1
|
Yu Z, Song Y, Wang J, Wu Y, Wang H, Liu S, Zhu Y. Comprehensive analysis of PDE2A: a novel biomarker for prognostic value and immunotherapeutic potential in human cancers. Braz J Med Biol Res 2024; 57:e14220. [PMID: 39699377 DOI: 10.1590/1414-431x2024e14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024] Open
Abstract
Phosphodiesterase 2A (PDE2A) plays a pivotal role in modulating cyclic nucleotide metabolism. Recent studies have shown that PDE2A is associated with some tumors, but its expression profiles, prognostic significance, and immunological roles in diverse cancer types remain unclear. Utilizing advanced bioinformatics tools, we performed a comprehensive analysis of PDE2A gene expression in multiple human cancers. Our study revealed that PDE2A expression was significantly reduced in the majority of cancer types and clinicopathological stages (I to IV) compared to normal tissues. Additionally, PDE2A expression was closely related to the prognosis of cancers such as stomach adenocarcinoma (STAD), ovarian serous cystadenocarcinoma (OV), and liver hepatocellular carcinoma (LIHC). Cox regression analyses indicated that PDE2A can act as an independent prognostic factor for these cancers. The level of PDE2A DNA methylation was significantly decreased in most cancers. Genetic alterations in PDE2A predominantly manifest in the form of amplifications. Moreover, infiltrating cells and immune checkpoint genes, including PDCD1, exhibited notable correlations with PDE2A expression. Significant associations were observed between PDE2A expression and tumor mutation burden as well as microsatellite instability. Single cell sequencing revealed PDE2A's crucial role in regulating differentiation and angiogenesis of cancer cells. Functional enrichment analysis emphasized the important role of PDE2A in synaptic transmission and tumor development. Aberrant expression of PDE2A influenced the sensitivity of various antitumor and chemotherapy drugs. This research provided a comprehensive analysis of PDE2A in human cancers, highlighting its potential as both a prognostic marker and an immunotherapy target for future research.
Collapse
Affiliation(s)
- Zhen Yu
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
| | - Yawen Song
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
| | - Jin Wang
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yujing Wu
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
| | - Hefang Wang
- College of Chemistry, Nankai University, Tianjin, China
| | - Shuye Liu
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
| | - Yu Zhu
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
| |
Collapse
|
2
|
Li J, Gao Z. MARCHF1 promotes breast cancer through accelerating REST ubiquitylation and following TFAM transcription. Cell Biol Int 2024. [PMID: 39428668 DOI: 10.1002/cbin.12255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Breast cancer has become the leading cause of death in women. Membrane associated ring-CH-type finger 1 (MARCHF1) is associated with the development of various types of cancer, but the exact role of MARCHF1 in breast cancer remains unclear. In our study, the higher MARCHF1 expression was observed in tumor samples of patients with breast cancer and then the role of MARCHF1 in breast cancer was further evaluated. Overexpression of MARCHF1 contributed to proliferation of cancer cells and inhibition of oxidative stress. Knockdown of MARCHF1 reduced breast cancer cell proliferation, increased mitochondrial dysfunction induced by oxidative stress, eventually aggravating cell death. In vivo, MARCHF1 promoted the tumor growth and oppositely, MARCHF1 silencing suppressed the tumor development. Moreover, MARCHF1 interacted with repressor Element-1 silencing transcription factor (REST) and facilitated its ubiquitylation and degradation. Subsequently, REST negatively regulated the transcription of mitochondrial transcription factor A (TFAM). The subcutaneous tumor formation assay in nude mice also supported these conclusions. In details, knockdown of MARCHF1 upregulated the protein expression of REST and downregulated the mRNA level of TFAM. On the contrary, MARCHF1 overexpression exhibited opposite effects. Thus, MARCHF1 is conducive to the progression of breast cancer via promoting the ubiquitylation and degradation of RSET and then the transcription of TFAM. Downregulating MARCHF1 could provide a novel direction for treating breast cancer.
Collapse
Affiliation(s)
- Jutao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
- Organ Transplantation Center, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Thyroid Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Zhenming Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
- Organ Transplantation Center, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Robert A, Crottès D, Bourgeais J, Gueguen N, Chevrollier A, Dumas JF, Servais S, Domingo I, Chadet S, Sobilo J, Hérault O, Lecomte T, Vandier C, Raoul W, Guéguinou M. MICU2 up-regulation enhances tumor aggressiveness and metabolic reprogramming during colorectal cancer development. PLoS Biol 2024; 22:e3002854. [PMID: 39466877 PMCID: PMC11542858 DOI: 10.1371/journal.pbio.3002854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/07/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
The mitochondrial Ca2+ uniporter (MCU) plays crucial role in intramitochondrial Ca2+ uptake, allowing Ca2+-dependent activation of oxidative metabolism. In recent decades, the role of MCU pore-forming proteins has been highlighted in cancer. However, the contribution of MCU-associated regulatory proteins mitochondrial calcium uptake 1 and 2 (MICU1 and MICU2) to pathophysiological conditions has been poorly investigated. Here, we describe the role of MICU2 in cell proliferation and invasion using in vitro and in vivo models of human colorectal cancer (CRC). Transcriptomic analysis demonstrated an increase in MICU2 expression and the MICU2/MICU1 ratio in advanced CRC and CRC-derived metastases. We report that expression of MICU2 is necessary for mitochondrial Ca2+ uptake and quality of the mitochondrial network. Our data reveal the interplay between MICU2 and MICU1 in the metabolic flexibility between anaerobic glycolysis and OXPHOS. Overall, our study sheds light on the potential role of the MICUs in diseases associated with metabolic reprogramming.
Collapse
Affiliation(s)
- Alison Robert
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - David Crottès
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Jérôme Bourgeais
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Naig Gueguen
- CNRS UMR 6015, Inserm U1083 MITOVASC, MitoLab team, Angers University, Angers, France
| | - Arnaud Chevrollier
- CNRS UMR 6015, Inserm U1083 MITOVASC, MitoLab team, Angers University, Angers, France
| | - Jean-François Dumas
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Stéphane Servais
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Isabelle Domingo
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Stéphanie Chadet
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | | | - Olivier Hérault
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Thierry Lecomte
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Christophe Vandier
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - William Raoul
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Maxime Guéguinou
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| |
Collapse
|
4
|
Song Y, Wang W, Wang B, Shi Q. The Protective Mechanism of TFAM on Mitochondrial DNA and its Role in Neurodegenerative Diseases. Mol Neurobiol 2024; 61:4381-4390. [PMID: 38087167 DOI: 10.1007/s12035-023-03841-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 07/11/2024]
Abstract
Mitochondrial transcription factor A (TFAM) is a mitochondrial protein encoded by nuclear genes and transported from the cytoplasm to the mitochondria. TFAM is essential for the maintenance, expression, and delivery of mitochondrial DNA (mtDNA) and can regulate the replication and transcription of mtDNA. TFAM is associated with the formation of mtDNA nucleomimetic structures, mtDNA repair, and mtDNA stability. However, the mechanism by which TFAM protects mtDNA is still being studied. This review provides a summary of the protective mechanism of TFAM on mtDNA including the discrete regulatory effects of TFAM acetylation and phosphorylation on mtDNA, the regulation of Ca2+ levels by TFAM to activate transcription in mitochondria, and the increased binding of TFAM to mtDNA damage hot spots. This review also discusses the association between TFAM and some neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.
- Hangzhou King's Bio-Pharmaceutical Technology Co., Ltd., Hangzhou, 310007, Zhejiang, China.
| | - Wenjun Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Beibei Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Qiwen Shi
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| |
Collapse
|
5
|
Lei T, Rui Y, Xiaoshuang Z, Jinglan Z, Jihong Z. Mitochondria transcription and cancer. Cell Death Discov 2024; 10:168. [PMID: 38589371 PMCID: PMC11001877 DOI: 10.1038/s41420-024-01926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Mitochondria are major organelles involved in several processes related to energy supply, metabolism, and cell proliferation. The mitochondria function is transcriptionally regulated by mitochondria DNA (mtDNA), which encodes the key proteins in the electron transport chain that is indispensable for oxidative phosphorylation (OXPHOS). Mitochondrial transcriptional abnormalities are closely related to a variety of human diseases, such as cardiovascular diseases, and diabetes. The mitochondria transcription is regulated by the mtDNA, mitochondrial RNA polymerase (POLRMT), two transcription factors (TFAM and TF2BM), one transcription elongation (TEFM), and one known transcription termination factor (mTERFs). Dysregulation of these factors directly leads to altered expression of mtDNA in tumor cells, resulting in cellular metabolic reprogramming and mitochondrial dysfunction. This dysregulation plays a role in modulating tumor progression. Therefore, understanding the role of mitochondrial transcription in cancer can have implications for cancer diagnosis, prognosis, and treatment. Targeting mitochondrial transcription or related pathways may provide potential therapeutic strategies for cancer treatment. Additionally, assessing mitochondrial transcriptional profiles or biomarkers in cancer cells or patient samples may offer diagnostic or prognostic information.
Collapse
Affiliation(s)
- Tang Lei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Rui
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhou Xiaoshuang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jinglan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jihong
- Medical School, Kunming University of Science and Technology, Kunming, China.
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China.
| |
Collapse
|
6
|
Wang Y, Wan X, Du S. Integrated analysis revealing a novel stemness-metabolism-related gene signature for predicting prognosis and immunotherapy response in hepatocellular carcinoma. Front Immunol 2023; 14:1100100. [PMID: 37622118 PMCID: PMC10445950 DOI: 10.3389/fimmu.2023.1100100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant lethal tumor and both cancer stem cells (CSCs) and metabolism reprogramming have been proven to play indispensable roles in HCC. This study aimed to reveal the connection between metabolism reprogramming and the stemness characteristics of HCC, established a new gene signature related to stemness and metabolism and utilized it to assess HCC prognosis and immunotherapy response. The clinical information and gene expression profiles (GEPs) of 478 HCC patients came from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA). The one-class logistic regression (OCLR) algorithm was employed to calculate the messenger ribonucleic acid expression-based stemness index (mRNAsi), a new stemness index quantifying stemness features. Differentially expressed analyses were done between high- and low-mRNAsi groups and 74 differentially expressed metabolism-related genes (DEMRGs) were identified with the help of metabolism-related gene sets from Molecular Signatures Database (MSigDB). After integrated analysis, a risk score model based on the three most efficient prognostic DEMRGs, including Recombinant Phosphofructokinase Platelet (PFKP), phosphodiesterase 2A (PDE2A) and UDP-glucuronosyltransferase 1A5 (UGT1A5) was constructed and HCC patients were divided into high-risk and low-risk groups. Significant differences were found in pathway enrichment, immune cell infiltration patterns, and gene alterations between the two groups. High-risk group patients tended to have worse clinical outcomes and were more likely to respond to immunotherapy. A stemness-metabolism-related model composed of gender, age, the risk score model and tumor-node-metastasis (TNM) staging was generated and showed great discrimination and strong ability in predicting HCC prognosis and immunotherapy response.
Collapse
Affiliation(s)
| | | | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
7
|
Lin Y, Yang B, Huang Y, Zhang Y, Jiang Y, Ma L, Shen YQ. Mitochondrial DNA-targeted therapy: A novel approach to combat cancer. CELL INSIGHT 2023; 2:100113. [PMID: 37554301 PMCID: PMC10404627 DOI: 10.1016/j.cellin.2023.100113] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that are essential for mitochondrial function and cellular homeostasis, and participates in important processes of cellular bioenergetics and metabolism. Alterations in mtDNA are associated with various diseases, especially cancers, and are considered as biomarkers for some types of tumors. Moreover, mtDNA alterations have been found to affect the proliferation, progression and metastasis of cancer cells, as well as their interactions with the immune system and the tumor microenvironment (TME). The important role of mtDNA in cancer development makes it a significant target for cancer treatment. In recent years, many novel therapeutic methods targeting mtDNA have emerged. In this study, we first discussed how cancerogenesis is triggered by mtDNA mutations, including alterations in gene copy number, aberrant gene expression and epigenetic modifications. Then, we described in detail the mechanisms underlying the interactions between mtDNA and the extramitochondrial environment, which are crucial for understanding the efficacy and safety of mtDNA-targeted therapy. Next, we provided a comprehensive overview of the recent progress in cancer therapy strategies that target mtDNA. We classified them into two categories based on their mechanisms of action: indirect and direct targeting strategies. Indirect targeting strategies aimed to induce mtDNA damage and dysfunction by modulating pathways that are involved in mtDNA stability and integrity, while direct targeting strategies utilized molecules that can selectively bind to or cleave mtDNA to achieve the therapeutic efficacy. This study highlights the importance of mtDNA-targeted therapy in cancer treatment, and will provide insights for future research and development of targeted drugs and therapeutic strategies.
Collapse
Affiliation(s)
- Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Longyun Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
8
|
Mongelli A, Mengozzi A, Geiger M, Gorica E, Mohammed SA, Paneni F, Ruschitzka F, Costantino S. Mitochondrial epigenetics in aging and cardiovascular diseases. Front Cardiovasc Med 2023; 10:1204483. [PMID: 37522089 PMCID: PMC10382027 DOI: 10.3389/fcvm.2023.1204483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Mitochondria are cellular organelles which generate adenosine triphosphate (ATP) molecules for the maintenance of cellular energy through the oxidative phosphorylation. They also regulate a variety of cellular processes including apoptosis and metabolism. Of interest, the inner part of mitochondria-the mitochondrial matrix-contains a circular molecule of DNA (mtDNA) characterised by its own transcriptional machinery. As with genomic DNA, mtDNA may also undergo nucleotide mutations that have been shown to be responsible for mitochondrial dysfunction. During physiological aging, the mitochondrial membrane potential declines and associates with enhanced mitophagy to avoid the accumulation of damaged organelles. Moreover, if the dysfunctional mitochondria are not properly cleared, this could lead to cellular dysfunction and subsequent development of several comorbidities such as cardiovascular diseases (CVDs), diabetes, respiratory and cardiovascular diseases as well as inflammatory disorders and psychiatric diseases. As reported for genomic DNA, mtDNA is also amenable to chemical modifications, namely DNA methylation. Changes in mtDNA methylation have shown to be associated with altered transcriptional programs and mitochondrial dysfunction during aging. In addition, other epigenetic signals have been observed in mitochondria, in particular the interaction between mtDNA methylation and non-coding RNAs. Mitoepigenetic modifications are also involved in the pathogenesis of CVDs where oxygen chain disruption, mitochondrial fission, and ROS formation alter cardiac energy metabolism leading to hypertrophy, hypertension, heart failure and ischemia/reperfusion injury. In the present review, we summarize current evidence on the growing importance of epigenetic changes as modulator of mitochondrial function in aging. A better understanding of the mitochondrial epigenetic landscape may pave the way for personalized therapies to prevent age-related diseases.
Collapse
Affiliation(s)
- Alessia Mongelli
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Alessandro Mengozzi
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Martin Geiger
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Fernandez Garcia E, Paudel U, Noji MC, Bowman CE, Rustgi AK, Pitarresi JR, Wellen KE, Arany Z, Weissenrieder JS, Foskett JK. The mitochondrial Ca 2+ channel MCU is critical for tumor growth by supporting cell cycle progression and proliferation. Front Cell Dev Biol 2023; 11:1082213. [PMID: 37363724 PMCID: PMC10285664 DOI: 10.3389/fcell.2023.1082213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: The mitochondrial uniporter (MCU) Ca2+ ion channel represents the primary means for Ca2+ uptake by mitochondria. Mitochondrial matrix Ca2+ plays critical roles in mitochondrial bioenergetics by impinging upon respiration, energy production and flux of biochemical intermediates through the TCA cycle. Inhibition of MCU in oncogenic cell lines results in an energetic crisis and reduced cell proliferation unless media is supplemented with nucleosides, pyruvate or α-KG. Nevertheless, the roles of MCU-mediated Ca2+ influx in cancer cells remain unclear, in part because of a lack of genetic models. Methods: MCU was genetically deleted in transformed murine fibroblasts for study in vitro and in vivo. Tumor formation and growth were studied in murine xenograft models. Proliferation, cell invasion, spheroid formation and cell cycle progression were measured in vitro. The effects of MCU deletion on survival and cell-death were determined by probing for live/death markers. Mitochondrial bioenergetics were studied by measuring mitochondrial matrix Ca2+ concentration, membrane potential, global dehydrogenase activity, respiration, ROS production and inactivating-phosphorylation of pyruvate dehydrogenase. The effects of MCU rescue on metabolism were examined by tracing of glucose and glutamine utilization for fueling of mitochondrial respiration. Results: Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced MCU-mediated Ca2+ uptake, altered mitochondrial matrix Ca2+ concentration responses to agonist stimulation, suppression of inactivating-phosphorylation of pyruvate dehydrogenase and a modest increase of mitochondrial respiration. Genetic MCU deletion inhibited growth of HEK293T cells and transformed fibroblasts in mouse xenograft models, associated with reduced proliferation and delayed cell-cycle progression. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro, both predictors of metastatic potential. Surprisingly, mitochondrial matrix [Ca2+], membrane potential, global dehydrogenase activity, respiration and ROS production were unaffected. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca2+ signals. Conclusion: Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on MCU for cell metabolism and Ca2+ dynamics necessary for cell-cycle progression and cell proliferation.
Collapse
Affiliation(s)
- Emily Fernandez Garcia
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Usha Paudel
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael C. Noji
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Caitlyn E. Bowman
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Jason R. Pitarresi
- Division of Hematology/Oncology, Departments of Medicine and Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kathryn E. Wellen
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zolt Arany
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Jillian S. Weissenrieder
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - J. Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
García EF, Paudel U, Noji MC, Bowman CE, Pitarresi JR, Rustgi AK, Wellen KE, Arany Z, Weissenrieder JS, Foskett JK. The mitochondrial Ca 2+ channel MCU is critical for tumor growth by supporting cell cycle progression and proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538295. [PMID: 37163088 PMCID: PMC10168388 DOI: 10.1101/2023.04.26.538295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mitochondrial uniporter (MCU) Ca 2+ ion channel represents the primary means for Ca 2+ uptake into mitochondria. Here we employed in vitro and in vivo models with MCU genetically eliminated to understand how MCU contributes to tumor formation and progression. Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced mitochondrial Ca 2+ uptake, suppression of inactivating-phosphorylation of pyruvate dehydrogenase, a modest increase of basal mitochondrial respiration and a significant increase of acute Ca 2+ -dependent stimulation of mitochondrial respiration. Inhibition of mitochondrial Ca 2+ uptake by genetic deletion of MCU markedly inhibited growth of HEK293T cells and of transformed fibroblasts in mouse xenograft models. Reduced tumor growth was primarily a result of substantially reduced proliferation and fewer mitotic cells in vivo , and slower cell proliferation in vitro associated with delayed progression through S-phase of the cell cycle. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro , both predictors of metastatic potential. Surprisingly, mitochondrial matrix Ca 2+ concentration, membrane potential, global dehydrogenase activity, respiration and ROS production were unchanged by genetic deletion of MCU in transformed cells. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca 2+ signals. Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on mitochondrial Ca 2+ uptake for cell metabolism and Ca 2+ dynamics necessary for cell-cycle progression and cell proliferation.
Collapse
|
11
|
Zhang J, Xue Z, Zhao Q, Zhang K, Zhou A, Shi L, Liu Y. RNA-Sequencing Characterization of lncRNA and mRNA Functions in Septic Pig Liver Injury. Genes (Basel) 2023; 14:genes14040945. [PMID: 37107704 PMCID: PMC10137529 DOI: 10.3390/genes14040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
We assessed differentially expressed (DE) mRNAs and lncRNAs in the liver of septic pigs to explore the key factors regulating lipopolysaccharide (LPS)-induced liver injury. We identified 543 DE lncRNAs and 3642 DE mRNAs responsive to LPS. Functional enrichment analysis revealed the DE mRNAs were involved in liver metabolism and other pathways related to inflammation and apoptosis. We also found significantly upregulated endoplasmic reticulum stress (ERS)-associated genes, including the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), the eukaryotic translation initiation factor 2α (EIF2S1), the transcription factor C/EBP homologous protein (CHOP), and activating transcription factor 4 (ATF4). In addition, we predicted 247 differentially expressed target genes (DETG) of DE lncRNAs. The analysis of protein-protein interactions (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway detected key DETGs that are involved in metabolic pathways, such as N-Acetylgalactosaminyltransferase 2 (GALNT2), argininosuccinate synthetase 1 (ASS1), and fructose 1,6-bisphosphatase 1 (FBP1). LNC_003307 was the most abundant DE lncRNA in the pig liver, with a marked upregulation of >10-fold after LPS stimulation. We identified three transcripts for this gene using the rapid amplification of the cDNA ends (RACE) technique and obtained the shortest transcript sequence. This gene likely derives from the nicotinamide N-methyltransferase (NNMT) gene in pigs. According to the identified DETGs of LNC_003307, we hypothesize that this gene regulates inflammation and endoplasmic reticulum stress in LPS-induced liver damage in pigs. This study provides a transcriptomic reference for further understanding of the regulatory mechanisms underlying septic hepatic injury.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhihui Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingbo Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Keke Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liangyu Shi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
12
|
Low Expression of Phosphodiesterase 2 (PDE2A) Promotes the Progression by Regulating Mitochondrial Morphology and ATP Content and Predicts Poor Prognosis in Hepatocellular Carcinoma. Cells 2022; 12:cells12010068. [PMID: 36611861 PMCID: PMC9818237 DOI: 10.3390/cells12010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Phosphodiesterase 2 (PDE2A) modulates the levels of cAMP/cGMP and was recently found to be involved in mitochondria function regulation, closely related to multiple types of tumor progression. This study aimed to estimate the prognostic significance and biological effects of PDE2A on hepatocellular carcinoma (HCC). We comprehensively analyzed the PDE2A mRNA expression in HCC based on The Cancer Genome Atlas (TCGA) database and investigated the effects of PDE2A on the proliferation and metastatic capacity of HCC cells. PDE2A was downregulated in 25 cancer types, including HCC. Lower PDE2A expression was a protective factor in HCC and was negatively associated with serum AFP levels, tumor status, vascular invasion, histologic grade, and pathologic stage of HCC. Moreover, tumors with low PDE2A expression displayed a decreased immune function. Then, the ROC curve was used to assess the diagnostic ability of PDE2A in HCC (AUC = 0.823 in TCGA and AUC = 0.901 in GSE76427). Patients with low PDE2A expression exhibited worse outcomes compared with those with high PDE2A expression. Additionally, GO functional annotations demonstrated the involvement of PDE2A in the ECM organization, systems development, and ERK-related pathways, indicating that PDE2A might regulate HCC growth and metastasis. The in vitro experiments confirmed that overexpression of PDE2A inhibited proliferation, colony formation, migration, and invasion in two HCC cell lines (HLF and SNU-368), while inhibition of PDE2A has the opposite results. The mechanism of PDE2A's effect on HCC cells is attributed to the change of mitochondrial morphology and ATP content. These data demonstrated that PDE2A closely participated in the regulation of HCC proliferation and metastasis and can be used as a predictive marker candidate and a potential therapeutic target for HCC.
Collapse
|
13
|
Zhang L, Qi J, Zhang X, Zhao X, An P, Luo Y, Luo J. The Regulatory Roles of Mitochondrial Calcium and the Mitochondrial Calcium Uniporter in Tumor Cells. Int J Mol Sci 2022; 23:ijms23126667. [PMID: 35743109 PMCID: PMC9223557 DOI: 10.3390/ijms23126667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondria, as the main site of cellular energy metabolism and the generation of oxygen free radicals, are the key switch for mitochondria-mediated endogenous apoptosis. Ca2+ is not only an important messenger for cell proliferation, but it is also an indispensable signal for cell death. Ca2+ participates in and plays a crucial role in the energy metabolism, physiology, and pathology of mitochondria. Mitochondria control the uptake and release of Ca2+ through channels/transporters, such as the mitochondrial calcium uniporter (MCU), and influence the concentration of Ca2+ in both mitochondria and cytoplasm, thereby regulating cellular Ca2+ homeostasis. Mitochondrial Ca2+ transport-related processes are involved in important biological processes of tumor cells including proliferation, metabolism, and apoptosis. In particular, MCU and its regulatory proteins represent a new era in the study of MCU-mediated mitochondrial Ca2+ homeostasis in tumors. Through an in-depth analysis of the close correlation between mitochondrial Ca2+ and energy metabolism, autophagy, and apoptosis of tumor cells, we can provide a valuable reference for further understanding of how mitochondrial Ca2+ regulation helps diagnosis and therapy.
Collapse
Affiliation(s)
- Linlin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xiya Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
- Correspondence: (P.A.); (Y.L.); (J.L.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
- Correspondence: (P.A.); (Y.L.); (J.L.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
- Correspondence: (P.A.); (Y.L.); (J.L.)
| |
Collapse
|
14
|
Luo B, Lin J, Cai W, Wang M. Identification of the Pyroptosis-Related Gene Signature and Risk Score Model for Colon Adenocarcinoma. Front Genet 2021; 12:771847. [PMID: 34938319 PMCID: PMC8686197 DOI: 10.3389/fgene.2021.771847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 01/10/2023] Open
Abstract
The prognosis of advanced colon adenocarcinoma (COAD) remains poor. However, existing methods are still difficult to assess patient prognosis. Pyroptosis, a lytic and inflammatory process of programmed cell death caused by the gasdermin protein, is involved in the development and progression of various tumors. Moreover, there are no related studies using pyroptosis-related genes to construct a model to predict the prognosis of COAD patients. Thus, in this study, bioinformatics methods were used to analyze the data of COAD patients downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to construct a risk model for the patient prognosis. TCGA database was used as the training set, and GSE39582 downloaded from GEO was used as the validation set. A total of 24 pyroptosis-related genes shown significantly different expression between normal and tumor tissues in COAD and seven genes (CASP4, CASP5, CASP9, IL6, NOD1, PJVK, and PRKACA) screened by univariate and LASSO cox regression analysis were used to construct the risk model. The receiver operating characteristic (ROC) and Kaplan–Meier (K–M curves) curves showed that the model based on pyroptosis-related genes can be used to predict the prognosis of COAD and can be validated by the external cohort well. Then, the clinicopathological factors were combined with the risk score to establish a nomogram with a C-index of 0.774. In addition, tissue validation results also showed that CASP4, CASP5, PRKACA, and NOD1 were differentially expressed between tumor and normal tissues from COAD patients. In conclusion, the risk model based on the pyroptosis-related gene can be used to assess the prognosis of COAD patients well, and the related genes may become the potential targets for treatment.
Collapse
Affiliation(s)
- Bixian Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Tarvainen I, Nunn RC, Tuominen RK, Jäntti MH, Talman V. Protein kinase A Mediated Effects of Protein kinase C Partial Agonist HMI-1a3 in Colorectal Cancer Cells. J Pharmacol Exp Ther 2021; 380:54-62. [PMID: 34697230 DOI: 10.1124/jpet.121.000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most commonly occurring cancer in men and the second in women. The global burden of colorectal cancer is projected to increase to over 2 million new cases with over 1 million deaths within the next 10 years and there is a great need for new compounds with novel mechanisms of action. Our group has developed PKC modulating isophthalic acid derivatives that induce cytotoxicity towards human cervical and prostate cancer cell lines. In this study, we investigated the effects of 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3) on colorectal cancer cell lines (Caco2, Colo205 and HT29). HMI-1a3 inhibited cell proliferation, decreased cell viability and induced an apoptotic response in all studied cell lines. These effects, however, were independent of PKC. Using serine/threonine kinome profiling and pharmacological kinase inhibitors we identified activation of the cAMP/PKA pathway as a new mechanism-of-action for HMI-1a3-induced anti-cancer activity in colorectal cancer cell lines. Our current results strengthen the hypothesis for HMI-1a3 as a potential anti-cancer agent against various malignancies. Significance Statement Colorectal cancer (CRC) is a common solid organ malignancy. Here, we demonstrate that the protein kinase C (PKC) C1 domain-targeted isophthalatic acid derivative HMI-1a3 has anti-cancer activity on CRC cell lines independently of PKC. We identified protein kinase A (PKA) activation as a mechanism of HMI-1a3 induced anti-cancer effects. Our results reveal a new anti-cancer mechanism of action for the partial PKC agonist HMI-1a3 and thus provide new insights for the development of PKC and PKA modulators for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Virpi Talman
- Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|