtypes of breast cancer. GSEA analysis revealed that stemness-related pathways were significantly enriched in breast cancer with high NOLC1 gene expression. Further analyses using gene expression profiling interactive analysis 2 (GEPIA2), tumor immune estimation resource (TIMER) and search tool for retrieval of interacting genes/proteins (STRING) demonstrated that NOLC1 was significantly associated with stemness in both all breast cancer and basal-like breast cancer/TNBC patients at both gene and protein levels. Knockdown of NOLC1 by siRNA decreased the protein level of the key stemness regulators MYC and ALDH and inhibited the sphere-forming capacity in TNBC cell line MDA-MB-231. Univariate and multivariate Cox regression analyses demonstrated that NOLC1 was an independent risk factor for overall survival in breast cancer. PrognoScan and Kaplan-Meier plotter analyses revealed that high expression of NOLC1 was associated with poor prognosis in both all breast cancer and TNBC patients. Further immunohistochemical analysis of breast cancer patient samples revealed that TNBC cells had a lower level of NOLC1 in the nucleus compared with non-TNBC cells. These findings suggest that NOLC1 is closely associated with the stemness properties of TNBC and represents a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Ying Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Jianyu Zhu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Department of Pathophysiology, Jishou University School of Medicine, Jishou, China
| | - Mi Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guifei Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Department of Preventive Medicine, Hunan Normal University School of Medicine, Changsha, China
- *Correspondence: Chanjuan Zheng, ; Xiyun Deng,
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- *Correspondence: Chanjuan Zheng, ; Xiyun Deng,
| |
Collapse
|
18
|
Yi Y, Qiu Z, Yao Z, Lin A, Qin Y, Sha R, Wei T, Wang Y, Cheng Q, Zhang J, Luo P, Shen W. CAMSAP1 Mutation Correlates With Improved Prognosis in Small Cell Lung Cancer Patients Treated With Platinum-Based Chemotherapy. Front Cell Dev Biol 2022; 9:770811. [PMID: 35087829 PMCID: PMC8787262 DOI: 10.3389/fcell.2021.770811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Platinum-based chemotherapy is the first-line treatment for small cell lung cancer (SCLC). However, due to patients developing a resistance to the drug, most experience relapse and their cancer can become untreatable. A large number of recent studies have found that platinum drug sensitivity of various cancers is affected by specific gene mutations, and so with this study, we attempted to find an effective genetic biomarker in SCLC patients that indicates their sensitivity to platinum-based drugs. To do this, we first analyzed whole exome sequencing (WES) and clinical data from two cohorts to find gene mutations related to the prognosis and to the platinum drug sensitivity of SCLC patients. The cohorts used were the Zhujiang cohort (N = 138) and the cohort reported by George et al. (N = 101). We then carried out gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) to investigate possible molecular mechanisms through which these gene mutations affect patient prognosis and platinum drug sensitivity. We found that for SCLC patients, CAMSAP1 mutation can activate anti-tumor immunity, mediate tumor cell apoptosis, inhibit epithelial-mesenchymal transition (EMT), improve prognosis, and improve platinum drug sensitivity, suggesting that CAMSAP1 mutation may be a potential biomarker indicating platinum drug sensitivity and patient prognosis in SCLC.
Collapse
Affiliation(s)
- Yonglin Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengang Qiu
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Guangzhou, China
| | - Zifu Yao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yimin Qin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruizhan Sha
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanru Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weitao Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Amadasu E, Kang R, Usmani A, Borlongan CV. Effects of Lovastatin on Brain Cancer Cells. Cell Transplant 2022; 31:9636897221102903. [PMID: 35670207 PMCID: PMC9178988 DOI: 10.1177/09636897221102903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although brain tumors occur less frequently than other forms of cancer, they have one of the bleakest prognoses with low survival rates. The conventional treatment for brain tumors includes surgery, radiotherapy, and chemotherapy. However, resistance to treatment remains a problem with recurrence shortly following. The resistance to treatment may be caused by cancer stem cells (CSCs), a subset of brain tumor cells with the affinity for self-renewal and differentiation into multiple cell lineages. An emerging approach to targeting CSCs in brain tumors is through repurposing the lipid-lowering medication, lovastatin. Lovastatin is a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor that impacts the mevalonate pathway. The inhibition of intermediates in the mevalonate pathway affects signaling cascades and oncogenes associated with brain tumor stem cells (BTSC). In this review, we show the possible mechanisms where lovastatin can target BTSC for different varieties of malignant brain tumors.
Collapse
Affiliation(s)
- Efosa Amadasu
- Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Richard Kang
- Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ahsan Usmani
- Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
20
|
Li Y, Chen S, Zhu J, Zheng C, Wu M, Xue L, He G, Fu S, Deng X. Lovastatin enhances chemosensitivity of paclitaxel-resistant prostate cancer cells through inhibition of CYP2C8. Biochem Biophys Res Commun 2021; 589:85-91. [PMID: 34896780 DOI: 10.1016/j.bbrc.2021.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022]
Abstract
Chemotherapy is the mainstay of treatment for prostate cancer, with paclitaxel being commonly used for hormone-resistant prostate cancer. However, drug resistance often develops and leads to treatment failure in a variety of prostate cancer patients. Therefore, it is necessary to enhance the sensitivity of prostate cancer to chemotherapy. Lovastatin (LV) is a natural compound extracted from Monascus-fermented foods and is an inhibitor of HMG-CoA reductase (HMGCR), which has been approved by the FDA for hyperlipidemia treatment. We have previously found that LV could inhibit the proliferation of refractory cancer cells. Up to now, the effect of LV on chemosensitization and the mechanisms involved have not been evaluated in drug-resistant prostate cancer. In this study, we used prostate cancer cell line PC3 and its paclitaxel-resistant counterpart PC3-TxR as the cell model. Alamar Blue cell viability assay showed that LV and paclitaxel each conferred concentration-dependent inhibition of PC3-TxR cells. When paclitaxel was combined with LV, the proliferation of PC3-TxR cells was synergistically inhibited, as demonstrated by combination index <1. Moreover, colony formation decreased while apoptosis increased in paclitaxel plus LV group compared with paclitaxel alone group. Quantitative RT-PCR showed that the combination of paclitaxel and LV could significantly reduce the expression of CYP2C8, an important drug-metabolizing enzyme. Bioinformatics analysis from the TCGA database showed that CYP2C8 expression was negatively correlated with progression-free survival (PFS) in prostate cancer patients. Our results suggest that LV might increase the sensitivity of resistant prostate cancer cells to paclitaxel through inhibition of CYP2C8 and could be utilized as a chemosensitizer for paclitaxel-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Jianyu Zhu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Jishou University School of Medicine, Jishou, 416000, China
| | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Muyao Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Lian Xue
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China.
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China.
| |
Collapse
|
21
|
Wang C, Xu K, Wang R, Han X, Tang J, Guan X. Heterogeneity of BCSCs contributes to the metastatic organotropism of breast cancer. J Exp Clin Cancer Res 2021; 40:370. [PMID: 34801088 PMCID: PMC8605572 DOI: 10.1186/s13046-021-02164-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most-common female malignancies with a high risk of relapse and distant metastasis. The distant metastasis of breast cancer exhibits organotropism, including brain, lung, liver and bone. Breast cancer stem cells (BCSCs) are a small population of breast cancer cells with tumor-initiating ability, which participate in regulating distant metastasis in breast cancer. We investigated the heterogeneity of BCSCs according to biomarker status, epithelial or mesenchymal status and other factors. Based on the classical “seed and soil” theory, we explored the effect of BCSCs on the metastatic organotropism in breast cancer at both “seed” and “soil” levels, with BCSCs as the “seed” and BCSCs-related microenvironment as the “soil”. We also summarized current clinical trials, which assessed the safety and efficacy of BCSCs-related therapies. Understanding the role of BCSCs heterogeneity for regulating metastatic organotropism in breast cancer would provide a new insight for the diagnosis and treatment of advanced metastatic breast cancer.
Collapse
Affiliation(s)
- Cenzhu Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|